
1

1

On Stream Ciphers

Professor Agnes Chan

2

Stream vs. Block Ciphers

More efficientNot amenableSoftware
Implementation

Propagates – good for
assuring message integrity

Limited – good for noisy
channels

Error propagation

More space requiredNone of limited requiredData Buffering

More complexSimplerHardware Circuitry

SlowerFasterSpeed

Groups of characters (in
blocks)

Individual characters
(usually bits)

Encryption

Block CiphersStream ciphers

3

Synchronous vs. Asynchronous
• Key is independent of plaintext

and of ciphertext

• Easy to generate
• No error propagation
• Insertion, deletion can be

detected
• Synchronization required
• Data authentication and integrity

required
• Sequence needs to be “strong”

• Stream cipher is dependent on t
previous ciphertext digits

• Self-synchronized and limited error
propagation

• More difficult than synchronous
ciphers with respect to detection of
insertion and deletion

• Plaintext statistics are dispersed
through ciphertext

• More resistant to eavesdropping

• Harder to generate

g

f
σι

h

σι+1

k

mi

zi ci g hk ci
zi

mi

2

4

Feedback Shift Registers

• If F consists of only XOR operations, then F is a linear
function, and it is called a Linear Feedback Shift Register

• In general, the feedback function can be written as a linear
recurrence relation

where I represents a subset of { 0, 1, …, n-1}

F(x0, x1,…,xn-1)

x0x1x2Xn-1xn-2

� ∈
=

Iiii iiiiiin
k kk

xxxax
),...,,(...

21 2121
...

xn

5

Linear Feedback Shift Register

• Let

• Using the shift operator E, we can express the equation as

• The feedback polynomial

• A LFSR sequence has maximum period 2n-1 (known as
m-sequence) if and only if the feedback polynomial is
primitive

i

n

i inn xaxxxxF �
−

=− == 1

0110),...,,(

i

n

j

j
ini xEax �

−

=+ = 1

0

0)(
1

0
=−�

−

= i
jn

j j
n xEaE

�
−

=

=
1

0

n

i

i
i

n xax

6

Generation of LFSR Sequences

• Let f(x) = x4+x3+x2+x+1 over GF(2)

– initial loading is 0001: 00011

– initial loading is 0101: 01010

– initial loading is 0110: 01100

• Let f(x) = x4+ x+1 over GF(2)

– initial loading is 0001: 000100110101111

– note every quadruple appears exactly once except 0000

– maximal period 24-1=15

– proving that f(x) is primitive

3

7

Finite Field

• GF(2) = Z2

• GF(2n) = { (an-1, …, a1, a0) | ai∈GF(2) }

– Addition can be carried out bit by bit

– Multiplication

– Generation of GF(2n): done by polynomial modulo a
primitive polynomial of degree n, m(x)

– Elements of GF(2) can be represented as a polynomial
(an-1, …, a1, a0) = a(x)

≡ an-1xn-1 + . . . + a1x + a0 mod m(x)

8

Primitive Polynomial

• A polynomial f(x) over a field Q is said to be irreducible if
f(x) cannot be factored over Q

• A polynomial f(x) over a field Q is said to be primitive if
every root of f(x) generates the field Q

• Example.

– f(x) = x4+x3+x2+x+1 over GF(2)
f(x) is irreducible but not primitive

– g(x) = x4+ x+1
g(x) is primitive

9

Test Irreducibility

• To show x8+x4+x3+x+1 is irreducible:

– If the number of terms is odd over GF(2), then it cannot
be divisible by x+1

– Try dividing by polynomials of degree 2, x2 + x + 1

– Try polynomials of degree 3, x3+x+1 and x3+x2 +1

– Try polynomials of degree 4, x4+x3 +x2+x+1, x4+x3 +1,
x4+x2+1, x4+x+1

– Do not require any more testing beyond degree 4

4

10

Test Primitivity

• To show x4+x3+x2+x+1 is not primitive:
– Take α to be a root of the polynomial, that is,

α 4 = α3 + α2 + α + 1
– α 5 = α4 + α3 + α2 + α = α3 + α2 + α + 1 + α3 + α2 + α

= 1
• To show x8+x4+x3+x+1 is primitive

– Take α to be a root of the polynomial, that is,
α 8 = α4 + α3 + α + 1 (00011011)=(1b)

– α 9 = α5 + α4 + α2 + α (00110110)=(36)
– α 12 = α7 + α5 + α3 + α + 1 (10101011)=(ab)

11

Multiplication in GF(28)

