CSU290 Lecture Notes Lecture 25 17 Nov 2008
Peter Dillinger
A Revi ew of Proving by Induction

Let us | ook at some nore exanpl es and exam ne how to prove them by induction
(These are the theorens that led to the proof obligations in Homework 4.
Refer to it for definitions of functions.)

VWhat are the proof obligations for proving the follow ng by induction?

(inplies (true-listp b)
(true-listp (app a b)))

First we need to consider what induction schene to use and over what

vari abl es. Renenber that induction schenmes conme fromfunctions, and the best

i nducti on schene for a conjecture will alnobst always conme fromone of the
functions in it. This one has TRUE-LISTP and APP. Let’'s exam ne the induction
schenes suggested by the definitions of these functions:

I nduction Scheme for (true-listp x)
Base test: (endp x)
Repl acenents: x <- (cdr x)

I nducti on Schenme for (app x Yy)
Base test: (endp x)
Repl acenents: x <- (cdr x)

y <=y

(These cane fromthe function definitions. See Lecture 21 for how.)
Renenmber that each variable involved in the induction, each paraneter to

the function, must be replaced by something in the Induction Hypothesis, and
those repl acenents are given by the parameters to the recursive call

For exanple, APP calls itself with (cdr x) for x and y for y. So effectively,
there is no replacing of y at all. That neans the induction schenmes given
by (true-listp x) and by (app x y) are equival ent.

Getting back to what induction schene to use for our conjecture... W have
just one schene, but we need to know which variable to induct over. The fact
that we see (true-listp b) and (app a b) suggests using effectively the sane
schene for two different variables. One would have (endp a) and the other
(endp b). Because the base case (endp a) seens trivial, inducting based on
(true-listp a), which is equivalent to inducting based on (app a b), seens
best... and turns out to work.

So what are the proof obligations for proving

(inplies (true-listp b)
(true-listp (app a b)))

by induction based on (true-listp a)?
The conventional approach to an inductive proof would give us two obligations:

Base case:
(inplies (endp a)
(inplies (true-listp b)
(true-listp (app a b))))
I nductive Step:
(inplies (and (not (endp a))
(inplies (true-listp b)
(true-listp (app (cdr a) b))))
(inplies (true-listp b)
(true-listp (app a b))))



Now this is a correct answer, but there is another answer with three proof
obligations, that is based on what | presented for proving inplications by
i nducti on:

For this problem

B = (endp a)

H= (true-listp b)

H= (true-listp b)

C = (true-listp (app a b))
C=(true-listp (app (cdr a) b))

whi ch gives us

Modi fi ed Base Case
(inplies (and (endp a)
(true-listp b))
(true-listp (app a b)))

Ind. Hyp. Chaining: (this one is trivial to prove; it’'s a tautol ogy)
(inplies (and (not (endp a))
(true-listp b))
(true-listp b))

Modi fied I nductive Step
(inplies (and (not (endp a))
(true-listp b)
(true-listp b) ; if you omt repeated hypotheses, that's ok too
(true-listp (app (cdr a) b)))
(true-listp (app a b)))

And that is another answer, which | find easier to work with if we actually
have to go prove it.

VWhat are the proof obligations for proving the follow ng by induction?
(true-listp (rev x))

The schenmes we get from TRUE-LI STP and from REV are identical, so we will just
i nduct according to (rev x). Note that this forrmula is *not* an inplication
so there is no need for the B, H H ... business, and we have only two proof
obl i gati ons:

Base Case

(inplies (endp x)
(true-listp (rev x)))

I nductive Step:
(inplies (and (not (endp x))
(true-listp (rev (cdr x))))
(true-listp (rev x)))

This problemis interesting however, because we do not need induction to

prove it. You'll notice that in Homework 4, the induction hypothesis,
(true-listp (rev (cdr x))) was not anong the hypotheses. |t turns out we
can prove this just by cases on (endp x) and (not (endp x)). It’s not

incorrect or invalid to prove this by induction, but it’'s not necessary.



Finally, what are the obligations for proving the follow ng by induction?

(equal (rev-append x y)
(app (rev x) y))

In this case we get different schenes dependi ng on whether we use (rev Xx),
which is the same as (app x y), or (rev-append x y). The correct choice
is often the nore conplicated induction schene, (rev-append x y), and in
this case that will be the right choice:

I nducti on Schenme for (rev-append x y)
Base test: (endp x)
Repl acenents: x <- (cdr x)
y <- (cons (car X) y)

Proof obligations:
Base Case
(inplies (endp x)
(equal (rev-append x y)
(app (rev x) y)))
I nductive Step:
(inplies (and (not (endp x))
(equal (rev-append (cdr x) (cons (car x) Yy))
(app (rev (cdr x)) (cons (car x) vy))))
(equal (rev-append x y)
(app (rev x) y)))

If we try inducting based on (rev x), then the inductive step is different and
too hard to prove

(inplies (and (not (endp x))
(equal (rev-append (cdr x) vy)

(app (rev (cdr x)) vy)))
(equal (rev-append x vy)
(app (rev x) y)))

If we start with (rev-append x y) and open up the definition, we get
(rev-append (cdr x) (cons (car X) y))

and what we know about (rev-append (cdr x) y) doesn’t seemto be hel pful.



