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ABSTRACT

This work considers why-not questions in the context of top-k
queries and score-based ranking functions. Following the popular
linear scalarization approach for multi-objective optimization, we
study rankings based on the weighted sum of multiple scores. A
given weight choice may be controversial or perceived as unfair to
certain individuals or organizations, triggering the question why
some entity of interest has not yet shown up in the top-k. We
introduce various notions of such why-not-yet queries and for-
mally define them as satisfiability or optimization problems, whose
goal is to propose alternative ranking functions that address the
placement of the entities of interest. While some why-not-yet prob-
lems have linear constraints, others require quantifiers, disjunction,
and negation. We propose several optimizations, ranging from a
monotonic-core construction that approximates the complex con-
straints with a conjunction of linear ones, to various techniques
that let the user control the tradeoff between running time and
approximation quality. Experiments with real and synthetic data
demonstrate the practicality and scalability of our technique, show-
ing its superiority compared to the state of the art (SOA).
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1 INTRODUCTION

Top-𝑘 queries, which return tuples in the order dictated by a rank-
ing function, have received significant attention, as indicated by a
survey from 2008 [26] with more than 1,000 citations as of October
31, 2022 according to Google Scholar. Since the position in a rank-
ing can determine outcomes of algorithm-influenced decisions, e.g.,
who gets hired, there is growing interest in critically evaluating
the fairness of rankings [48, 49]. In this context, a lot of questions
have been raised: Why has my favorite hotel not shown up in the
top result of a booking application yet [21]? Why has our potential
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product not shown up in the preference list for this user yet [41]?
Why have some good students not shown up in our admission list
yet [3]? All these real-world examples from previous papers point
to one question: why have some expected tuples not shown up in
the top-𝑘 result yet? We study such why-not-yet problems: Given
the absence of one or more expected tuples from the 𝑘 top positions,
how can the ranking function be fixed?

Example 1 (NBA). Consider a web site where sports fans can

explore rankings of NBA basketball players by controlling how

much importance they assign to different features such as points

scored (PTS), rebounds (REB), assists (AST), steals (STL), and blocks

(BLK). Anita and Bo want to use this service to settle their ar-

gument if Luka Dončić, one of the current NBA superstars, be-

longs to the top-20 of all time. Bo quickly picks equal weights

(0.2, 0.2, 0.2, 0.2, 0.2), for which Luka does not make it into the top-

20. In response, Anita uses our POINT approach, which, within less

than a second, confirms that Luka is even a top-10 player for weight

vector (0.27, 0.12, 0.46, 0.0, 0.14). After a few more rounds of present-

ing weight combinations that support their respective claims, they

agree that it would be more useful to explain in a simple way, under

which conditions Luka would reach the top-20. Here Anita and Bo

turn to our BOX method, which can find the largest hyper-rectangle

such that all weight combinations contained in it would place Luka

in the top-20. Depending on preferences, the search can be limited to

“reasonable” regions, e.g., setting a minimum weight on PTS, or one

can require a sufficiently large range of choices for each weight. Us-

ing BOX for target weights in range [0, 1.0], they find out that Luka
always makes the top-20 for 𝑤1 ∈ [0.62, 0.96], 𝑤2 ∈ [0.55, 0.89],
𝑤3 ∈ [0.65, 1.0], 𝑤4 ∈ [0.0, 0.22], and 𝑤5 ∈ [0.0, 0.1]. Intuitively,
Luka is in the top-20 if one values offensive skills (PTS, REB, AST

are in medium-to-high range) over defense (STL and BLK are low).

Now they can focus on arguing if offensive skills should be weighed

higher than defensive ones for determining the best NBA players.

While ranking functions come in many flavors, this work fo-
cuses on the common scenario where entities are sorted based on a
linear combination of scoring attributes. (See Section 4.4 for more
details.) We formally define and address several problems. SAT asks
if there exists an attribute weighting, such that the entity of interest
reaches rank ≤ 𝑘 . If so, then POINT asks to present an example.
BEST asks for the best rank the entity of interest could ever reach.
And BOX is concerned with presenting the largest (in terms of
perimeter or volume) hyper-rectangle 𝐵, such that for each weight
vector𝑊 in 𝐵, the entity of interest reaches the top-𝑘 . In general, a
BOX solution compactly represents an infinite number of POINT
solutions. And in contrast to a set of POINT solutions, the BOX
solution guarantees that there are no “holes,” i.e., weight vectors
resulting in a low ranking in-between POINT solutions where the
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expected entity is ranked high. Each of these problems can be con-
strained to consider only a certain “reasonable” region of the space
of possible weight vectors or to enforce a certain “thickness” of the
BOX hyper-rectangle.

Example 1 illustrated the use of SAT, POINT and BOX for an
application where ranking creator and consumer are the same,
i.e., where consumers of a ranking can control the weights of the
ranking function [24]. This applies in many other scenarios, e.g., de-
cisions about hiring and university admissions [48]. In cases where
consumers cannot directly influence the ranking, e.g., university
rankings published by US News and World Report, our technique
can still be applied. For example, the ranking creator wants the
target audience to trust the ranking. Omitting MIT from the top-10
of US universities in computer science (CS) would not inspire con-
fidence in the ranking itself. Following the same methodology of
testing and debugging software with test cases, the ranking creator
can apply our approach to analyze and improve the ranking func-
tion. In addition to using SAT, POINT, and BOX as in Example 1
for understanding if and how an entity of interest can reach the
top-𝑘 , BEST provides valuable insights about inherent limits of the
ranking function. For instance, if MIT would not reach the top-10
in the CS ranking, no matter what weights are chosen, then either
relevant scoring attributes are missing, or there are possibly errors
in the scores themselves.

As we discuss in Section 7, previous work on reverse top-𝑘 and
why-not on top-𝑘 queries explored related, but different, problems
for finding weight assignments that achieve a certain ranking out-
come for individual entities. While some can be extended to a
sampling-based solution for SAT, BEST, and POINT, the answers
obtained that way are inferior to our approach. We make the fol-
lowing main contributions:

(1) We define new why-not-yet problems (Section 2) and formal-
ize them as constraint-satisfaction and optimization problems with
linear constraints (Section 3). For modeling tuple ranks, we propose
to use indicator variables, which avoid an O(𝑛𝑘−1) blowup in the
number of combinations of linear constraints. For BOX we propose
a novel “monotonic core” approximation that eliminates quanti-
fiers, disjunction, and negation from the constraints, resulting in
dramatic performance improvement.

(2) While most of our problems are solvable in polynomial time,
running time rapidly increases with data size. Hence we propose op-
timizations and approximation techniques that trade result quality
for improved running time (Section 5). One of them—clustering—
can achieve near unlimited scalability, at the cost of possibly low
approximation quality.

(3) Our experiments demonstrate the practicality of our approach
and its superiority over the SOA (Section 6). They also quantify the
tradeoff between running time and approximation quality for our
proposed scalability improvements.

2 PROBLEM DEFINITION

Table 1 summarizes our notation. A top-𝑘 query 𝑄 over relation 𝑅

is defined in SQL as1

SELECT id, 𝑓𝑊 (𝐴1, 𝐴2, . . . , 𝐴𝑚) AS Score
FROM R

1Depending on the DBMS, the syntax for requesting the top-𝑘 rows may differ.

