
CSU290 Lecture Notes Lectures 14 & 15 16 & 20 Oct 2008

Peter Dillinger

Theorems and Theories

Is the following a theorem?

(implies (> x 20000)
         (too­big x))

Well, if we have not defined the function too­big, then it certainly is not a theorem and 
ACL2 won't even attempt to prove the proposition.

If we make this definition,

(defun too­big (x)
  (> x 1000))

then the theorem is clearly true.  ACL2 proves it:

(thm (implies (> x 20000)
              (too­big x)))

But if we define too­big differently,

(defun too­big (x)
  (> x 1000000))

it is not a theorem.  Here's a counterexample:

(check=
 (let ((x 30000))
   (implies (> x 20000)
            (too­big x)))
 nil)

The point here is that whether a proposition is a theorem or not depend on the current 
theory, which depends on all the function definitions.

The Definitional Principle

Let's look at the requirements for function definitions in ACL2 and what they mean in the 
ACL2 logic.  This is given by the definitional principle:

A function definition, (defun f (v1 v2 ... vn) body) is admissible if

● f is a new function symbol, meaning it has not yet been defined

● v1 v2 ... vn are distinct variable symbols

● body is a valid ACL2 expression, possibly calling f recursively, and no free 
variables other than v1 v2 ... vn

● ACL2 is able to prove the function terminates on all inputs (see comments below)



If admissible, the definition is accepted, meaning it can be used and executed in code 
and adds a new axiom to the current logical theory:

● (equal (f  v1 v2 ... vn) body)

We will talk about axioms and theories soon, but let us talk about termination again.  Recall 
examples from last lecture in which functions that did not terminate caused trouble for the 
logic, because they did not corresponded to total, mathematical functions.  Consequently, 
ACL2 only accepts function definitions that are proven to terminate.  The textbook on ACL2 
covers in depth how the user can prove functions terminating in ACL2, but we will not cover 
that in this class.  We will depend on a system referred to as “CCG termination analysis” for 
proving termination automatically.  It is built into the ACL2s “Intermediate” session mode, 
among others.

If the CCG termination analysis succeeds, it was able to prove the function terminates:

ACL2 >EVENT 
(defun app (x y)
  (if (endp x)
    y
    (cons (car x) (app (cdr x) y))))

Attempting to prove termination using CCG analysis (please be patient)...

CCG analysis has succeeded in proving termination of APP.  Thus, we
admit this function under the principle of definition.  We observe
that the type of APP is described by the theorem 
(OR (CONSP (APP X Y)) (EQUAL (APP X Y) Y)).  We used primitive type
reasoning.

Summary
Form:  ( DEFUN APP ...)
Rules: ((:FAKE­RUNE­FOR­TYPE­SET NIL)
        (:WELL­FOUNDED­RELATION WELL­FOUNDED­L<))
Warnings:  None
Time:  0.01 seconds (prove: 0.00, print: 0.00, proof tree: 0.00, other: 0.01)

If the CCG termination analysis fails, it could be because the function does not terminate on 
some inputs, but it could also be because it wasn't “smart” enough to prove termination. 
Here's an example on a function that does not terminate on some inputs:

ACL2 >EVENT 
(defun fact (x)
  (if (= x 0)
    1
    (* x (fact (­ x 1)))))

Attempting to prove termination using CCG analysis (please be patient)...

ACL2 Error in ( DEFUN FACT ...):  CCG analysis has FAILED to prove
termination of FACT.  Thus, we suspect (but haven't proven) that there
are some inputs for which this function does not terminate.

Our recommendations:



* Attempt to find counterexamples to termination.

* Lend some aid to the CCG analysis:
­­ Attempt a simplifying redesign of this function.
­­ Prove lemmas, build up some theory, and/or include books related
to functions in the proposed definition that are critical to termination.

* Provide an explicit termination argument for a measure­based proof.
See :DOC measure and :DOC defun. The default well­founded relation
is currently L<, which is lexicographic ordering on lists of natural
numbers.

Summary
Form:  ( DEFUN FACT ...)
Rules: NIL
Warnings:  None
Time:  0.08 seconds (prove: 0.08, print: 0.00, proof tree: 0.00, other: 0.00)

ACL2 Error in ( DEFUN FACT ...):  See :DOC failure.

******** FAILED ********

But in this class, you do not need measure-based proofs.

Theories and Axioms

The definitional principle says that a definition like

(defun too­big (x)
  (> x 1000))

adds a new axiom to the current logical theory:

(equal (too­big x) (> x 1000))

What does this mean?  In fact, a logical theory is a set of axioms, and an axiom is a 
proposition that is assumed to be true.  An axiom is a fundamental truth about the system 
we are working on.  A synonym of axiom you have probably heard before is postulate.

What do axioms do for us?  That is where a logic comes in, with rules of inference, which 
allow us to derive theorems from axioms and other theorems.

