CSU290 Lecture Notes Lecture 27 Part A 24 Nov 2008

Peter Dillinger
Using ACL2 for Proofs

Il will work through an exanple to denonstrate how to use ACL2 to prove
theorens about prograns. W will use this inplenentation of insertion sort:

(defun insert (e |)

(if (endp I)
(cons e 1)
(if (<= e (car 1))
(cons e 1)
(cons (car I) (insert e (cdr 1))))))

(defun isort (1)
(if (endp I)
ni
(insert (car 1) (isort (cdr 1)))))

The function INSERT inserts an elenment in order into an ordered |ist:

ACL2 >VALUE (insert 2 ' (0 15 7))

(01257

ACL2 >VALUE (insert 2 '())
(2)

ACL2 >VALUE (insert 2 '(3 4))
(2 3 4)

And | SORT uses | NSERT repeatedly to build a sorted list:

ACL2 >VALUE (isort '(9 8 3 7 2))

(23789

ACL2 >VALUE (isort '())

NI L

ACL2 >VALUE (isort '(4 54 3 3))
(334 4Y5)

We can open up ACL2s and create a new Lisp file in Intermedi ate Mdde, add
the above definitions, and proceed with attenpting the proofs bel ow

Let us first ask ACL2 to prove that the length of sorting an object is
the Il ength of that object:

(defthmlen--isort

(equal (len (isort x))

(len x)))

DEFTHM asks ACL2 to attenpt to prove a formula and, if successful, renmenber
it for use in future proofs. W give it a name, in this case LEN--1SORT, so
that when ACL2 uses it in the future, it can give us the name of what it used.
The proof fails and here is sone of the output, with some expl anati ons:

<< Starting proof tree |ogging >>

This indicates that ACL2 is sending an outline of the proof attenpt to the
ACL2s Proof Tree view.

Name the formul a above *1



This is what ACL2 says when it runs out of things to do w thout using
induction. It will try induction once per proof, so that is what it does
next :

Per haps we can prove *1 by induction. Two induction schenes are suggested
by this conjecture. These nerge into one derived induction schene.

VWhat are the two functions involed in the conjecture? LEN and ISORT. If you
| ook at the induction schenes suggested by those functions, they are the sane.

We will induct according to a schene suggested by (LEN X). This suggestion
was produced using the :induction rules ISORT and LEN. If we let (:P X
denote *1 above then the induction scheme we'll use is

(AND (I MPLIES (NOT (CONSP X)) (:P X))
(I MPLIES (AND (CONSP X) (:P (CDR X)))
(:PX)).
This induction is justified by the same argunent used to adnmit LEN.
When applied to the goal at hand the above induction schene produces
two nont aut ol ogi cal subgoal s.

The two subgoal s are the base case and the induction step, listed above with
an AND.

Subgoal *1/2
(I MPLI ES (NOT (CONSP X))
(EQUAL (LEN (ISORT X)) (LEN X))).

But sinplification reduces this to T, using the :definitions | SORT
and LEN and the :executabl e-counterparts of EQUAL and LEN.

ACL2 has conpleted the entire base case proof in what it considers one step.
It tells us it used the definitions of |ISORT and LEN and executed the functions
EQUAL and LEN to determne this is true.

In fact, (ISORT X) is equal to NIL given the assunption and the definition of
| SORT, (LEN NIL) can be executed to get 0, (LEN X) is equal to O given the
assunmption and the definition of LEN, and (EQUAL O 0) can be executed to get T.

On to the next Subgoal, the inductive step:

Subgoal *1/1
(1 MPLIES (AND ( CONSP X)
(EQUAL (LEN (1 SORT (CDR X)))
(LEN (CDR X))))
(EQUAL (LEN (ISORT X)) (LEN X))).

This sinmplifies, using the :definitions | SORT and LEN, to

Subgoal *1/1’
(I MPLI ES (AND ( CONSP X)
(EQUAL (LEN (I SORT (CDR X)))
(LEN (CDR X))))
(EQUAL (LEN (INSERT (CAR X) (I SORT (CDR X))))
(+ 1 (LEN (CDR X))))).

Those are the two things we would do if we were proving this by hand.

The destructor terms (CAR X) and (CDR X) can be elim nated by using
CAR-CDR-ELIMto replace X by (CONS X1 X2), (CAR X) by X1 and (CDR X)
by X2. This produces the foll owi ng goal .

