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Review

A tautology is always true in a given logic.  A theorem is always true in a given theory under 
a given logic.  We won't ask you to make tough distinctions between these two, but we will 
soon talk more about logical theories, and that will give you more of an understanding of the 
essence of the distinction.

First order logic has explicit quantifiers.  ACL2 has implicit universal quantification, but we 
can still state everything we can in first order logic.  (We saw how to replace existential 
quantification with witnesses.)

Implicit universal quantification of free variables means that ACL2 has no distinction between 
formulas and propositions.  The “Generalized Boolean,” in which NIL stands for false and 
anything else stands for true, means that there is no distinction between formulas and 
expressions.  Thus, some simple expressions such as

5

'(1 . 2)

(+ 3 4)

"hi"

are technically theorems, because they are true for all possible assignments to free variables 
(of which there are none).

Using the ACL2 logic and theorem prover

We can ask ACL2 to attempt to prove theorems using THM, like so:

(thm 5)

(thm "hi")

(thm (or (atom x)
         (consp x)))

Now that we are working with ACL2 logically, Programming mode no longer suffices. 
(Programming mode will not attempt any proofs.)  For the rest of CSU290, you should use 
ACL2s' Intermediate mode.  We won't be looking at the output of THMs in any detail until 
the end of the term when we learn to use ACL2's proving capabilities on more complex 
problems.  For now, we will treat THM as something that tells us either, “Yes, ACL2 could 
prove this automatically, so it is a theorem,” or “ACL2 was unable to prove this automatically, 
so it may or may not be a theorem.”

Although we aren't discussing exactly how ACL2's THM works, we should discuss how THM 
doesn't or can't work.  For most interesting theorems, THM cannot work by trying all the 
possibilities and checking that the formula evaluates to true (non-NIL) in each case.  This is 
because the possibilities are infinite.  Consider trying all the possible ACL2 values on (or 
(atom x) (consp x)).  You would have to try x=0, x=1, x=2, ...  Even the natural numbers are 
infinite!



On the other hand, it only takes one example to show an ACL2 proposition is not a theorem. 
Consider the proposition that every value is either greater than five or less than five.  I could 
ask ACL2 to prove that as follows:

(thm (or (> x 5)
         (< x 5)))

It fails, but that does not tell us definitively whether it is a theorem or not.  If we can find a 
counterexample, an assignment of values to the free variables, that makes the proposition 
false (NIL), that tells us definitively that the proposition is not a theorem.

What if I let x be 5?  That is neither greater than 5 nor less than 5, so that should falsify the 
proposition—make it NIL.  Here's how we can check that our counterexample does just that:

(check=

We can also relate the notion of counterexamples back to first order logic.  The above ACL2 
proposition essentially says

∀x (or (> x 5)
       (< x 5))

which is the same as

¬  ¬  ∀x (or (> x 5)
           (< x 5))

We learned last time from identities involving quantifiers that that is the same as

¬  ∃x ¬  (or (> x 5)
           (< x 5))

We can conclude that is true by providing a witness for x, our counterexample:

¬  ¬  (or (> 5 5)
        (< 5 5))

which is the same as

¬  ¬  nil

and in first order logic terms, that is

false

More formalizing

Formalize—write an ACL2 proposition for—this conjecture:  Every value is less than or equal 
to 5 if and only if it is not greater than 5.

(thm (iff (<= x 5)
          (not (> x 5))))

I wrote this with THM to ask ACL2 to prove it, and it does.

How about, “The length of appending two things is the sum of the lengths of the two things.”

(thm (equal (len (append x y))
            (+ (len x) (len y))))



ACL2 can prove that.

How about, “Appending two true lists results in a true list.”

(thm (implies (and (truelistp x)
                   (truelistp y))
              (truelistp (append x y))))

And ACL2 can prove that.

A Fun Problem

A Mersenne prime is a prime number that is equal to 2n - 1 for some natural number n.  Not 
all numbers that are 2n - 1 are primes.  3 is a Mersenne prime.  7 is also.  15 is not.  31 is.

An unsolved problem in mathematics is whether there are an infinite number of Mersenne 
primes.  Let's write a function that generates them.  We can ask ACL2 to include something 
that already defines what a prime number is with a predicate PRIMEP:

(includebook "quadraticreciprocity/euclid" :dir :system)

We can check to make sure PRIMEP is working on some examples:

(check= (primep 6) nil)

(check= (primep 7) t)

(check= (primep 6563) t)

Now let's write a function that takes the n in 2n - 1 and finds the next Mersenne prime for a 
larger n:

(defun nextmprime (n)
  (let ((v ( (expt 2 (+ 1 n)) 1)))
    (if (primep v)
      v
      (nextmprime (+ 1 (nfix n))))))

Basically, it checks whether 2n+1 - 1 is prime.  If it is, it returns that value.  If not, it makes 
the recursive call to keep checking larger natural numbers.

Programming mode accepts this definition but Intermediate mode does not.  For now, we will 
force Intermediate mode to accept it.  Do not concern yourself with the details:

(setterminationmethod :measure)

(skipproofs
  (defun nextmprime (n)
    (let ((v ( (expt 2 (+ 1 n)) 1)))
      (if (primep v)
        v
        (nextmprime (+ 1 (nfix n)))))))

Do you recall in the last lecture how we formalized that there is no largest integer?  We will 
do something similar here, asking ACL2 to prove that for any integer n, there is a Mersenne 
prime greater than  2n - 1:



(thm (implies (posp n)
              (primep (nextmprime n))))

If I ask ACL2 to prove this, IT PASSES!  Wait!?  Did I, with the help of ACL2, just solve an 
unsolved math problem?

The answer is no.  ACL2 rejected the function definition because it could not prove that the 
function terminates.  Remember how we require functions to be total and terminate on all 
inputs?  Well, when we leave Programming mode, that requirement is enforced by ACL2 
attempting to prove termination of functions before it accepts them.

We have just seen how important termination is.  The “skip-proofs” told ACL2 to just believe 
us that the function terminates, and using that assumption, it was able to prove that there 
are an infinite number of Mersenne primes.  In fact, look at the function.  If there are an 
infinite number of Mersenne primes, it will terminate for all inputs.  If there are not an infinite 
number of Mersenne primes, there must be an n beyond which next-mprime does not 
terminate—because it will search for the next one forever!

Why exactly is termination so important?  It establishes a connection between 
computational functions and mathematical functions.  When we write a function in a 
programming language, it might not return a value for some inputs because it would run 
indefinitely on those inputs.  Mathematical functions, on the other hand, have no notion of 
“computing” an output from an input.  They are like infinite look-up tables from inputs to 
outputs.

The ACL2 logic assumes functions can be treated as mathematical total functions.  Requiring 
termination on all inputs guarantees this is the case.  Here is an example of a non-
terminating function that causes serious problems:

(defun bad (x)  (not (bad x)))

We haven't talked much about proving, but we can use boolean logic identities to find 
equivalent formulas:

true
↔ { boolean identity }

(bad x) \/ (not (bad x))

↔ { by definition of BAD }
(bad x) \/ (bad x)

↔ { boolean identity }
(bad x)

↔ { boolean identity }
(bad x) /\ (bad x)

↔ { by definition of BAD }
(bad x) /\ (not (bad x))

↔ { boolean identity }
false

I have just used that definition to prove true is the same as false, a contradiction.
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