Table 1: Notation

Symbol Definition
𝑄 Top-𝑘 query
𝑅 Relation
𝑛 = |𝑅 | Number of tuples in 𝑅

𝐴1, . . . , 𝐴𝑚 Attributes of 𝑅 used for ranking
𝑓𝑊 Scoring function used to rank the 𝑅-tuples
𝑊 = (𝑤1, . . . , 𝑤𝑚) Weight vector defining 𝑓

P Predicate constraining the choices of𝑊
𝜌𝑊 (𝑟 ) Rank of 𝑟 for scoring function 𝑓𝑊

𝑅𝑊 (𝑘) Top-𝑘 result for scoring function 𝑓𝑊

id Primary key of 𝑅
𝛿 Indicator of the relationship between two tuples

WHERE -- some conditions
ORDER BY Score DESC LIMIT 𝑘.

Conceptually, 𝑄 sorts all 𝑅-tuples by a scoring function 𝑓𝑊 and
returns the first 𝑘 of them. The scoring function is the weighted
sum over numerical attributes 𝐴1, . . . , 𝐴𝑚 of 𝑅, i.e.,

𝑓𝑊 (𝐴1, 𝐴2, . . . , 𝐴𝑚) =
𝑚∑︂
𝑖=1

𝑤𝑖𝐴𝑖 , (1)

where 𝑊 = (𝑤1, . . . ,𝑤𝑚) and all 𝑤𝑖 are non-negative. We will
often omit𝑊 from the function name. Without loss of generality,
we assume that we sort in descending order of scores. We discuss
alternative design choices in Section 4.4.

While the notion of rank is intuitive—the rank of 𝑟 ∈ 𝑅 is the
position of 𝑟 in sort order—we need to make sure it is well-defined
in the presence of ties:

Definition 2 (top-𝑘 result, rank). Given a top-𝑘 query 𝑄 , its

result 𝑅𝑊 (𝑘) is any subset of 𝑅 of cardinality 𝑘 that satisfies

∀𝑟 ∈ 𝑅𝑊 (𝑘), 𝑟 ′ ∈ 𝑅 \ 𝑅𝑊 (𝑘) : 𝑓 (𝑟 ) ≥ 𝑓 (𝑟 ′).
The rank of a tuple 𝑟 ∈ 𝑅 is

𝜌𝑊 (𝑟 ) = |{𝑟 ′ ∈ 𝑅 | 𝑓 (𝑟 ′) > 𝑓 (𝑟 )}| + 1.

Let 𝑛1, 𝑛2, and 𝑛3 denote the number of 𝑅-tuples whose score is
higher than, equal to, and lower than the score of 𝑟 , respectively.
Sorting by score only guarantees that at least 𝑛1 tuples appear
before 𝑟 and at least 𝑛3 after it. However, the ordering of the 𝑛2
tuples tied with 𝑟 is arbitrary. Hence we define 𝑟 ’s rank to be the
best position it may reach, i.e., 𝑛1 + 1. If 𝜌𝑊 (𝑟 ) ≤ 𝑘 , we say that 𝑟
ranks among the top-𝑘 tuples.

Using this terminology, we are now ready to formally define a
variety of interesting problems related to the question“why have I
not yet seen tuple 𝑟 in the output of 𝑄?”

Definition 3 (Satisfiability (SAT), Best possible rank
(BEST)). Given a top-𝑘 query 𝑄 and the id of a tuple 𝑟 ∈ 𝑅:

• SAT: Does there exist a weight vector𝑊 such that 𝜌𝑊 (𝑟 ) ≤ 𝑘 ,

i.e., 𝑟 ranks among the top-𝑘 for some ranking function?

• BEST: What is the best rank, min𝑊 𝜌𝑊 (𝑟 ), tuple 𝑟 can reach

for any scoring function?

Definition 4 (Inner box). Given a top-𝑘 query 𝑄 and the id of

a tuple 𝑟 ∈ 𝑅, 𝐵 is an inner box for 𝑄 and 𝑟 iff

(1) 𝐵 = [𝑙1, ℎ1] × · · · × [𝑙𝑚, ℎ𝑚], where ∀𝑖 : 𝑙𝑖 ≤ ℎ𝑖 .
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Figure 1: The satisfiability region for a given 𝑘 (space between

the two diagonal lines), an inner point (star), and two inner

boxes. SAT asks whether the satisfiability region exists. BEST

asks for the smallest 𝑘 with a non-empty satisfiability region.

POINT returns an inner point. BOX returns the largest inner

box.

(2) ∀𝑊 ∈ 𝐵 : 𝜌𝑊 (𝑟 ) ≤ 𝑘 .

The perimeter and volume of an inner box are defined as

∑︁
𝑖 (ℎ𝑖 − 𝑙𝑖 )

and

∏︁
𝑖 (ℎ𝑖 − 𝑙𝑖 ), respectively.

An inner box is an 𝑚-dimensional hyper-rectangle of weight
vectors, such that tuple 𝑟 ranks among the top-𝑘 for any weight
vector contained in it. A special case is an inner point, i.e., an inner
box where ∀𝑖 : 𝑙𝑖 = ℎ𝑖 . Inner points are isomorphic to weight
vectors.

Definition 5 (Inner point (POINT), Max inner box (BOX)).
Given a top-𝑘 query 𝑄 and the id of a tuple 𝑟 ∈ 𝑅:

• POINT: Return a weight vector𝑊 such that 𝜌𝑊 (𝑟 ) ≤ 𝑘 , i.e.,

𝑟 ranks among the top-𝑘 .

• BOX: Return the inner box 𝐵 with the largest perimeter or

volume.

Figure 1 illustrates the above problems in the 2D space. We
are interested in the largest inner boxes, because they compactly
describe a large region of the weight-combination space where the
desired ranking outcome is achieved. The largest volumemaximizes
the number of weight combinations, while the largest perimeter
optimizes for the largest number of choices per weight dimension.

3 FORMALIZINGWHY-NOT-YET

We formalize the problems introduced in Section 2 in a way that
enables efficient solutions, starting with a tuple’s rank.

3.1 Tuple Rank

The rank of 𝑟 ∈ 𝑅 is determined by the number of 𝑅-tuples with
higher scores. Another tuple 𝑠 ∈ 𝑅 beats 𝑟 if it has a higher score,
i.e., 𝑓 (𝑟 ) < 𝑓 (𝑠):

𝑚∑︂
𝑖=1

𝑤𝑖 (𝑟 .𝐴𝑖 − 𝑠 .𝐴𝑖 ) < 0. (2)

This inequality is a linear constraint, which lets us leverage effi-
cient linear programming approaches to solve problems related to
satisfiability and optimization. Adding a constraint like Equation (2)
to a linear program enforces that only those weight vectors where
𝑠 beats 𝑟 can be selected.

Challenge: How do we express “at most 𝑘 − 1 tuples in 𝑅 beat 𝑟”
using linear constraints? The main problem is that we do not know
which of the 𝑅-tuples we want to satisfy Equation (2). For example,
requiring 𝑟 to beat 𝑠1 and 𝑠2 may not be satisfiable, but requiring it
to beat 𝑠1 and 𝑠3 might be.

Solution 1: Brute force. To ensure that 𝑟 ranks among the top-𝑘 ,
it is sufficient for it to beat or tie with𝑛−𝑘 tuples, nomatter if it beats
more than that. Hence we need to explore

(︁𝑛−1
𝑛−𝑘

)︁
=

(︁𝑛−1
𝑘−1

)︁
= O(𝑛𝑘−1)

linear programs, each containing 𝑛 − 𝑘 instances of the negation of
Equation (2).

Solution 2: Indicator variables. We propose an approach that
uses a single linear program. The core insight is to define indicator
variables, which are supported by standard linear program solvers.
For each 𝑠 ∈ 𝑅, 𝑠 ≠ 𝑟 , we define an indicator variable 𝛿𝑠 that is 1 if
𝑠 beats 𝑟 , and 0 otherwise. To enforce that 𝑟 ranks among the top-𝑘 ,
we add a constraint for the sum of the indicator variables:

𝛿𝑠 =

(︄
𝑚∑︂
𝑖=1

𝑤𝑖 (𝑟 .𝐴𝑖 − 𝑠 .𝐴𝑖 ) < 0

)︄
, 𝑠 ∈ 𝑅, 𝑠 ≠ 𝑟∑︂

𝑠∈𝑅;𝑠≠𝑟
𝛿𝑠 < 𝑘.