• α 9 ∗ α 12 = α 9+12 = α 21 mod 127

• (36) ∗ (ab) = (00110110) ∗ (10101011) = 11110010

12

Desired Properties of a Stream Cipher

• Long period
• Balanced O’s and 1’ s
• Bernoulli distribution of k-tuples for all k>1

• Good autocorrelation functions

where p is the period of the sequence
• Generation algorithm should be simple and efficient
• No simple description of the generation mechanism
• Resilient to commonly known attacks

�
�
�

≠<
=

=−−= +�
−

= 0 if

0 if
)1()1()(

1

0 τε
τ

τ τ
p

A ii sp

i

s

5

13

Commonly Known Attacks
• Exhaustive Key search

– key size has to be large

– if the generation algorithm depends variables that are not
known/fixed, then the key consists of the parameters governing the
variables as well as the initial loading

– if the parameters for the algorithm are publicly known, then the
key consists of the initial loading only

• Berlekamp-Massey Attack

– efficient algorithm to attack periodic sequences

• Correlation Attack

– to find the initial loading

14

Berlekamp-Massey Attack

• Basic Idea: every periodic sequence can be generated by a
deterministic finite state machine, namely

Find the smallest such finite state machine.

• Approach:

– find the smallest machine that generates the sequence
obtained thus far by solving a system of linear
equations

– compare output of the machine with sequence bits
obtained next. If equal, then continue; otherwise,
compute a new solution and increase the length if
needed

x1x2xρ-1xρ
. . .

15

Definitions for BM- Algorithm

n=length of the sequence sn being considered
N = the N-th iteration of the sequence sn being considered
L = the linear complexity computed so far
C(D) is the connection polynomial defined by

B(D) is the most recently computed connection polynomial:
let m be the largest integer < N such that
L(sm)<L(sN), and B(D) is the connection polynomial that
generates sm.

NOTE: complexity of Berlekamp-Massey Algorithm is O(n2)

L
LL DaDaDaDC 0

2
21 ...1)(++++= −−

6

16

Berlekamp- Massey Algorithm

1. Initialization: C(D) ← 1; B(D) ←1; m ←-1; L ←0; N ←0;

2. While (N < n) do:

2.1 Compute the discrepancy d,

2.2 If d=1 then do:

T(D) ← C(D), C(D) ← C(D)+B(D)·DN-m

If L ≤ N/2 then L ←N+1-L, m ← N, B(D) ←T(D)

2.3 N ← N+1

3. Return (L)

;2mod)(
1
�

=
−+=

L

i
iNiN scsd

17

Linear Complexity

• The goal is to find a Linear Feedback Shift Register that
generates the sequence by solving for ai, i ≥0 in

• Linear complexity of a sequence s, denoted by L(s) is
(1) if s=(0), then L(s)=0;
(2) if s is an infinite sequence, then L(s)=∞
(3) otherwise, L(s) is length of the smallest LFSR that
generates the sequence s

• Linear complexity profile must follow the L=n/2 line

i

n

i inn xaxxxxF �
−

=− == 1

0110),...,,(

18

LFSR Sequences
• Desirable Properties:

– Simple and efficient

– Balanced 0’s and 1’s

– Bernoulli distribution of k-tuples for k>1

– 2-valued autocorrelation function

– Used for noise generation and simulations

• Weakness:

– susceptible to Berlekamp-Massey Attack, needs only
O(log ρ) key bits to determine the key

0 if

0 if

1
)(

≠
=

�
�
�

−
=

τ
τρ

τA

7

19

Nonlinear Feedback Shift Register

• The feedback function contains AND-gates and converter

• Simple and efficient: if the function f can be found

• Period can be long: but difficult to analyze

• Balanced 0’s and 1’s can be obtained

• Bernoulli distribution can be achieved

• Linear complexity can be high

• Weakness: lack of mathematical theory to identify the
properties of f

tt iiiiiin xxxaxxxf),...,,(
2121 ...110 �=−

20

Nonlinear feedforward (filter)

• Linear feedback function: to guarantee long period

• Nonlinear feedforward: to introduce complexity

• Desirable properties can be achieved if g is carefully
chosen

• Linear complexity is bounded above by where k is
the degree of the nonlinear function g

Linear feedback f(x)

Nonlinear feedforward g

� = ��
�

�
��
	

k

i i

n
1

21

Geometric Sequences

• Let q be a power of odd prime

• Linear function f: GF(qn) → GF(q)

• Nonlinear function g: GF(q) → GF(2)

• Simple and efficient

• Long period: qn -1

f(x)

g

8

22

Nonlinear Combiner

• is a nonlinear function on n variables

• Simple but requires more hardware

• long period: lcm(p1, p2,…, pn) where pi=period of LFSR f i

• Desirable properties if g is carefully chosen

• If g is not n-th order correlation immune, then it is
susceptible to correlation attack

LFSR f1

LFSR f2

LFSR fn

Com-
biner
g

s1

s2

sn

z

),...,,(21 nsssgz =

23

Correlation Attack

• Goal: to find the initial loading of the registers

• Approach:

– Makes use of the fact that the output bits are correlated
with some specific part of the registers.

