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Basic Probability Theory

Fa Discrete random variable: X

« Finite set X,
» Probability distribution function s.t. Pr[x]=0 Y Prx=1
= Example: X

= Probability that the sum of a pair of dice is 4
= Joint Probability of X, and Y: Pr[x, y]

= Conditional Probability: Pr[x | y]
= Independent variables
= Bayes’ Theorem (Pr[y]>0):

= Corollary: characterizing independent variables
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Approaches to Security

= Computational Security
= If the best algorithm for breaking it requires at least a very large
(specified) number of operations
= Usually against some specific type of attacks (e.g., exhaustive
key search)

= Provable Security
= Reduction to a well-studied problem. Only relative proof!
= Example: secure if a given number cannot be factored

» Unconditional Security
= No bound placed on the computation capability of the adversary
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Perfect Secrecy

= Assumption:
= A cryptographic key is used for only one encryption
= Probability distribution function on the key
= Probability distribution function on the plaintext
= Key and Plaintext are independent random variables

= Observations:
= Pdf on P, K induces pdf of C

= Prly|x] =
= Pr{x]y] =

= Example: 2 b
« P={a, b}, Pr{a] = %; Pr[b] = 3/4,
K = {k;, ky K5} with Prob. Vs, ¥, ¥ k |1 ]2
. C={1,2,3,4) k |2 |3
= Pr[1], ..? Pr{a|1], ..Pr[b|1], ...? ky; |3 |4
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Perfect Secrecy

= A cryptosystem has perfect secrecy if
= Pr[x|y] = Pr[x], forallx OX,yOY
= A posteriori probability that the plaintext is x given the
ciphertext is equal to the apriori probability
= Theorem (shift cipher perfect secrecy):
= The shift cipher where the all keys have probability 1/26, has
perfect secrecy (for any plaintext probability).
= Theorem (characterizing perfect secrecy cryptosystems):
= Let (P, C, K, E, D) be a cryptosystem where |K| = |P| = |C|
= This cryptosystem has perfect secrecy iff all keys have the same
probability 1/|K|, and Ox O P, yOC,0kOK; e (X) =y
= Vernam'’s Cipher perfect secrecy
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‘ Entropy

= Measure of uncertainty (in bits) introduced by
Claude Shannon in 1948 [Information Theory]

L] H(X) =

= Example 1:
= Prx,] = ¥2; Pr[x,] = Ya; Pr[x5] = Va
= Example 2:
« H(P) = 0.81
« H(K) = 1.5
= H(C) = 1.85
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| Huffman Encoding

= Entropy of a string provides the minimum
average number of bits required to encode a
random source

= Huffman Encoding provides the rules allow an
encoding with less that H(X) + 1 bits on average
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| Properties of Entropy
= Concave function:
= Strictly concave function:

= Jensen’s inequality:

= Theorem:
= X: random variable that can take 77 values with non-zero
probability
= H(X) <log, n
= Equality?
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Entropy (Cont.)

H(X, Y) < H(X) + H(Y)

= Conditional Entropy:
= H(Xly) =
« HXJY) =

» H(X, Y) = H(Y) + H(X]Y)
H(X]Y) < H(X) (when do we have equality?)
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| Spurious Keys and Unicity Distance
= Key equivocation: H(K|C)

= Definition:
= Spurious key is a key possible but incorrect key
=« Example:
= Shift cipher: ciphertext = WNAJW
= Plaintext can: river (k=5) or arena (k=22)
= Goal:
= Find a bound on the number of spurious keys
= Theorem:
= H(K|C) = H(K) + H(P) — H(C)
= Example:
= H(P) = 0.81, H(K) = 1.5, H(C) = 1.85
= H(K|C) = 0.46 : also verified manually
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| Entropy of a Language
= Number of information bits per letter: #,

= Example:

= If all letters have the same probability, a first approximation would be:

= A first-order approximation of English language gives H(P) = 4.19
= Second-order approximation, ...
= Definition: CHEY
= The entropy of a language L is: Ho= '"'1‘7”
= The redundancy of a language £ is: R =1-
= Englishhas1 <H,< 1.5
= Redundancy = 0.75

Hl
log, |P|
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Unicity Distance

= Theorem:
= Suppose (P, C, K, E, D) is a cryptosystem where#c| = |P| and the keys are
chosen equiprobably. Let R,be the redundancy of the underlying language. Then
given a string of ciphertext of length 77, the expected number of spurious keys

satisfies:

= Definition:
= The unicity distance of a cryptosystoem is the value 7, after which the expected

number of spurious keys becomes 0.
= It is the average amount of ciphertext required for an opponent to be able to
compute the key (given enough computing time).
= Example:
= Substitution cipher: 7y = 25
= For the substitution cipher on average the opponent needs at least a ciphertext
of length 25
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Product Cryptosystems [Shannon 49]

= Goal:
= Combine two cryptosystems to obtain a more
“secure” cryptosystem
» Product of Endomorphic cryptosystem: P = C
=S, =(P,P,K,E,Dy); S, = (P, P, Ky Ey, D,)
= Product cryptosystem S,;xS, = (P, P, K;xK,, E, D) s.t.
for ever key k=(ky, ka) * €u1,12(X) = €ua)(€ay(X))
- d(kl,kZ)(X) =7?
= Probability distribution: Pr[(k,, k,)] = Pr{k,]xPr[k,]
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Product of Cryptosystems

= Example:
= Multiplicative cipher (M):
= Key space: ?
= Multiplicative Cipher x Shift Cipher: MxS = ?
s SXM = MxS = ?
= Property:

= Sand M commute but this does not hold for all
cryptosystems

= The product operation is Associativity
= Derives from ?
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Product of Cryptosystems

Fa Definition:
= SX§=92
= SxSx..xS = S" (n times)
= If S =S?then Sis called idempotent
= Examples: Shift cipher, Substitution, Affine, Hill, Vigenere
= Rule:
. Ifs ?) cryptosystem is idempotent: there no security increase by iterating

. 'Itf a cryptosystem is not idempotent: security can be increased by
iteration
= Example: Data Encryption Standard

= Constructing non idempotent cryptosystems:
product of two different simple cryptosystems
Is there any obvious property that the two cryptosystems need to
satisfy for the product not to be idempotent?
Example: product of substitution ciphers by permutation ciphers
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