Network Security:
Real-Time Communication Security
[Psec (AH, ESP), IKE

Guevara Noubir
COM3522

Securing Networks

(IEEE802.1x/IEEE802.10)

Physical Layer

Where to put the
security in a Applications Layer g
protocol stack? B telnet/fip, http: shttp, mail: PGP 2
. = 2
Practical 5 (SSL/TLS, SSH) El-
. . = 2
considerations: 5 Transport Layer (TCP) & 5
3 2 &
— End to end security = (IPSec, IKE) E &
)) 3 3 ™
— No modification to E Network Layer (IP) % £
&n < 2B
OS/network stack g - 5 &
3 Link Layer 2 =
E 3 =
g -
£ £
S s
=

(spread-Spectrum, quantum crypto, etc.)

‘W2003, COM3522 Network Security Lecture 5, 1

‘W2003, COM3522 Network Security Lecture 5, 2

SSL vs. IPsec

* SSL:
— Avoids modifying TCP and requires minimum changes to the
application
— Authenticates users
* IPsec

— Transparent to the application and requires modification of the
network stack

— Authenticates network nodes and establishes a secure channel
between nodes

— Application still needs to authenticate the users

Some Issues with Real-time
Communication

Session key establishment
Perfect Forward Secrecy
— Diffie-Hellman based PFS
— Escrow-foilage:
« Ifkeys are escrowed Diffie-Hellman protects against passive attacks
* Signature keys are usually not escrowed
Preventing Denial of Service
— SYN attack on TCP: use stateless cookies = hash(IP addr, secret)
— Puzzles: e.g., what 27-bit number has an MD = x?
— These techniques do not protect against DDOS launched through viruses
Hiding endpoint identity:
— DH + authentication allows anonymous connection or detects man-in-the-middle
Live partner reassurance:
— modify DH to include a nonce in the computation of the session key

‘W2003, COM3522 Network Security Lecture 5, 3

‘W2003, COM3522 Network Security Lecture 5, 4

IPsec Protocol Suite (IETF Standard) IPsec

* Provides inter-operable cryptographically based security services: ¢ Assumption:
— Services: confidentiality, authentication, integrity, and key — End nodes already established a shared session key (manually or through
management IKE)
e Security Association:
- Protocols: — Each secure connection is called a security association (SA)

¢ Authentication Header (AH): RFC2402
* Encapsulated Security Payload (ESP): 2406
¢ Internet Key Exchange (IKE)

— For each SA: key, end-node, sequence number, services, algorithms
— SA is unidirectional and identified by (destination-address, SPI = Security
Parameter Index)
¢ Protocols:
— Authentication Header: integrity protection
— Encapsulated Security Payload: encryption and/or integrity

— Environments: IPv4 and IPv6

— Modes:
. .
« transport (between two hosts) Modes:
¢ tunnel (between hosts/firewalls)
‘W2003, COM3522 Network Security Lecture 5, 5 ‘W2003, COM3522 Network Security Lecture 5, 6

IP Packets AH Formatting

IP hdr | TCP I Data |

~
Fha | AR | TCP | Data | AH Protocol Number =51

4 8 16 19 31
Version| Hien | TOS Length Transport mode
Ident Flags Offset
TTL ‘Protaco\ Checksum IP hdr I TCP I Data |
SourceAddr
DestinationAddr
poe— [iom |newIP hdrI AH [IP har | TCP | Data |
Data Tunnel mode

L~ —— R
M Next Header | Length 8) | Reserved (16)

Security Parameters Index (32)
Sequence Number Field (32)
Authentication Data (N*32)

SN: for replay detection

‘W2003, COM3522 Network Security Lecture 5, 7 W2003, COM3522 Network Security Lecture 5, 8

ESP Formatting

IP hdr | TCP | Data |

ESP Protocol Number = 50

~
IP hdr | ESP | TCP | Data | ESP |tsrAum|
Encrypted

Authenticated

Transport mode

IP hdr | TCP | Data
|ncwIP hdrl ESP | 1P hdrl TCP | Data ESP |tSPAurh|
Encrypted

Authenticated

Tunnel mode

ESP Header

Security Parameters Index (32)
Sequence Number Field (32)

Auth/Integrity
coverage

Initialization Vector (variable)

Payload Data (variable)
confidentiality

Padding (0-255 bytes) Pad Length (8) | Next Header |, [cOVerage

Authentication Data

‘W2003, COM3522 Network Security Lecture 5, 10

‘W2003, COM3522 Network Security Lecture 5, 9
Issues
* NAT boxes:
— IPsec mode doesn’t work
¢ Firewalls
— IPsec encrypts information used by firewalls to filter traffic (e.g., port
number)