(3)

Example 6. Consider 𝑅(𝐴1, 𝐴2, 𝐴3) with 𝑟 = (3, 2, 8), and 𝑠1 =
(4, 1, 15), 𝑠2 = (1, 1, 14), 𝑠3 = (0, 2, 14), and 𝑠4 = (6, 5, 14).a For

𝑘 = 3 the constraints are:

𝛿1 = (−𝑤1 +𝑤2 − 7𝑤3 < 0) , 𝛿2 = (2𝑤1 +𝑤2 − 6𝑤3 < 0) ,
𝛿3 = (3𝑤1 − 6𝑤3 < 0) , 𝛿4 = (−3𝑤1 − 3𝑤2 − 6𝑤3 < 0) ,
𝛿1 + 𝛿2 + 𝛿3 + 𝛿4 < 3

aWe omit the id for readability in all examples.

3.2 SAT, BEST, and POINT

Since all constraints in Equation (3) are linear in𝑊 , we can directly
solve SAT using SOA solvers such as Gurobi [19] or Z3 [12]. In
addition to answering satisfiability, when the problem is satisfiable,
these solvers return a certificate, which is an assignment of𝑊 . This
assignment answers POINT.

To answer BEST, we perform a binary search on the value of 𝑘 ,
solving SAT for the corresponding value until we find the smallest
𝑘 for which Equation (3) is satisfied. Since 𝑘 ≤ 𝑛, this adds a time
factor of O(log𝑛) compared to answering SAT and POINT.

Example 7. Continuing Example 6. For SAT the answer is “SAT-

ISFIABLE.” A POINT solution is (𝑤1 = 1,𝑤2 = 0,𝑤3 = 0). The BEST
answer is 2 as illustrated in Figure 2. The weights 𝑤1,𝑤2,𝑤3 are
mapped to axes in the figure. The red 2D triangle in 3D space repre-

sents the set of all𝑊 where𝑤1 +𝑤2 +𝑤3 = 1, which is a commonly

used constraint (see Section 4.2). Note that the star and the other

lines fall into the triangle. The star represents a scoring function that

ranks 𝑟 in 5-th place. The three lines in the triangle show the bound-

aries for indicators 𝛿1, 𝛿2, 𝛿3; indicator 𝛿4 is not visible because its
hyperplane does not intersect with the triangle. (The inequality for

𝛿4 is satisfied for all𝑊 in the triangle, therefore 𝑟 can never beat 𝑠4.)
When crossing a boundary, 𝑟 swaps ranks with the corresponding

tuple. The numbers indicate 𝑟 ’s rank for the corresponding regions
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Figure 2: Example 7: Solution space (2D triangle in 3D space),

ranking function placing 𝑟 5-th (star), and indicator bound-

aries (colored lines). The numbers indicate 𝑟 ’s rank when

selecting𝑊 from the corresponding region of the triangle.

of the triangle. It is easy to see that 𝑟 reaches its best rank of 2 when

𝑤1 is “small”,𝑤2 is “large”, and𝑤3 is close to zero.

3.3 BOX

The BOX problem is significantly more challenging to formalize
than SAT, BEST, and POINT. First, we need to model the lower and
upper bounds of the box. This requires introducing the 𝑙𝑖 and ℎ𝑖
as additional variables that must satisfy ℎ𝑖 − 𝑙𝑖 ≥ 0. Second, BOX
is an optimization problem (maximize perimeter or volume), not a
satisfiability problem. The objective is either linear (for perimeter)
or a degree-𝑚 polynomial (for volume). The latter often dramatically
increases running time of a solver compared to the former. Third,
we must tie the𝑊 to the 𝑙𝑖 and ℎ𝑖 and add constraints to ensure
that 𝑟 is ranked among the top-𝑘 for all𝑊 in the inner box.

Challenge:How do we enforce that 𝑟 is ranked among the top-𝑘
for all𝑊 in the inner box?

Solution 1: Direct encoding. We can encode the constraint
directly as:

∀𝑤1, . . . ,𝑤𝑚 :

(︄
𝑚⋀︂
𝑖=1

𝑙𝑖 ≤ 𝑤𝑖 ≤ ℎ𝑖

)︄
⇒ ⎛⎜⎝

∑︂
𝑠∈𝑅;𝑠≠𝑟

𝛿𝑠 < 𝑘
⎞⎟⎠ (4)

resulting in max-perimeter optimization problem (for volume, re-
place the objective function with the corresponding product)

max
𝑚∑︂
𝑖=1

(ℎ𝑖 − 𝑙𝑖 )

s.t. 𝑙𝑖 ≤ ℎ𝑖 , 𝑖 = 1, . . . ,𝑚

∀𝑤1, . . . ,𝑤𝑚 :

(︄
𝑚⋀︂
𝑖=1

𝑙𝑖 ≤ 𝑤𝑖 ≤ ℎ𝑖

)︄
⇒ ⎛⎜⎝

∑︂
𝑠∈𝑅;𝑠≠𝑟

𝛿𝑠 < 𝑘
⎞⎟⎠ ,where

𝛿𝑠 =

(︄
𝑚∑︂
𝑖=1

𝑤𝑖 (𝑟 .𝐴𝑖 − 𝑠 .𝐴𝑖 ) < 0

)︄
, 𝑠 ∈ 𝑅, 𝑠 ≠ 𝑟

(5)

0.0 0.2 0.4 0.6 0.8 1.0
w1
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Figure 3: Example 8: The rank of 𝑟 as a function of weight𝑤1
is neither convex nor monotonic.

Unfortunately, the use of nested quantifiers gives rise to a prob-
lem in the theory of reals, which, while decidable, requires advanced
techniques such as cylindrical algebraic decomposition to solve.
This is something that current solvers generally do not support and,
if they do, the complexity introduced poses serious performance
and scalability problems in practice.

Improvement attempt: Convexity and monotonicity. Struc-
tural properties of constraints, in particular convexity and mono-

tonicity, provide opportunities for vastlymore efficient optimization.
Consider convex function𝐺 (𝑥) = 𝑥2. Given any interval [𝑙𝑥 , ℎ𝑥 ] of
𝑥-values, the maximum of 𝐺 (𝑥) over that interval must be either
𝑙2𝑥 or ℎ2𝑥 , i.e., it must fall on one of the interval endpoints 𝑙𝑥 and ℎ𝑥 .
In general, for convex 𝐺 (𝑥),
(∀𝑥 : 𝑙𝑥 ≤ 𝑥 ≤ ℎ𝑥 ⇒ 𝐺 (𝑥) < 𝜃 ) ⇔ (𝐺 (𝑙𝑥 ) < 𝜃 ∧𝐺 (ℎ𝑥 ) < 𝜃 ) .

This equivalence means that we can replace a complex formula like
the left-hand side that contains quantifiers and implication with
a simple conjunction like the one of the right. Similarly, for any
monotonically increasing function 𝐻 (𝑥) (and analogously for the
decreasing case):

(∀𝑥 : 𝑙𝑥 ≤ 𝑥 ≤ ℎ𝑥 ⇒ 𝐻 (𝑥) < 𝜃 ) ⇔ 𝐻 (ℎ𝑥 ) < 𝜃 .