– Reduces the complexity of exhaustive search from
to where mi denotes the possibilities of the i-th
variable and n is the number of variables of the function

• Correlation-immune functions

∏ =

n

i im
1

� =

n

i im
1

24

a b c z
0 0 0 0
0 0 1 1
0 1 0 0
1 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1
1 1 1 1

The GeffeGenerator
LFSR 1

LFSR 2

LFSR 3

keystreamzi

ai

bi

ci

F(ai, bi, ci) = aibi ⊕ (1+bi)ci = aibi ⊕ bici ⊕ ci

Note:
If b=1, then z=a
If b=0, then z=a only if c=a
Therefore, Prob[z=a] = 0.75

The GeffeGenerator is correlated
to variable a, similarly to variable
c, but not correlated to b.

• Period of Geffesequence
=lcm(p1,p2,p3)
where pi is the period of
LFSR i

• Linear complexity
=L1L2+L2L3+L3

where L i is the linear
complexity of LFSR i

9

25

Correlation Immune

• A boolean function f(x1,x2,…,xn) is said to be m-th order
correlation immune if for every subset J of m random
variables, the function value Z= f(x1,x2,…,xn) is
independent of the subset J; equivalently, I(Z;J)=0.

• A nonlinear function is k-th order correlation immune if
the function does not contain any product terms of degree
higher than n-k

• Example: any linear function is (n-1)-th order correlated
immune

26

Alternating Stop-and-Go Generator

• LFSR 2 is clocked when output of LFSR 1 is 1 and LFSR 3 is clocked
when output of LFSR 1 is 0

• The outputs of LFSR 2 and LFSR 3 are then XORed

• If L1, L2, L3, are relatively prime, where L i is the length of LFSR i; then
period = (2L1-1)(2L2-1)(2L3-1)

• Let mi be the linear complexity of LFSR I, then linear complexity L:
(m2+ m3) 2m1-1 < L < (m2+ m3) 2m1

• Susceptible to Differential Analysis Attack

LFSR 3

LFSR 2

•

LFSR 1
b(t)

φ(t)

27

Reconfigurable Feedback Shift Register

• Motivation:

– for Next Generation Internet, real-time ultra fast speed
encryption is needed

– high speed gate technology is extremely expensive and
usually has other constraints

• Approach:

– Uses a slow speed generator to control a high speed one

– The high speed technology is to ensure speed, but not
on security

– The slow speed technology is to gain security

10

28

Design of RFSR

• Assume the ratio of the two speeds is δ
• At every δ interval, the feedback function f is reconfigured

according to the output of the controller g

• period of g ≤ period of z ≤ (period of g)×lcm(ρ1,…, ρt)×δ
• Bernoulli distribution of k-tuples : simulation results

• Long term security of z ≥ δ×(security of g)

high speed FSR

reconfigurable feedback function
f

slow speed controller g

zi

29

Software-Based Stream Ciphers

• Software Encryption Algorithm (SEAL)

– Generates large tables for table look-up

• RC2, RC4, RC6 (proposed by Rivest)

– RC4 is proprietary

– RC6 is considered very efficient (AES candidate)

• FIbonacci Shrinking Generator (FISH)

• Software Stream Cipher 2 (SSC2)

– Requires only 20 lines of C code and minimum memory

30

Software Based Stream Cipher

1 2 3 4 1 2 3 4 5 17

MULTIPLEXER>>28

<<31 >>1

16 bit
ROTATION

F:{ 0,1} 128→{ 0,1} 32

⊕

⊕

⊕
+

+

11

31

Strength of SSC2

• Simple Operations:

– exclusive or; byte/word shifts; addition; logical
operations

• Strong System Security

– long period

– high linear complexity

– good statistical properties

– resilient to correlation attacks

32

Stream Ciphers

SSC2 ARC4 SEALMessage
Size Palm V Palm IIIC Palm V Palm IIIC Palm V Palm IIIC

2KB 32,604 44,582 30,768 42,281 2,469 3,427
50KB 35,804 49,829 32,100 45,110 28,723 30,121

4MB 35,501 49,434 31,699 44,501 51,396 71,980

Figure 1 Throughput of Stream Ciphers

Memory Requirement
• SSC2 - 84 bytes
• ARC4 - 256 bytes to store a state array
• SEAL - 7 Kilobytes

