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SSL vs. IPsec

* SSL:
— Avoids modifying TCP and requires minimum changes to the
application
— Authenticates users
* IPsec

— Transparent to the application and requires modification of the
network stack

— Authenticates network nodes and establishes a secure channel
between nodes

— Application still needs to authenticate the users

Some Issues with Real-time
Communication

Session key establishment
Perfect Forward Secrecy
— Diffie-Hellman based PFS
— Escrow-foilage:
« Ifkeys are escrowed Diffie-Hellman protects against passive attacks
* Signature keys are usually not escrowed
Preventing Denial of Service
— SYN attack on TCP: use stateless cookies = hash(IP addr, secret)
— Puzzles: e.g., what 27-bit number has an MD = x?
— These techniques do not protect against DDOS launched through viruses
Hiding endpoint identity:
— DH + authentication allows anonymous connection or detects man-in-the-middle
Live partner reassurance:
— modify DH to include a nonce in the computation of the session key
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IPsec Protocol Suite (IETF Standard) IPsec

* Provides inter-operable cryptographically based security services: ¢ Assumption:
— Services: confidentiality, authentication, integrity, and key — End nodes already established a shared session key (manually or through
management IKE)
e Security Association:
- Protocols: — Each secure connection is called a security association (SA)

¢ Authentication Header (AH): RFC2402
* Encapsulated Security Payload (ESP): 2406
¢ Internet Key Exchange (IKE)

— For each SA: key, end-node, sequence number, services, algorithms
— SA is unidirectional and identified by (destination-address, SPI = Security
Parameter Index)
¢ Protocols:
— Authentication Header: integrity protection
— Encapsulated Security Payload: encryption and/or integrity

— Environments: IPv4 and IPv6

— Modes:
. .
« transport (between two hosts) Modes:
¢ tunnel (between hosts/firewalls)
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IP Packets AH Formatting

IP hdr | TCP I Data |

~
Fha | AR | TCP | Data | AH Protocol Number =51

4 8 16 19 31
Version| Hien | TOS Length Transport mode
Ident Flags Offset
TTL ‘Protaco\ Checksum IP hdr I TCP I Data |
SourceAddr
DestinationAddr
poe— [ iom |newIP hdrI AH [ IP har | TCP | Data |
Data Tunnel mode

L~ —— R
M Next Header | Length 8) | Reserved (16)

Security Parameters Index (32)
Sequence Number Field (32)
Authentication Data (N*32)

SN: for replay detection

‘W2003, COM3522 Network Security Lecture 5, 7 W2003, COM3522 Network Security Lecture 5, 8




ESP Formatting

IP hdr | TCP | Data |

ESP Protocol Number = 50

~
IP hdr | ESP | TCP | Data | ESP |tsrAum|
Encrypted

Authenticated

Transport mode

IP hdr | TCP | Data
|ncwIP hdrl ESP | 1P hdrl TCP | Data ESP |tSPAurh|
Encrypted

Authenticated

Tunnel mode

ESP Header

Security Parameters Index (32)
Sequence Number Field (32)

Auth/Integrity
coverage

Initialization Vector (variable)

Payload Data (variable)
confidentiality

Padding (0-255 bytes) Pad Length (8) | Next Header |, [cOVerage

Authentication Data
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Issues
* NAT boxes:
— IPsec mode doesn’t work
¢ Firewalls
— IPsec encrypts information used by firewalls to filter traffic (e.g., port
number)

¢ AH mutable/immutable/predictable fields:
— Some fields get modified by the intermediate routers and can’t be protected
by the AH
— Mutable: type of service, flags, fragment offset, TTL, header checksum
— Why is PAYLOAD-LENGTH considered immutable (even if packets can
be fragmented)? Why not fragment offset. Inconsistency!
— Mutable but predictable fields are included in the AH computation using

their expected value at the destination (e.g., destination address when using
source routing)

[Psec: Internet Key Exchange
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* Goal:
— Mutual authentication and establishment of a shared secret session
key using:
* Pre-shared secret key or public signature-only key, or public encryption key
— Negotiation of features and cryptographic algorithms
* Specification documents:

— ISAKMP (Internet Security Association and Key Management
Protocol): RFC 2408

— IKE: RFC 2409
— DOI (Domain Of Interpretation): RFC 2407
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Photuris

Photuris goal: signed Diffie-Hellman exchange
A->B:C,

B ->A: C,, Cy, crypto offered

A > B: C,, Cy, g mod p, crypto selected

B->A:C,, Cy, , g’ mod p

A ->B: C,, Cy, g™ mod p{A, signature on previous message}

A N~

B ->A: C,, Cy, , g mod p{B, signature on previous message}

— Role of C,, C, and messages
— Additional features: SPI selection
—  Why not sign messages 3 & 4...7

Simple Key-Management for
Internet Protocol (SKIP)
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* Uses long Diffie-Hellman keys

 Parties assumed to know each other public keys (i.e., g¢
mod p) or exchange certificates

* Session key X = g» mod p is established in 0 messages

* Each packet is encrypted using data key S and each
packet contains: X{S}
— Same S can be used for several packets

* Later on PFS was added by periodically forgetting the
keys and doing a new DH
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ISAKMP (RFC2408)

Proposed by NSA as a framework and accepted by IETF
—  Runs over UDP and allows to exchange fields to create a protocol

IKE (RFC2409) based on OAKLEY & SKEME using
ISAKMP syntax

IKE phases:
1. Mutual authentication and session key establishment (also called
ISAKMP or IKE SA)

2. AH/ESP SAs establishment

Each source/destination/port has its own SA/keys otherwise
ESP traffic not using integrity could be decrypted...

Phase 1 IKE
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¢ Two modes:
— Aggressive mode: mutual authentication and session key establishment in
three messages
e A->B:g?mod p, A, crypto proposal
e B->A: g’ mod p, crypto choice, proof I'm B
e« A->B:proof 'mA
— Main: additional features such as hiding end-points identities and
negotiating crypto DH algorithm
* A -> B: crypto suite I support
e B ->A: crypto suite I choose
e A->B:g’modp
e B->A:g"modp
e A->B:g®modp {A, proof 'm A}
e B->A: g mod p {B, proof I'm B}
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Phase 1 IKE

* Key types:
— Pre-shared secret key
— Public encryption key: fields are separately encrypted using the public key

— Optimized public encryption key: used to encrypt a random symmetric key,
and then data is encrypted using the symmetric key

— Public signature key: used only for signature purpose
= 8 variants of IKE phase 1: 2 modes x 4 key types
¢ Proof of Identity:

— Required in messages 2-3 aggressive mode and 5-6 main mode
— Proves the sender knows the key associated with the identity

— Depends on the key type

— Hash of identity key, DH values, nonces, crypto choices, cookies
— Alternative: MAC of previous messages

Phase 1 IKE

‘W2003, COM3522 Network Security Lecture 5, 17

Negotiating cryptographic parameters
— A specifies suites of acceptable algorithms:
* {(3DES, MD5, RSA public key encryption, DH),
(AES, SHA, pre-shared key, elliptic curve), ...}
— The standard specifies a MUST be implemented set of algorithms:
+ Encryption=DES, hash=MD5/SHA, authentication=pre-shared key/DH
— The lifetime of the SA can also be negotiated
Session keys:
— Key seed: SKEYID
* Signature public keys: SKEYID = prf(nonces, g"mod p)
« Encryption public keys: prf(hash(nonces), cookies)
* Pre-shared secret key: prf(pre-shared secret key, nonces)
— Secret to generate other keys: SKEYID_d = prf(SKEYID, (gxy, cookies, 0)
— Integrity key: SKEYID_a = prf(SKEYID, (SKEYID_d, (g, cookies, 1))
— Encryption key: SKEYID_e = prf(SKEYID, (SKEYID_a, (g%, cookies, 2))
Message IDs:
— Random 32-bits serves the purpose of a SN but in an inefficient manner because they have to
be remembered
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IKE Phase 1:
Public Signature Keys, Main Mode

* Description:
— Both parties have public keys for signatures
— Hidden endpoint identity (except for ...?)
* Protocol:
- A->B: CP
- B->A:CPA
— A ->B: g“mod p, nonce,
- B ->A: g mod p, nonce,
K = fig®> mod p, nonce,, nonce,)
— A -> B: K{A, proof I'm A, [certificate]}
— B ->A: K{B, proof I'm B, [certificate] }
¢ Questions:
— What is the purpose of the nonces?
— Can we make to protocol shorter (5 messages)? At what expense?

