CSU290 Lecture Notes Lecture 11 5 Cct 2008
Peter Dillinger

(continuation of work on DI NT function)

Recal | what the DINT function is supposed to do:

DINT: rational-list -> rational-Iist

Returns the "discrete integral" of the input list. That is, the returned
list should be the sane | ength and the nth el ement should be the sum of
all elenents of the input list up to and including the nth el enment.

Exanpl es:

(dint (653 1)) ='(6 11 14 15)
(dint '(531) = '(5 8 9)
(di nt (3 1)) = (3 4)
(dint (1)) = (1)
(dint () = ()

We saw how we coul d break down this problemin the traditional way, by
recursing on the cdr and using that solution in solving the original problem

There are other ways we can take apart and solve this problem One thing
to notice is that the value of each elenent of the returned |list depends

on all those before it in the original list. In other words, the computation
depends on prefixes of the list. On the other hand, ACL2 lists are
constructed recursively off of suffixes; i.e. a suffix of alist is alist.

Thi s suggests to ne that perhaps the probl emwould be easier if we
tackl e it backwards--by reversing the i nput and then reversing the output.

Suppose we wite DINT as foll ows:

(defun dint (x)
(rev (dint-rev (rev x))))

where REV reverses a |list and DINT-REV sol ves the problemw th both the
i nput and out put reversed.

First let’s | ook at REV:

; REV: true-list -> true-list
; Returns a list with elements in reverse order fromthe given |list.
(defun rev (1)

?)

(check= (rev "(1 2 3)) '(3 2 1))
(check= (rev "(2 3)) '"(3 2))
(check= (rev '(3)) "(3))

(check= (rev "()) "())

The contract calls for a true list to be passed in. That data definition
suggests we would call REV on the CDR of | and use that in solving the
problemon |. If | is, for exanple, '(1 2 3), the reverseis (3 2 1),

and the CDRis '(2 3), whose reverse is '(3 2). dearly, if we add the first
element to the end of the list returned by reversing the CDR of the list, we
get the reverse of the whol e thing.

How do we add a single elenent e to the end of a list |?

(cons | e)

(cons | (cons e nil))
(append | e)

(append | (cons e nil))

VWich is it? Well if | is (3 2) and e is 1, then

(cons "(3 2) 1) ='((32 .1 W ong!
(cons "(3 2) (cons 1 nil)) ='((3 2 1) W ong!
(append ' (3 2) 1) ='(32. 1) W ong!
(append "(3 2) (cons 1 nil)) ="(3 2 1) Correct!

Anot her way to wite (cons e nil) is (list e).

What about base cases? Let’'s examne the trivial cases. The reverse of
the enpty list is the enpty list. The reverse of alist with a single el enent
is that same list. Oherwise, the result will be different.

We coul d incorporate checks for both of those trivial cases:
(defun rev (1)
(if (endp I) ; use ENDP to check for enpty Iist
ni
(if (endp (cdr 1))
I

(append (rev (cdr 1)) (list (car 1))))))
If we try sonme exanples, we see that we can sinplify the function by getting
rid of the (endp (cdr 1)) case. Wthout it, each contract input wll
eventual ly reduce to the (endp |I) case and conpute the right answer fromthere:

(defun rev (1)

(if (endp I)
ni
(append (rev (cdr 1)) (list (car 1)))))
Wiy do we return nil in the case of (endp |) rather than just returning |?
Well, if the input nmeets our contract of being a true list and (endp |) is
true, then | nust be nil, and it does not matter whether we return | or nil
If | does not neet our contract, then if we return nil rather than |, then

REV wi Il always return a true list, which is nice if we can get that w thout
adding any IFs to the function.

Now t o work on DI NT- REV:

DINT-REV: rational-list -> rational-Iist

Returns the "discrete integral" of the input list, except starting fromthe
end of the list. The returned list should be the same length and the nth
el ement should be the sumof all elenents of the input list after and

i ncluding the nth el ement.

; Exanpl es:

(dint (135 6)) ='(15 14 11 6)
(dint '(356)) = (14 11 6)
(di nt '(5 6)) = (11 6)
(dint '(6)) = ' (6)
(dint () = ()

Now t hat seens easier to solve than DI NT alone was. All we have to do
is sumup everything in the list starting at each point and put that on
the returned list. | believe we have witten a function SUM LI ST whi ch
will be useful in summng all the el enents of a list.

(defun dint-rev (x)
(if (endp x)
ni
(cons (sumlist x)
(dint-rev (cdr x)))))

Accunul at or Ver si on

If we think about how we might solve the DI NT problem by hand, we woul d

keep track of the sumso far and use that
inthe result list. For exanple:

Sum So Far Remai ni ng Li st

0 (6 5 3 1)
6 (5 3 1)
11 (3 1)

14 ' (1)

15 ()

in determ ning what value to put

And what we want to returnis '(6 11 14 15), so at each step, we should

put the next sumon the result |ist.

Let us wite a hel per for DINT which

takes an extra paraneter for the sumso far:

(defun dint-hel per (sofar x)
(if (endp x)
ni
(cons (+ (car x) sofar)

(dint-hel per (+ (car x) sofar)

(cdr x)))))