Now we have a picture of where proofs of theorems come from:  a theorem concerns a given 
theory in a given logic.  That theory is a set of axioms.  The logic has rules of inference that 
allow us to generate other theorems from those axioms.  (Axioms are theorems.)

When we start ACL2, it has lots of functions already defined and it correspondingly has 
axioms for those functions in its theory.  Remember from the ACL2 Language Overview that 
some functions are “primitive” and some are “derived?”  The axioms governing derived 
functions come from the definitional principle.  For example, there is an axiom that says

(equal (true­listp x)
       (if (consp x)
         (true­listp (cdr x))
         (equal x nil)))



which comes from the definition of true-listp.

Primitive functions, however, are not defined in terms of other functions, so the axioms 
governing those were put together carefully and cleverly by the people who created ACL2. 
Here are some examples of those:

(equal x x)
(not (equal t nil))
(implies (equal x nil)
         (equal (if x y z)
                z))
(implies (not (equal x nil))
         (equal (if x y z)
                y))

Rules of inference

The textbook describes a small, rather cryptic set of inference rules for ACL2.  There is an 
elegance in making a logic as simple as possible, but it can be hard to work with.  I will 
describe a more general set of inference rules that should be easy to understand and more 
easily usable.  Here are some:

Instantiation:  If φ is a theorem, then φ with all occurences of a free variable replaced by 
some expression is also a theorem.  We could also state this as

φ ⇒ (let ((v e)) φ)

because the meaning of LET is to replace free occurrences of v with e.  However, we don't 
want to depend on LET for this rule, so go ahead and do the replacement.

For example,

(consp (cons a b))

is an axiom and, therefore, a theorem.  We can instantiate a with any expression, including 
(car x), and get another theorem:

(consp (cons (car x) b))

The rule of inference tells us this must be a theorem.  Furthermore, we can instantiate b to 
get yet another theorem:

(consp (cons (car x) (app (cdr x) y)))

Propositional deduction:  If

(φ1 ⋀ φ2 ⋀ ... ⋀ φn) → ψ

is a propositional tautology—a tautology according to boolean logic—and φ1, φ2, ..., φn are 
theorems, then we can conclude ψ is a theorem.

In other words,

φ1, φ2, ..., φn ⇒ ψ   if   (φ1 ⋀ φ2 ⋀ ... ⋀ φn) → ψ   is a tautology

For example, from these ACL2 axioms,

(implies (integerp x) (acl2­numberp x))



(implies (consp x) (not (acl2­numberp x)))

I claim I can deduce

(implies (integerp x) (not (consp x)))

I can get this by a propositional deduction.  If you let i stand for (integerp x), n for 
(acl2­numberp x) and c for (consp x), the following must be a tautology for the 
deduction to be legal:

((i → n) ⋀ (c → ¬n)) → (i → ¬c))

Well, c → ¬n is equivalent to n → ¬c, and (i → n) ⋀ (n → ¬c) implies i → ¬c.  Thus, it is a 
tautology.  (Check it with a truth table.)  Thus, the deduction above is a legal application of 
propositional deduction.  Thus, (implies (integerp x) (not (consp x))) is a theorem.

A special case of propositional deduction is Modus ponens.  It says that if we have 
theorems φ and (implies φ ψ), then we can conclude ψ.  That is because (φ ⋀ (φ → ψ)) → ψ 
is a tautology.

Equals for equals: If we have a theorem that e1 is equal to e2 and another theorem φ, then 
we can conclude φ with occurrences of e1 in it optionally replaced by e2.

For example, if we have theorems

(equal (> x 1000) (too­big x))

(implies (> x 20000)
         (> x 1000))

Then we can replace equals for equals to conclude

(implies (> x 20000)
         (too­big x))

In this case,  e1 would be (> x 1000), e2 would be (too­big x), and φ would be 
(implies (> x 20000) (> x 1000)).

Sample Proof

I will prove

(not (consp (len x)))

I will assume a theorem I proved above,

(implies (integerp x) (not (consp x)))

another I will not prove here,

(natp (len x))

and the definitional axiom for NATP:

(equal (natp x)
       (and (integerp x) (<= 0 x)))

I will, in a sense, do this proof “backwards,” by starting with what we want to prove and 
eventually reducing to axioms or known theorems:



More specifically, a formal proof is a tree of propositions whose tips (“leaves”) are axioms 
and each other node is a consequence of its children by some rule of inference.  The root 
node has the overall theorem that is proven.

Technically, the proof above is not a complete formal proof, because some of the tips are just 
known theorems rather than axioms.  For it to be a complete formal proof, one would need to 
fill in proofs of those theorems, but it is standard to use previously proven theorems in 
subsequent proofs.


	Theorems and Theories
	The Definitional Principle
	Theories and Axioms
	Rules of inference
	Sample Proof