¢ AH mutable/immutable/predictable fields:
— Some fields get modified by the intermediate routers and can’t be protected
by the AH
— Mutable: type of service, flags, fragment offset, TTL, header checksum
— Why is PAYLOAD-LENGTH considered immutable (even if packets can
be fragmented)? Why not fragment offset. Inconsistency!
— Mutable but predictable fields are included in the AH computation using

their expected value at the destination (e.g., destination address when using
source routing)

[Psec: Internet Key Exchange

‘W2003, COM3522 Network Security Lecture 5, 11

* Goal:
— Mutual authentication and establishment of a shared secret session
key using:
* Pre-shared secret key or public signature-only key, or public encryption key
— Negotiation of features and cryptographic algorithms
* Specification documents:

— ISAKMP (Internet Security Association and Key Management
Protocol): RFC 2408

— IKE: RFC 2409
— DOI (Domain Of Interpretation): RFC 2407

‘W2003, COM3522 Network Security Lecture 5, 12

Photuris

Photuris goal: signed Diffie-Hellman exchange
A->B:C,

B ->A: C,, Cy, crypto offered

A > B: C,, Cy, g mod p, crypto selected

B->A:C,, Cy, , g’ mod p

A ->B: C,, Cy, g™ mod p{A, signature on previous message}

A N~

B ->A: C,, Cy, , g mod p{B, signature on previous message}

— Role of C,, C, and messages
— Additional features: SPI selection
— Why not sign messages 3 & 4...7

Simple Key-Management for
Internet Protocol (SKIP)

‘W2003, COM3522 Network Security Lecture 5, 13

* Uses long Diffie-Hellman keys

 Parties assumed to know each other public keys (i.e., g¢
mod p) or exchange certificates

* Session key X = g» mod p is established in 0 messages

* Each packet is encrypted using data key S and each
packet contains: X{S}
— Same S can be used for several packets

* Later on PFS was added by periodically forgetting the
keys and doing a new DH

‘W2003, COM3522 Network Security Lecture 5, 14

ISAKMP (RFC2408)

Proposed by NSA as a framework and accepted by IETF
— Runs over UDP and allows to exchange fields to create a protocol

IKE (RFC2409) based on OAKLEY & SKEME using
ISAKMP syntax

IKE phases:
1. Mutual authentication and session key establishment (also called
ISAKMP or IKE SA)

2. AH/ESP SAs establishment

Each source/destination/port has its own SA/keys otherwise
ESP traffic not using integrity could be decrypted...

Phase 1 IKE

‘W2003, COM3522 Network Security Lecture 5, 15

¢ Two modes:
— Aggressive mode: mutual authentication and session key establishment in
three messages
e A->B:g?mod p, A, crypto proposal
e B->A: g’ mod p, crypto choice, proof I'm B
e« A->B:proof 'mA
— Main: additional features such as hiding end-points identities and
negotiating crypto DH algorithm
* A -> B: crypto suite I support
e B ->A: crypto suite I choose
e A->B:g’modp
e B->A:g"modp
e A->B:g®modp {A, proof 'm A}
e B->A: g mod p {B, proof I'm B}

‘W2003, COM3522 Network Security Lecture 5, 16

Phase 1 IKE

* Key types:
— Pre-shared secret key
— Public encryption key: fields are separately encrypted using the public key

— Optimized public encryption key: used to encrypt a random symmetric key,
and then data is encrypted using the symmetric key

— Public signature key: used only for signature purpose
= 8 variants of IKE phase 1: 2 modes x 4 key types
¢ Proof of Identity:

— Required in messages 2-3 aggressive mode and 5-6 main mode
— Proves the sender knows the key associated with the identity

— Depends on the key type

— Hash of identity key, DH values, nonces, crypto choices, cookies
— Alternative: MAC of previous messages

Phase 1 IKE

‘W2003, COM3522 Network Security Lecture 5, 17

Negotiating cryptographic parameters
— A specifies suites of acceptable algorithms:
* {(3DES, MD5, RSA public key encryption, DH),
(AES, SHA, pre-shared key, elliptic curve), ...}
— The standard specifies a MUST be implemented set of algorithms:
+ Encryption=DES, hash=MD5/SHA, authentication=pre-shared key/DH
— The lifetime of the SA can also be negotiated
Session keys:
— Key seed: SKEYID
* Signature public keys: SKEYID = prf(nonces, g"mod p)
« Encryption public keys: prf(hash(nonces), cookies)
* Pre-shared secret key: prf(pre-shared secret key, nonces)
— Secret to generate other keys: SKEYID_d = prf(SKEYID, (gxy, cookies, 0)
— Integrity key: SKEYID_a = prf(SKEYID, (SKEYID_d, (g, cookies, 1))
— Encryption key: SKEYID_e = prf(SKEYID, (SKEYID_a, (g%, cookies, 2))
Message IDs:
— Random 32-bits serves the purpose of a SN but in an inefficient manner because they have to
be remembered