Subgoal *1/1"’
(I MPLIES (AND (CONSP (CONS X1 X2))
(EQUAL (LEN (I SORT X2)) (LEN X2)))
(EQUAL (LEN (I NSERT X1 (I SORT X2)))



(+ 1 (LEN X2)))).
This simplifies, using primtive type reasoning, to

Subgoal *1/1'’
(I MPLIES (EQUAL (LEN (1 SORT X2)) (LEN X2))
(EQUAL (LEN (I NSERT X1 (1SORT X2)))
(+ 1 (LEN X2)))).
ANN- Checkpoi nt Subgoal *1/1' ' AAA

Now ACL2 used the fact that X is a cons to make the fornmula a little sinpler
by using separate variables for what was the CAR of X and the CDR of X

"Checkpoi nt" means that it has exhausted its safest proof techniques and ni ght
start doing things that be in a wong direction. |In fact, at the beginning of
the proof, it said "Checkpoint" because whenever it tries induction, it may
not choose the right induction and may go off in a wong direction

We now use the hypothesis by substituting (LEN (I SORT X2)) for (LEN X2)
and throwi ng away the hypothesis. This produces

Subgoal *1/1' 4’

(EQUAL (LEN (I NSERT X1 (1SORT X2)))
(+ 1 (LEN (1SORT X2)))).

ANN - Checkpoi nt Subgoal *1/1' 4 An~A

It used one nore tool in its arsenal by using the equality assunption and
forgetting about it.

Name the fornula above *1.1.

Now it has run out of things to do w thout using induction..
No i nduction schemes were specified for *1.1, and the depth Iimt for
automatic inductions, currently 1, has been reached. Consequently,

the proof attenpt has fail ed.

but it’s already done induction once, so it won't again.

Summary
Form ( DEFTHM LEN--1SORT ...)
Rul es: ((: DEFI NI TI ON | SORT)

(
(: DEFI NI TI ON LEN)

(: ELIM CAR- CDR-ELI M

(: EXECUTABLE- COUNTERPART EQUAL)
(: EXECUTABLE- COUNTERPART LEN)
(: FAKE- RUNE- FOR- TYPE- SET NI L)
(: I NDUCTI ON | SORT)

(: I NDUCTI ON LEN))

War ni ngs: None

Time: 0.03 seconds (prove: 0.01, print: 0.01, proof tree: 0.01, other: 0.00)

Here it tells us the rules it used and how nmuch time it took

The key checkpoint goals, below, may help you to debug this failure.
See :DOC failure and see : DOC set-checkpoi nt-summary-limt.

*** Key checkpoint at the top level: ***

Goa
(EQUAL (LEN (1SORT X)) (LEN X))

*** Key checkpoint under a top-Ilevel induction: ***



Subgoal *1/1"’
(I MPLIES (EQUAL (LEN (1 SORT X2)) (LEN X2))
(EQUAL (LEN (I NSERT X1 (1SORT X2)))
(+ 1 (LEN X2))))

ACL2 Error in ( DEFTHM LEN--ISORT ...): See :DCC failure
*kkkkkk*k FAI LED *kkkkkk*k

Very often, we do not have to look at all of a failed proof; we can just |ook
at the "key checkpoints". Basically, ACL2 is telling us that it has reduced
the original conjecture to the formula

(I MPLI ES (EQUAL (LEN (1SORT X2)) (LEN X2))
(EQUAL (LEN (I NSERT X1 (ISORT X2)))
(+ 1 (LEN X2))))

So if you can help ACL2 prove that, it can prove the original conjecture.

In this case, looking at a formula later in the proof is perhaps even nore
hel pf ul :

(EQUAL (LEN (INSERT X1 (1 SORT X2)))
(+ 1 (LEN (1 SORT X2)))).

This is rather sinple, and it should be true, right? How about we ask ACL2
to prove this, so that it can try induction on this? It turns out that
ACL2 fails to prove this formula exactly. |If we look at it carefully, we
see that using induction on exactly this formula does not work out well.

VWhat' s the technique we’ve | ooked at that allows us to "correct" a formula
so that induction works out?

CGeneralization! How can we nake t he above proposition nore general ?

I's this a proposition about ISORT? No. In fact, it does not matter
that I SORT is being called. W can replace (I1SORT X2) with a new vari abl e
to nmake the formul a nore general

(EQUAL (LEN (I NSERT X1 y))
(+ 1 (LENY))).

If we put this in a DEFTHMwith a name, ACL2 is able to prove this. And
with that proven, ACL2 can prove LEN--1SORT, because ACL2 knows it can
instantiate y with (I SORT X2).

So after the function definitions, we have

(defthmlen--isort--1emm
(equal (len (insert x y))
(+ 1 (leny))))

(defthmlen--isort
(equal (len (isort x))

(l'en x)))

For appearance, | nade everything | owercase and replaced x1 with just x.

We can al so ask ACL2 to attenpt to prove

(defthmtrue-listp--isort
(true-listp (isort x)))



It fails, and here’s the key checkpoi nt under induction:
*** Key checkpoint under a top-Ilevel induction: ***

Subgoal *1/2' 4’
(I MPLI ES (TRUE-LI STP (I SORT X2))
(TRUE- LI STP (I NSERT X1 (I SORT X2))))

And this one calls for the sane generalization: the (ISORT X2) could be
anything, so we replace that with another variable:

(defthmtrue-1istp--insert

(inplies (true-listp y)
(true-listp (insert x y))))

(defthmtrue-listp--isort
(true-listp (isort x)))



