
CSU290 Lecture Notes              Lecture 25                   17 Nov 2008
                                                           Peter Dillinger
A Review of Proving by Induction
--------------------------------

Let us look at some more examples and examine how to prove them by induction.
(These are the theorems that led to the proof obligations in Homework 4.
Refer to it for definitions of functions.)

What are the proof obligations for proving the following by induction?

  (implies (true-listp b)
           (true-listp (app a b)))

First we need to consider what induction scheme to use and over what
variables.  Remember that induction schemes come from functions, and the best
induction scheme for a conjecture will almost always come from one of the
functions in it.  This one has TRUE-LISTP and APP.  Let’s examine the induction
schemes suggested by the definitions of these functions:

  Induction Scheme for (true-listp x)
    Base test: (endp x)
    Replacements:  x <- (cdr x)

  Induction Scheme for (app x y)
    Base test: (endp x)
    Replacements:  x <- (cdr x)
                   y <- y

(These came from the function definitions.  See Lecture 21 for how.)
Remember that each variable involved in the induction, each parameter to
the function, must be replaced by something in the Induction Hypothesis, and
those replacements are given by the parameters to the recursive call.

For example, APP calls itself with (cdr x) for x and y for y.  So effectively,
there is no replacing of y at all.  That means the induction schemes given
by (true-listp x) and by (app x y) are equivalent.

Getting back to what induction scheme to use for our conjecture... We have
just one scheme, but we need to know which variable to induct over.  The fact
that we see (true-listp b) and (app a b) suggests using effectively the same
scheme for two different variables.  One would have (endp a) and the other
(endp b).  Because the base case (endp a) seems trivial, inducting based on
(true-listp a), which is equivalent to inducting based on (app a b), seems
best... and turns out to work.

So what are the proof obligations for proving

  (implies (true-listp b)
           (true-listp (app a b)))

by induction based on (true-listp a)?

The conventional approach to an inductive proof would give us two obligations:

  Base case:
  (implies (endp a)
           (implies (true-listp b)
                    (true-listp (app a b))))
  Inductive Step:
  (implies (and (not (endp a))
                (implies (true-listp b)
                         (true-listp (app (cdr a) b))))
           (implies (true-listp b)
                    (true-listp (app a b))))



Now this is a correct answer, but there is another answer with three proof
obligations, that is based on what I presented for proving implications by
induction:

For this problem,

  B = (endp a)
  H = (true-listp b)
  H’= (true-listp b)
  C = (true-listp (app a b))
  C’= (true-listp (app (cdr a) b))

which gives us

  Modified Base Case:
  (implies (and (endp a)
                (true-listp b))
           (true-listp (app a b)))

  Ind. Hyp. Chaining:          (this one is trivial to prove; it’s a tautology)
  (implies (and (not (endp a))
                (true-listp b))
           (true-listp b))

  Modified Inductive Step:
  (implies (and (not (endp a))
                (true-listp b)
                (true-listp b) ; if you omit repeated hypotheses, that’s ok too
                (true-listp (app (cdr a) b)))
           (true-listp (app a b)))

And that is another answer, which I find easier to work with if we actually
have to go prove it.

What are the proof obligations for proving the following by induction?

  (true-listp (rev x))

The schemes we get from TRUE-LISTP and from REV are identical, so we will just
induct according to (rev x).  Note that this formula is *not* an implication,
so there is no need for the B, H, H’... business, and we have only two proof
obligations:

  Base Case:
  (implies (endp x)
           (true-listp (rev x)))

  Inductive Step:
  (implies (and (not (endp x))
                (true-listp (rev (cdr x))))
           (true-listp (rev x)))

This problem is interesting however, because we do not need induction to
prove it.  You’ll notice that in Homework 4, the induction hypothesis,
(true-listp (rev (cdr x))) was not among the hypotheses.  It turns out we
can prove this just by cases on (endp x) and (not (endp x)).  It’s not
incorrect or invalid to prove this by induction, but it’s not necessary.



Finally, what are the obligations for proving the following by induction?

  (equal (rev-append x y)
         (app (rev x) y))

In this case we get different schemes depending on whether we use (rev x),
which is the same as (app x y), or (rev-append x y).  The correct choice
is often the more complicated induction scheme, (rev-append x y), and in
this case that will be the right choice:

 Induction Scheme for (rev-append x y)
   Base test:  (endp x)
   Replacements:  x <- (cdr x)
                  y <- (cons (car x) y)

 Proof obligations:
  Base Case:
  (implies (endp x)
           (equal (rev-append x y)
                  (app (rev x) y)))
  Inductive Step:
  (implies (and (not (endp x))
                (equal (rev-append (cdr x) (cons (car x) y))
                       (app (rev (cdr x)) (cons (car x) y))))
           (equal (rev-append x y)
                  (app (rev x) y)))

If we try inducting based on (rev x), then the inductive step is different and
too hard to prove:

  (implies (and (not (endp x))
                (equal (rev-append (cdr x) y)
                       (app (rev (cdr x)) y)))
           (equal (rev-append x y)
                  (app (rev x) y)))

If we start with (rev-append x y) and open up the definition, we get

  (rev-append (cdr x) (cons (car x) y))

and what we know about (rev-append (cdr x) y) doesn’t seem to be helpful.