Notice the structural similarity of the left-hand side to Equa-
tion (4). There we could apply the same simplification, slightly gen-
eralized to𝑚 dimensions, as long as function 𝐹 (𝑊 ) = ∑︁

𝑠∈𝑅;𝑠≠𝑟 𝛿𝑠
is monotonic or convex. Unfortunately, in general it is neither as
the following counter example demonstrates even for𝑚 = 2. In-
tuitively, as we sweep the range of a weight 𝑤𝑖 from 𝑙𝑖 to ℎ𝑖 , the
rank of tuple 𝑟 , which is equal to 𝐹 (𝑊 ), may increase and decrease
repeatedly. This violates both convexity and monotonicity.

Example 8. Consider 𝑅(𝐴1, 𝐴2) = {(25, 5), (27, 4), (22, 9), (19, 7)},

where 𝑟 is the first tuple. Assume the common Triangle constraint

(Section 4.2), i.e.,𝑤1 +𝑤2 = 1. (We can construct similar examples

for other constraints on𝑊 .) Figure 3 shows the rank of 𝑟 for dif-

ferent values of 𝑤1. Since 𝑟 ’s rank increases, decreases, and then

increases again for increasing𝑤1, the function is neither convex nor

monotonic.

Solution 2: Monotonic core. Our goal here is to find an ap-
proximation of 𝐹 (𝑊 ) = ∑︁

𝑠∈𝑅;𝑠≠𝑟 𝛿𝑠 that ideally delivers almost the
same BOX solution, but is monotonic or convex. This is challeng-
ing, because small changes of𝑊 in any direction inside a box of
𝑊 -combinations can result in up or down movement of 𝑟 ’s rank
as the above example demonstrated. Our solution is based on the
following crucial insight:

Lemma 9. Given hyper-rectangle 𝐵 = [𝑙1, ℎ1] × · · · × [𝑙𝑚, ℎ𝑚]. Let
𝐹𝑠 (𝑊 ) = 𝑓𝑊 (𝑠) − 𝑓𝑊 (𝑟 ) and let 𝐶 = (𝑐1, . . . , 𝑐𝑚), where 𝑐𝑖 = ℎ𝑖 if
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𝑠 .𝐴𝑖 ≥ 𝑟 .𝐴𝑖 ; and 𝑐𝑖 = 𝑙𝑖 otherwise. Then(︄
∀𝑤1, . . . ,𝑤𝑚 :

𝑚⋀︂
𝑖=1

𝑙𝑖 ≤ 𝑤𝑖 ≤ ℎ𝑖 ⇒ 𝐹𝑠 (𝑊 ) ≤ 0

)︄
⇔ 𝐹𝑠 (𝐶) ≤ 0

Proof. To prove the theorem, it is sufficient to show that 𝐹𝑠 (𝑊 )
reaches its maximum in corner point𝐶 of hyper-rectangle 𝐵. If that
maximum value is at most 0, then 𝐹𝑠 must be at most 0 in all of 𝐵,
and vice versa.

To prove that 𝐹𝑠 reaches its maximum in𝐶 , consider two weight
vectors𝑊1 (𝑤1,𝑤2, . . . ,𝑤𝑚) and𝑊2 = (𝑣1,𝑤2, . . . ,𝑤𝑚) in 𝐵 that
agree in all but the first dimension:

𝐹𝑠 (𝑊2) − 𝐹𝑠 (𝑊1) = 𝑣1𝑠 .𝐴1 +
𝑚∑︂
𝑖=2

𝑤𝑖𝑠 .𝐴𝑖 − 𝑣1𝑟 .𝐴1 +
𝑚∑︂
𝑖=2

𝑤𝑖𝑟 .𝐴𝑖

− (𝑤1𝑠 .𝐴1 +
𝑚∑︂
𝑖=2

𝑤𝑖𝑠 .𝐴𝑖 −𝑤1𝑟 .𝐴1 +
𝑚∑︂
𝑖=2

𝑤𝑖𝑟 .𝐴𝑖 )

= 𝑣1𝑠 .𝐴1 − 𝑣1𝑟 .𝐴1 −𝑤1𝑠 .𝐴1 +𝑤1𝑟 .𝐴1

= (𝑣1 −𝑤1) (𝑠 .𝐴1 − 𝑟 .𝐴1)
(6)

This implies that 𝐹𝑠 (𝑊2) > 𝐹𝑠 (𝑊1) iff both factors are negative or
both are positive. We can derive analogous results for each of the
other dimensions.

Let 𝑋 = (𝑥1, . . . , 𝑥𝑚) ∈ 𝐵 be the weight vector for which 𝐹𝑠
reaches its maximum in 𝐵. We show that either 𝑋 = 𝐶 or 𝐹𝑠 (𝐶) =
𝐹𝑠 (𝑋 ), which each implies that 𝐹𝑠 reaches its maximum in corner𝐶 .
If 𝐶 ≠ 𝑋 , then they must differ in at least one dimension. Without
loss of generality, let 𝑐1 ≠ 𝑥1. We now show by replacing 𝑥1 with
𝑐1 in 𝑋 , the value of 𝐹𝑠 cannot decrease, i.e., 𝐹𝑠 (𝑥1, 𝑥2, . . . , 𝑥𝑚) ≤
𝐹𝑠 (𝑐1, 𝑥2, . . . , 𝑥𝑚). From Equation (6) it follows that

𝐹𝑠 (𝑐1, 𝑥2, . . . , 𝑥𝑚) − 𝐹𝑠 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = (𝑐1 − 𝑥1) (𝑠 .𝐴1 − 𝑟 .𝐴1).

Case 1: 𝑠 .𝐴1 = 𝑟 .𝐴1. This implies 𝐹𝑠 (𝑥1, 𝑥2, . . . , 𝑥𝑚) =

𝐹𝑠 (𝑐1, 𝑥2, . . . , 𝑥𝑚).
Case 2: 𝑠 .𝐴1 < 𝑟 .𝐴1. Then by definition 𝑐1 = 𝑙1 and hence

𝑐1 − 𝑥1 ≤ 0. Together, (𝑐1 − 𝑥1) (𝑠 .𝐴1 − 𝑟 .𝐴1) ≥ 0 and therefore
𝐹𝑠 (𝑥1, 𝑥2, . . . , 𝑥𝑚) ≤ 𝐹𝑠 (𝑐1, 𝑥2, . . . , 𝑥𝑚).

Case 3: 𝑠 .𝐴1 > 𝑟 .𝐴1. Then by definition 𝑐1 = ℎ1 and hence
𝑐1 − 𝑥1 ≥ 0. Together, (𝑐1 − 𝑥1) (𝑠 .𝐴1 − 𝑟 .𝐴1) ≥ 0 and therefore
𝐹𝑠 (𝑥1, 𝑥2, . . . , 𝑥𝑚) ≤ 𝐹𝑠 (𝑐1, 𝑥2, . . . , 𝑥𝑚).

We apply the same construction to weight vector (𝑐1, 𝑥2, . . . , 𝑥𝑚),
showing that replacing 𝑥2 with 𝑐2 cannot decrease the value of 𝐹𝑠 ,
then doing the same for replacing 𝑥3 with 𝑐3 and so on. This proves
that the maximum of 𝐹𝑠 over 𝐵 is reached in corner 𝐶 , concluding
the proof of the theorem. □

In order to use Lemma 9 for solving BOX, we also need:

Lemma 10. Given hyper-rectangle 𝐵 = [𝑙1, ℎ1] × · · · × [𝑙𝑚, ℎ𝑚].
If |{𝑠 ∈ 𝑅 | ∀𝑊 ∈ 𝐵 : 𝑓𝑊 (𝑠) − 𝑓𝑊 (𝑟 ) ≤ 0}| ≥ 𝑛 − 𝑘 then ∀𝑊 ∈ 𝐵 :
𝜌𝑊 (𝑟 ) ≤ 𝑘 .