IKE Phase 1:
Public Signature Keys, Aggressive Mode
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¢ Protocol:
— A ->B: CP, g"mod p, nonce,, A
— B ->A: CPA, g mod p, noncey, B, proof I'm B, [certificate]
— A -> B: proof I'm A, [certificate]
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IKE Phase 1:
Public Encryption Keys, Main Mode, Original

¢ Protocol:
- A->B:CP
- B->A: CPA
— A ->B:g“mod p, {nonce,},, {A};
— B ->A: g mod p, {nonce},, {B},
K = f(g“® mod p, nonce,, noncep)
— A->B: K{proof 'm A}
— B -> A: K{proof I'm B}

IKE Phase 1:
Public Encryption Keys, Aggressive Mode, Original

¢ Protocol:
— A->B: CP, g"mod p, {nonce, };, {A}g
— B ->A: CPA, g® mod p, {nonceg},, {B},, proof 'm B
— A->B:proof 'm A
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IKE Phase 1:
Public Encryption Keys, Main Mode, Revised

* Protocol:
- A->B:CP
- B->A: CPA
K, = hash(nonce,, cookie,)
— A ->B: {nonce, } 5, K,{g* mod p}, K,{A}, [K,{A’s cert}]
K = hash(noncey, cookiey)
— B ->A: {nonceg},, Kz{g” mod p}, Kz{B}, [Kz{B’s cert}]
K = f(g“» mod p, nonce,, noncep, cookie,, cookiep)
— A->B: K{proof 'm A}
— B -> A: K{proof I'm B}

IKE Phase 1:
Public Encryption Keys, Aggressive Mode, Revised

* Protocol:
K, = hash(nonce,, cookie,)
— A ->B: CP, {nonce, }, K,{g°mod p}, K,{A}, [K,{A’s cert}]
K = hash(noncey, cookiep)
— B->A: CPA, {nonceg},, Kz{g” mod p}, Kz{B}, proof 'm B
K = f(g* mod p, nonce,, noncey, cookie,, cookiep)
— A->B: K{proof ’'m A}
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IKE Phase 1:
Shared Secret Keys, Main Mode

* Assumption A and B share a secret J

¢ Protocol:
- A->B:CP
- B->A: CPA
— A -> B: g2 mod p, nonce,
— B ->A: g mod p, nonce,
K =f(J, g mod p, nonce,, noncey, cookie,, cookieg)
— A->B: K{proof 'm A}
— B -> A: K{proof I'm B}

IKE Phase 1:
Shared Secret Keys, Aggressive Mode
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¢ Protocol:
— A ->B: CP, g"mod p, nonce,, A
— B->A: CPA, g mod p, noncey, B, proof I'm B
— A->B:proof 'mA
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IKE: Phase 2

¢ Also known as “Quick Mode”: 3- messages protocol
- A->B: X, Y, CP, traffic, SP,, nonce,, [§* mod pl, ;o
— B->A: X, Y, CPA, traffic, SPI, noncey, [g" mod p)
- A->B:X, Y, ack

» All messages are encrypted using SKEYID_e, and integrity

protected using SKEYID_a (except X, Y)

¢ Parameters:

— X: cookies generated during phase 1

optional

— Y 32-bit number unique to this phase 2 session chosen by the initiator
— CP: Crypto Proposal, CPA: Crypto Proposal Accepted
DH is optional and could be used to provide PFS

Nonces and cookies get shuffled into SKEYID to produce the SA
encryption and integrity keys
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