‘W2003, COM3522 Network Security Lecture 5, 18

IKE Phase 1:
Public Signature Keys, Main Mode

* Description:
— Both parties have public keys for signatures
— Hidden endpoint identity (except for ...?)
* Protocol:
- A->B: CP
- B->A:CPA
— A ->B: g“mod p, nonce,
- B ->A: g mod p, nonce,
K = fig®> mod p, nonce,, nonce,)
— A -> B: K{A, proof I'm A, [certificate]}
— B ->A: K{B, proof I'm B, [certificate] }
¢ Questions:
— What is the purpose of the nonces?
— Can we make to protocol shorter (5 messages)? At what expense?

IKE Phase 1:
Public Signature Keys, Aggressive Mode

‘W2003, COM3522 Network Security Lecture 5, 19

¢ Protocol:
— A ->B: CP, g"mod p, nonce,, A
— B ->A: CPA, g mod p, noncey, B, proof I'm B, [certificate]
— A -> B: proof I'm A, [certificate]

‘W2003, COM3522 Network Security Lecture 5, 20

IKE Phase 1:
Public Encryption Keys, Main Mode, Original

¢ Protocol:
- A->B:CP
- B->A: CPA
— A ->B:g“mod p, {nonce,},, {A};
— B ->A: g mod p, {nonce},, {B},
K = f(g“® mod p, nonce,, noncep)
— A->B: K{proof 'm A}
— B -> A: K{proof I'm B}

IKE Phase 1:
Public Encryption Keys, Aggressive Mode, Original

¢ Protocol:
— A->B: CP, g"mod p, {nonce, };, {A}g
— B ->A: CPA, g® mod p, {nonceg},, {B},, proof 'm B
— A->B:proof 'm A

‘W2003, COM3522 Network Security Lecture 5, 21

‘W2003, COM3522 Network Security Lecture 5, 22

IKE Phase 1:
Public Encryption Keys, Main Mode, Revised

* Protocol:
- A->B:CP
- B->A: CPA
K, = hash(nonce,, cookie,)
— A ->B: {nonce, } 5, K,{g* mod p}, K,{A}, [K,{A’s cert}]
K = hash(noncey, cookiey)
— B ->A: {nonceg},, Kz{g” mod p}, Kz{B}, [Kz{B’s cert}]
K = f(g“» mod p, nonce,, noncep, cookie,, cookiep)
— A->B: K{proof 'm A}
— B -> A: K{proof I'm B}

IKE Phase 1:
Public Encryption Keys, Aggressive Mode, Revised

* Protocol:
K, = hash(nonce,, cookie,)
— A ->B: CP, {nonce, }, K,{g°mod p}, K,{A}, [K,{A’s cert}]
K = hash(noncey, cookiep)
— B->A: CPA, {nonceg},, Kz{g” mod p}, Kz{B}, proof 'm B
K = f(g* mod p, nonce,, noncey, cookie,, cookiep)
— A->B: K{proof ’'m A}

‘W2003, COM3522 Network Security Lecture 5, 23

‘W2003, COM3522 Network Security Lecture 5, 24

IKE Phase 1:
Shared Secret Keys, Main Mode

* Assumption A and B share a secret J

¢ Protocol:
- A->B:CP
- B->A: CPA
— A -> B: g2 mod p, nonce,
— B ->A: g mod p, nonce,
K =f(J, g mod p, nonce,, noncey, cookie,, cookieg)
— A->B: K{proof 'm A}
— B -> A: K{proof I'm B}

IKE Phase 1:
Shared Secret Keys, Aggressive Mode

‘W2003, COM3522 Network Security Lecture 5, 25

¢ Protocol:
— A ->B: CP, g"mod p, nonce,, A
— B->A: CPA, g mod p, noncey, B, proof I'm B
— A->B:proof 'mA

‘W2003, COM3522 Network Security Lecture 5, 26

IKE: Phase 2

¢ Also known as “Quick Mode”: 3- messages protocol
- A->B: X, Y, CP, traffic, SP,, nonce,, [§* mod pl, ;o
— B->A: X, Y, CPA, traffic, SPI, noncey, [g" mod p)
- A->B:X, Y, ack

» All messages are encrypted using SKEYID_e, and integrity

protected using SKEYID_a (except X, Y)

¢ Parameters:

— X: cookies generated during phase 1

optional

— Y 32-bit number unique to this phase 2 session chosen by the initiator
— CP: Crypto Proposal, CPA: Crypto Proposal Accepted
DH is optional and could be used to provide PFS

Nonces and cookies get shuffled into SKEYID to produce the SA
encryption and integrity keys

‘W2003, COM3522 Network Security Lecture 5, 27