The lemma states that if there are at least 𝑛 − 𝑘 other tuples
that do not beat 𝑟 anywhere in 𝐵, then 𝑟 ’s rank is 𝑘 or better. This
follows directly from the definition of the rank.

Combining Lemmas 9 and 10, we obtain:

Theorem 11. Given a top-𝑘 query 𝑄 , the id of a tuple 𝑟 ∈ 𝑅, and

hyper-rectangle 𝐵 = [𝑙1, ℎ1] × · · · × [𝑙𝑚, ℎ𝑚]. Let 𝐶 = (𝑐1, . . . , 𝑐𝑚),
where 𝑐𝑖 = ℎ𝑖 if 𝑠 .𝐴𝑖 ≥ 𝑟 .𝐴𝑖 ; and 𝑐𝑖 = 𝑙𝑖 otherwise. If

|{𝑠 ∈ 𝑅 | 𝐹𝑠 (𝐶) = 𝑓𝐶 (𝑠) − 𝑓𝐶 (𝑟 ) ≤ 0}| ≥ 𝑛 − 𝑘

then 𝐵 is an inner box for 𝑄 and 𝑟 .

Theorem 11 enables us to solve BOX using only a conjunction of
linear constraints and the indicator variables, removing the nested
quantifier and implication. The corresponding optimization prob-
lem for box perimeter is:

max
𝑚∑︂
𝑖=1

(ℎ𝑖 − 𝑙𝑖 )

s.t. 𝑙𝑖 ≤ ℎ𝑖 , 𝑖 = 1, . . . ,𝑚

𝛿𝑠 =

(︄
𝑚∑︂
𝑖=1

𝑐𝑖 (𝑟 .𝐴𝑖 − 𝑠 .𝐴𝑖 ) ≥ 0

)︄
, 𝑠 ∈ 𝑅, 𝑠 ≠ 𝑟∑︂

𝑠∈𝑅;𝑠≠𝑟
𝛿𝑠 ≥ 𝑛 − 𝑘,

(7)

where 𝑐𝑖 = ℎ𝑖 if 𝑠 .𝐴𝑖 ≥ 𝑟 .𝐴𝑖 ; and 𝑐𝑖 = 𝑙𝑖 otherwise.
Since Lemma 10 is an implication, not an equivalence, the condi-

tions in Equation (7) are sufficient, but not necessary for enforcing
that the corresponding solution be an inner box. In terms of prac-
tical implications, this means that the inner box found for Equa-
tion (7) may be smaller compared to Equation (5). Our experiments
in Section 6.6 indicate that the size difference is small. And since
the latter approach is infeasible for all but very small datasets, our
proposed approximation Equation (7) currently is the only option
for medium-to-large datasets.

3.4 Additional Weight Constraints

In addition to the constraints discussed so far, for all problems we
need a predicate P to enforce desirable properties of the ranking
function. First, we include the requirement for all 𝑤𝑖 to be non-
negative in P. Second, for SAT, BEST, and POINT we also include∑︁
𝑖 𝑤𝑖 > 0 to exclude the undesirable case where all weights are

zero and hence all tuples have the same score of zero. For BOX, we
instead require

∑︁
𝑖 ℎ𝑖 > 0.

Challenge: Preventing an unbounded solution space. Mul-
tiplying each𝑤𝑖 with the same constant 𝑐 scales the score of each
𝑅-tuple by the same factor 𝑐 and hence does not change the ranking.

Solution: Upper bounds on the weights. The issue is easily
addressed by including in P linear constraints upper-bounding
the 𝑤𝑖 (or analogously the ℎ𝑖 for BOX). These are discussed in
Section 4.2.

The predicate also enables the user to define constraints like:
• Search for the largest inner box in a specific region of the

weight-vector space.
• Consider only scoring functions that place a particularly

high (or low) weight on some attribute of interest, e.g.,
because of some natural notion of importance dictated by
the application.

• Ensure that the BOX solution has a certain minimal “thick-
ness” in a dimension.

• After returning a POINT find the maximal inner box that
contains it.
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For all constraints on𝑊 discussed here, the corresponding predicate
is a conjunction of linear constraints.

4 ALGORITHM IMPLEMENTATION

As discussed above, solving the problems introduced in Section 2
requires solving the satisfiability and optimization problems in
Equations (3), (5) and (7), respectively, possibly with additional
linear constraints P on the weights. We first discuss the appropriate
state-of-the-art solvers for these types of problems and then cover
specific implementation aspects.

4.1 Solver Summary

We selected Gurobi [19] and Z3 [12] as they use different underlying
technology and have different capabilities. Gurobi is a state-of-the-
art, commercial mathematical programming solver that can handle
MILP (Mixed Integer Linear Programming) problems. It can solve
satisfiability queries and, when provided with objective functions,
it can solve optimization versions of such problems. Gurobi has
some of the most advanced algorithms of any similar tool, using
standard techniques such as cutting planes and symmetry breaking,
as well as various heuristics and the ability to run in parallel.

Z3 is a state-of-the-art SMT (Satisfiability Modulo Theories)
solver. SMT solvers are used to solve problems in decidable frag-
ments of first order logic that include multiple theories, such as
linear arithmetic, uninterpreted functions and strings. SMT solvers
use a Boolean SAT (Satisfiability) solver to orchestrate interaction
between decision procedures for the theories they support. SMT
solvers are now widely used in the context of formal methods, soft-
ware engineering, security and programming languages. Z3 also
provides support for quantifiers, which allows for a direct encoding
for BOX in Equation (5). The use of quantifiers leads to undecidable
fragments of logic, therefore, Z3’s support for such problems is
heuristic.

For our problems, Gurobi tends to be the better choice, typically
outperforming Z3’s execution time by an order of magnitude, or
more. This can be explained by the numeric nature of our prob-
lems: Gurobi is designed to handle numeric constraints and that is
the most natural way to encode our problems. When quantifiers
and implications are used in our constraints, Z3 can only handle
relatively small datasets.

4.2 Default Weight Constraints

To enforce non-negative weights, we add to Equation (3) constraints

𝑤𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚
𝑚∑︂
𝑖=1

𝑤𝑖 > 0 (omitted for Triangle)

and to Equations (5) and (7)

𝑙𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚
𝑚∑︂
𝑖=1

ℎ𝑖 > 0 (omitted for Triangle)

In addition, we also add to Equation (3) one of the following 2
constraints:

Triangle: 𝑤𝑚 = 1 − ∑︁𝑚−1
𝑖=1 𝑤𝑖 ∧ ∑︁𝑚−1

𝑖=1 𝑤𝑖 ≤ 1 (8)
Cube: 𝑤𝑖 ≤ 1, 𝑖 = 1, . . . ,𝑚 (9)

Each is a linear constraint that prevents an unbounded solution
space (Section 3.4); their names are inspired by the geometric shape
of the resulting constrained space of possible𝑊 -values for𝑚 = 3.
In the linear program for Triangle, we do not include the left term
of the conjunction, but instead replace all occurrences of𝑤𝑚 with
1 − ∑︁𝑚−1

𝑖=1 𝑤𝑖 . Triangle enforces
∑︁𝑚
𝑖=1𝑤𝑖 = 1, which is used by all

previous work on reverse top-𝑘 and why-not questions for top-𝑘
(see Section 7). Cube directly bounds the solution space to desired
ranges for each weight dimension. Different from Triangle, where
𝑤𝑚 is eliminated from the program, it treats all weight dimensions
symmetrically. For Equations (5) and (7), the Triangle or Cube
constraint is analogous, but uses ℎ𝑖 instead of𝑤𝑖 .

Example 12. In Figure 2, the Triangle constraint limits the

solution space to the large triangle. The Cube constraint limits the

solution space to the cube with range [0, 1] in each dimension.

4.3 Program Properties

The program for Equation (3) has𝑚 variables𝑤1, . . . ,𝑤𝑚 and 𝑛 − 1
indicator variables 𝛿𝑠 . Each indicator is defined via a linear con-
straint. There is an additional linear constraint on the sum of the
indicator variables. And P has 𝑚 + 1 (Triangle) or 2𝑚 (Cube)
additional linear constraints limiting the range of the𝑤𝑖 . Hence in
total, the number of variables and constraints is O(𝑚 + 𝑛).

Similarly, the program for Equation (7) has 2𝑚 variables for the
inner-box coordinates 𝑙1, . . . , 𝑙𝑚, ℎ1, . . . , ℎ𝑚 and 𝑛− 1 indicator vari-
ables. There are𝑚 linear constraints for the box coordinates, 𝑛 − 1
linear constraints defining the indicator variables, 1 linear con-
straint for the indicator sum, and the𝑚 + 1 or 2𝑚 linear constraints
in P. Hence the number of variables and constraints is O(𝑚 + 𝑛).

The direct BOX encoding in Equation (5) has 3𝑚 variables for
the𝑚-dimensional points 𝑤1, . . . ,𝑤𝑚 , the inner-box coordinates
𝑙1, . . . , 𝑙𝑚, ℎ1, . . . , ℎ𝑚 and 𝑚 + 𝑛 − 1 indicator variables including
𝑚 more indicators of whether 𝑤1, . . . ,𝑤𝑚 are in the range of
[𝑙1, ℎ1], . . . , [𝑙𝑚, ℎ𝑚]. There are 𝑚 linear constraints for the box
coordinates, 𝑚 + 𝑛 − 1 linear constraints defining the indicator
variables, 1 linear constraint for the indicator sum, the𝑚 + 1 or 2𝑚
linear constraints in P, and one more constraint for the quantifier
including implication. The number of variables and constraints is
also linear in𝑚 and 𝑛. However, it contains the complex one with
quantification and implication, which dramatically slows down the
solver compared to the linear-constraint-only programs.

4.4 Generality of the Approach

While more general ranking functions exist, ranking by a linear
combination of individual scoring attributes or features, using non-
negative weights, is powerful and widely used [2, 3, 9, 11, 17, 21,
22, 24, 28, 32, 41–47, 50]. There are good reasons for this.

First, in many ranking problems one has to combine multiple
separate scoring features. For example, when buying a used car,
one ideally would like to minimize scoring features such as age,
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mileage, and price of the car. For multi-objective optimization prob-
lems like this, linear scalarization is arguably the default approach,
especially when one needs a total order of competing solutions.
Second, in a linear function like Equation (1), the weights directly
reveal the importance assigned to each individual scoring attribute.
This makes it easier to analyze properties of the ranking function,
compared to a complex blackbox model that outputs a single score.
Third, the linear ranking function is much more powerful than it
may seem, because we can incorporate more complex functions as
features. In the used-car example, we can add a data column that
contains for each car the expected repair cost predicted by some
non-linear AI model. Then the linear ranking function controls the
impact between given (age, mileage, price) and derived (repair cost)
scoring features all together. Similarly, for someone applying to
college, one can add a score indicating predicted interest in different
majors based on a model that analyzes the applicant’s essay [48].

Our solution could directly handle any real-valued weights, not
only non-negative ones. However, in agreementwith previouswork,
we have not found a need for this. When combining multiple scores
into a single one used for ranking, one may want to minimize some,
e.g., car price, while maximizing others, e.g., expected resale value.
In a maximization problem, instead of assigning a negative weight
to an attribute like car price, one can equivalently work with the
negative car price and a non-negative weight.

In theory, our approach also supports any general ranking func-
tion over the attributes of input 𝑅. The main difference is the struc-
ture of the constraints that encode the ranking order. If the ranking
function is not linear, the constraints can become more complex.
While some solvers can handle non-linear constraints, running time
and even decidability of the problem may be affected. The construc-
tion of the monotonic core would also have to be revisited. We
intend to explore suitable generalizations of the ranking function
in future work.

5 SCALABILITY AND EXTENSIONS

In why-not-yet, the number of constraints, which significantly
impacts solver performance is determined by the cardinality of the
dataset 𝑛 = |𝑅 |. For improved scalability, we propose techniques
that reduce the number of constraints and/or enable the user to
control the tradeoff between running time and result quality.

5.1 Removing Dominators and Dominatees

We can reduce in time O(𝑛) the number of constraints without
impacting the why-not-yet solutions by removing all dominators

and dominatees. A dominator 𝑠 ∈ 𝑅 is a tuple whose values of the
ranking attributes 𝐴1, . . . , 𝐴𝑚 are all greater than or equal to those
of 𝑟 , with at least one of them being strictly greater. Hence 𝑠 will
always beat 𝑟 . (Recall that all 𝑤𝑖 are non-negative.) Similarly, a
dominatee is an 𝑅-tuple whose values of the ranking attributes are
all less than or equal to those of 𝑟 . A dominatee can never have a
higher score than 𝑟 and hence does not affect 𝑟 ’s rank. We refer to
the remaining 𝑅-tuples as competitors.

The number of dominators is only a lower bound for the best
rank 𝑟 could reach. Even though 𝑟 could beat each competitor
individually for the right choice of ranking function, there may be

no ranking function where 𝑟 beats all or even most of them. Hence
solving SAT and BEST is not trivial.

Example 13. Consider relation 𝑅 with (𝐴1, 𝐴2)-pairs (2, 2),
(1, 4), and (4, 1). Even though (2, 2) is not dominated by any

of the other 2 tuples, it can never reach rank 1: 2𝑤1 + 2𝑤2 ≥
𝑤1+4𝑤2∧2𝑤1+2𝑤2 ≥ 4𝑤1+𝑤2 implies 4(𝑤1+𝑤2) ≥ 5(𝑤1+𝑤2),
which is only satisfied for𝑤1 = 𝑤2 = 0.

5.2 Binary Search for BOX

BOX is more general than SAT, BEST, and POINT and therefore, as
our experiments show, takes the solvers significantly longer, even
with the monotonic approximation Equation (7). We propose an
approach that lets the user control the tradeoff between running
time and result quality, i.e., box size. The main idea is to replace
the optimization problem (maximize inner-box perimeter) with an
easier decision procedure (does an inner box of perimeter 𝑝 exist).
We show the resulting constraints, with default constraints for
Equation (7) (it is analogous for Equation (5)):

𝑚∑︂
𝑖=1

(ℎ𝑖 − 𝑙𝑖 ) ≥ 𝑝

0 ≤ 𝑙𝑖 ≤ ℎ𝑖 , 𝑖 = 1, . . . ,𝑚
𝑚∑︂
𝑖=1

ℎ𝑖 > 0

𝛿𝑠 =

(︄
𝑚∑︂
𝑖=1

𝑐𝑖 (𝑠 .𝐴𝑖 − 𝑟 .𝐴𝑖 ) ≤ 0

)︄
, 𝑠 ∈ 𝑅, 𝑠 ≠ 𝑟∑︂

𝑠∈𝑅;𝑠≠𝑟
𝛿𝑠 ≥ 𝑛 − 𝑘

(10)

where 𝑐𝑖 = ℎ𝑖 if 𝑠 .𝐴𝑖 ≥ 𝑟 .𝐴𝑖 ; and 𝑐𝑖 = 𝑙𝑖 otherwise.
First, we check satisfiability for 𝑝 = 0, which is equivalent to

solving POINT. If it is unsatisfiable, then no inner box exists. Else,
we check satisfiability for the greatest possible value of 𝑝 , i.e., 𝑝 =𝑚

for Cube and 𝑝 = 1 for Triangle. If it is satisfiable, then the
corresponding inner box is maximal and returned immediately.
Otherwise we perform a binary search using Algorithm 1 to find
the largest 𝑝 for which Equation (10) is satisfiable, returning the
corresponding inner box found.

The user has 2 ways of controlling the time-vs-quality tradeoff.
First, they can set threshold 𝑡total or a threshold on the precision
𝐻 − 𝐿 of the convergence to stop the binary search early, forcing
the algorithm to return the largest inner box 𝐵 found so far. Second,
they can set timeout 𝑡decision for the decision procedure, i.e., the
time it takes to solve Equation (10). A timeout is treated like an
UNSATISFIABLE response, meaning the binary search continues
with smaller perimeter candidates. Lower timeouts reduce running
time at the cost of possibly ending up with an inner box of smaller
perimeter. (The approach for volume is analogous.) Based on our
experiments, We suggest setting the convergence threshold to 0.01,
𝑡decision to 1 min and 𝑡total to 10 mins. From here, the user can
explore larger time thresholds if the results are returned quickly,
and vice versa.
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Algorithm 1: Binary search for BOX

Input: Satisfiability problem𝑀 (Equation (10)); upper bound 𝐻
(𝐻 =𝑚 for Cube; 𝐻 = 1 for Triangle) and lower bound
𝐿 = 0 for box perimeter

Output: inner box

1 perimeter 𝑝 = (𝐻 + 𝐿)/2
2 repeat

3 Set 𝑝 in𝑀

4 𝑀 .decide() with timeout 𝑡decision
5 if 𝑀 .status == SATISFIABLE then

6 𝐵 = 𝑀.𝑔𝑒𝑡𝐵𝑜𝑥 ()
7 𝐿 = 𝑝

8 else

9 𝐻 = 𝑝

10 𝑝 = (𝐻 + 𝐿)/2
11 until convergence or timeout 𝑡

total

12 Return inner box 𝐵

5.3 Clustering

The binary search for BOX still solves a SAT problem in each it-
eration, which may take too long when the dataset is very large.
Similarly, large data may result in a slow response for SAT, POINT,
and BEST. We now discuss a data-reduction process that can speed
up all our techniques, while providing an approximate solution.
This solution provably never produces false positives, meaning SAT
will never incorrectly claim satisfiability, BEST will never return
a rank better than the true answer, and all answers returned by
POINT and BOXwill be valid weight combinations that achieve the
desired ranking outcome. To achieve this guarantee, we propose
the following construction.

The main idea is to partition 𝑅 into 𝑧 subsets, which we call clus-
ters, and then replace each subset by a single cluster representative,
similar to previous work like [6]. Performance improves because
the solver deals with 𝑧 instead of 𝑛 − 1 indicator variables. We
need to address 2 challenges specific to our problem: (1) Introduce
indicator variables and constraints for clusters and (2) choose an ap-
propriate partitioning of 𝑅 into 𝑧 clusters. For simplicity, we explain
our approach using Example 6.

Modified indicator constraints.Assume 𝑠2 and 𝑠3 in Example 6
form a cluster. Let the cluster representative be formed by taking
the maximum value for each ranking attribute, i.e., for 𝑠2 = (1, 1, 14)
and 𝑠3 = (0, 2, 14), this is 𝜚 = (1, 2, 14). In Equation (3), we remove
the 2 indicators 𝛿𝑠2 , 𝛿𝑠3 and replace them with cluster indicator

𝛿𝜚 =

(︄
𝑚∑︂
𝑖=1

𝑤𝑖 (𝑟 .𝐴𝑖 − 𝜚 .𝐴𝑖 ) < 0

)︄
.

We also replace indicator constraint 𝛿𝑠1 + 𝛿𝑠2 + 𝛿𝑠3 < 𝑘 with 𝛿𝑠1 +
2𝛿𝜚 < 𝑘 . It captures the fact that if representative 𝜚 beats 𝑟 , then in
the worst case both cluster members may beat 𝑟 . The approximation
is caused by the fact that while 𝑓𝑊 (𝑟 ) ≥ 𝑓𝑊 (𝜚 ) implies 𝑓𝑊 (𝑟 ) ≥
𝑓𝑊 (𝑠2) ∧ 𝑓𝑊 (𝑟 ) ≥ 𝑓𝑊 (𝑠3), the reverse is not true. This means that
the modified constraints are stricter than the original ones.

Example 14. Figure 4 shows how the solution space of Figure 2

changes after clustering 𝑠2 and 𝑠3. Their indicators are replaced by

Figure 4: Example 14: Solution space after clustering 𝑠2, 𝑠3.
The bold line shows the constraint for the cluster; the dotted

lines show the original constraints for 𝑠2, 𝑠3.

the indicator of their representative 𝛿𝜚 = 2𝑤1 − 6𝑤3 < 0. Since the
indicator represents 2 tuples, its weight is 2, i.e., crossing the line

changes 𝑟 ’s rank by 2 positions.

After partitioning 𝑅 into 𝑧 clusters of sizes 𝑐1, . . . , 𝑐𝑧 , there are 𝑧
indicator variables 𝛿1, . . . , 𝛿𝑧 for the corresponding cluster represen-
tatives, which are obtained by taking for each ranking attribute the
maximum over the tuples in the cluster. The indicator constraint
is

∑︁𝑧
𝑖=1 𝑐𝑖𝛿𝑖 < 𝑘 , where the indicator weights 𝑐𝑖 are the cluster

sizes. This construction applies analogously to all linear programs
discussed above.

Cluster finding. Our construction is equivalent to replac-
ing each indicator constraint

∑︁𝑚
𝑖=1𝑤𝑖 (𝑟 .𝐴𝑖 − 𝑠 .𝐴𝑖 ) < 0 by∑︁𝑚

𝑖=1𝑤𝑖 (𝑟 .𝐴𝑖 − 𝜚 .𝐴𝑖 ) < 0 for the corresponding cluster represen-
tative 𝜚 . This introduces error𝑤𝑖 (𝜚 .𝐴𝑖 − 𝑠 .𝐴𝑖 ) in dimension 𝑖 . To
minimize this error, we want the cluster representative to be as
similar as possible to all cluster members. By construction of the
representative, this is equivalent to requiring all cluster members
to have small pairwise differences for all ranking attributes. This
aligns with the design goal of popular clustering techniques like
k-means and hierarchical clustering [20]. Our implementation uses
the k-means algorithm [1] and Euclidean distance.

5.4 Multiple Expected Tuples

Our technique can be easily extended to why-not-yet problems
over a set {𝑟1, 𝑟2, . . .} of expected tuples. Different from previous
work [21] that requires the same value of 𝑘 for each 𝑟𝑖 , we support
a different 𝑘𝑖 for each 𝑟𝑖 . Hence the user now can ask for a ranking
function that puts 𝑟1 in the top-𝑘1, while at the same time putting
𝑟2 in the top-𝑘2 etc. The idea is to create an instance of Equation (3)
(and analogously for the other problems) for each 𝑟𝑖 and combine
all these constraints into a single program. Indicator names must
be chosen so that for each pair 𝑟𝑖 , 𝑟 𝑗 , 𝑖 ≠ 𝑗 , their sets of indicator
names are disjoint.
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6 EXPERIMENTS

We now demonstrate that our techniques are practical and compare
them against related work. For our approximation techniques, we
quantify the tradeoff between running time and result quality.

6.1 Experimental Setup

The default ranking function 𝑓𝑊0 assigns the same weight to each
ranking attribute. The original rank of a tuple 𝑟 refers to its rank
𝜌𝑊0 (𝑟 ) according to this default function.

Environment and Implementation. All experiments are ex-
ecuted on an Ubuntu 20 Linux server with an Intel Xeon E5-2643
CPU and 128GB RAM. We implemented our technique in Java, test-
ing it on both Java 11 and Java 18. To solve the satisfiability and
optimization problems, we utilize the Java libraries of the leading
commercial optimizer Gurobi [19]. We also use Z3 [12], a SOA
open-source theorem prover to implement the direct encoding of
BOX with quantifiers and implication (Equation (5)). For Gurobi
and Z3 we used their default configurations, which meant that the
former utilized 8 cores with up to 16 threads, while the latter ran on
1 core. To find clusters (Section 5.3), we use the Weka [15] k-means
algorithm [1].

Competitors. No previous work exists for BOX. For SAT, BEST,
and POINT there is no direct solution either, but we can adopt
the why-not algorithm for top-𝑘 by He and Lo [21]. It cleverly
samples weight vectors and applies pruning techniques to minimize
top-𝑘 query computations. The algorithm can be tuned to balance
improving a tuple’s rank vs minimizing weight changes relative
to a given weight vector. Since we are interested in the former,
we set 𝑘 = 1 and set the tuning parameter to not penalize weight
modifications. (This way the algorithm tries to get expected tuple
𝑟 as high in the ranking as possible.) We refer to this algorithm
as Sampling, using the original C++ code shared by the authors.
We also adopt the arrangement tree algorithm [3] for SAT, BEST,
and POINT. It combines sampling with an exploration of partitions
defined by hyper-planes that separate the half-space where a tuple
beats another, from the half-space where it does not. Since the
algorithm is designed to achieve a ranking where a certain number
of members of a given group appears in the top-𝑘 , we create a binary
group flag, making exactly all expected tuples members of the target
group. We refer to this algorithm as Tree, and implemented it as
described in the original paper. (For all calls to an ILP solver, we
use Gurobi so that times are comparable.)

Datasets. Like previous work on related problems, e.g., [17, 21,
41], we use the latest version of the real NBA dataset, as well as
synthetic datasets of different distributions.

The NBA dataset [34] contains 22467 tuples with statistics of all
NBA players from seasons 1979/80 to 2021/22. Each tuple repre-
sents a player-season combination—uniquely identified by the PLR
attribute, which consists of player name, age and team. As intro-
duced in Example 1, the default ranking attributes are the player’s
average statistics during that season: PTS, REB, AST, STL, and BLK.

The synthetic datasets—uniform, correlated, and anti-correlated—
allow us to explore the impact of correlations between the ranking
attributes. In the uniform data, values for each ranking attribute
are generated uniformly at random, and independent of the other
attributes. In the correlated dataset, a tuple with a high (low) value

in one ranking attribute is likely to also have high (low) values
for the others. In the anti-correlated dataset, a tuple with a high
(low) value in one ranking attribute is likely to also have high (low)
values for half of the other attributes, but more likely to receive low
(high) values for the other half. This pattern of generating synthetic
data of different distributions dates back to [5].

6.2 Case Study: Why has Luka Dončić not

shown up in the top-10 yet?

We study an NBA player who is widely perceived as a superstar,
but who does not appear in the top-10 of all time when using equal
default weights of 0.2 for each of the 5 ranking attributes. Our
technique returns SATISFIABLE in 596 msec. The Triangle and
Cube answers are (𝑤1,𝑤2,𝑤3,𝑤4) ∈ [0.24, 0.3] × [0.17, 0.17] ×
[0.34, 0.34] × [0.0, 0.18], and (𝑤1,𝑤2,𝑤3,𝑤4,𝑤5) ∈ [0.54, 0.54] ×
[0.94, 0.94] × [1.0, 1.0] × [0.0, 1.0] × [0.0, 0.2] in 10708 msec and
6598 msec, respectively. Both answers convey similar information:
to get Dončić into the top-10, we need higher weights on PTS, REB
and AST, but lower weights on STL and BLK. The Cube answer
is more interesting, indicating that with very high weights on the
first three, one can pick any weight on STL. The answers match
the perception that Dončić is a versatile player in terms of offense
(points, rebounds, assists), but not a top defender (steals, blocks).

6.3 Performance on BEST

On SAT and POINT, our approach generally takes less than a sec-
ond to respond, while Sampling and Tree are very fast when a
large fraction of the weight-combination space is satisfiable, but
extremely slow (several hours) when the satisfiable region is very
small. Hence we present results for BEST, where our approach
takes on average 6 sec to solve the instances discussed below. Since
the competitors produce continually improving answers as they
are given more time, we report the best ranking they find within 6
sec and 60 sec, i.e., giving them 10x more time. For Sampling, this
corresponds to taking 100,000 and 1 million samples, respectively.

Figure 5 reports the best ranks found for all NBA data’s player-
season tuples originally ranked at odd positions between 20 and
50. Sampling finds the correct answer only in 40% and 60% of the
cases, respectively; while Tree is correct in 26.67% and 40% of the
cases. Note that in contrast to our approach, even when they find a
sample for which the best rank is achieved, the competitors do not
know if a better solution may exist. Sampling generally has no way
to determine when it may have found the true answer to BEST. In
contrast, since Tree combines sampling with systematic exploration
of the weight-combination space, it can in theory determine the
exact answer if it explores all nodes of the arrangement tree. For
the datasets in our experiments, this was generally not feasible,
resulting in hours or days of running time.

Why is it hard for sampling-based approaches to find the

best possible rank? Sampling works well when the probability of
finding the correct answer is sufficiently high. Otherwise success
probability is low, forcing a sampling-based algorithm to continue
exploring. While Tree partially addresses the issue by systematically
exploring the space, low success probability still forces it to explore
a large fraction of the huge arrangement tree, which has more than
250 million nodes. Since it solves a linear program at each node,
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Figure 5: Performance on BEST. Lower rank found is better.

Only our approach guarantees to find the correct answer.
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Figure 6: Rank distribution for 10,000 samples for a tuple

originally ranked 31st, whose highest possible rank is 11.

running time exceeds 2 days when traversing the entire tree, even
when applying their pruning techniques. Figure 6 illustrates the
sampling success rate for the tuple originally ranked 31st, whose
solution for BEST is 11. Out of 10,000 samples, only 48 rank among
the top-20, and only 1 sample among the top-15 (Figure 6b).

6.4 Performance on BOX: Monotonic Core

Since no previous approach can solve BOX, we explore the perfor-
mance of our main approach (Equation (7)), then compare it to the
other versions and extensions. We also compare running time to
SAT, which is easier than BOX.

On the NBA data, we vary the expected rank (𝑘), the original
rank of the expected player 𝑟 (𝜌𝑊0 (𝑟 )), the number of attributes
(𝑚) and the number of the expected tuples (|−→𝑟 |). Table 2 shows the
parameter settings; the default ones are bold. By default, we select
the tuple with original rank 𝑘 + 10 as the expected tuple, i.e., we
explore how this tuple could move up 10 places. Due to the use
of heuristics whose effectiveness depends on the specific program
instance, running time of solvers like Gurobi and Z3 can varywidely,
even for seemingly similar inputs. Hence for every combination of
𝑘 , 𝜌𝑊0 (𝑟 ),𝑚 and |−→𝑟 |, here and in Sections 6.5 and 6.6, we conduct 5
runs—for the tuples at original ranks 𝜌𝑊0 (𝑟 ), 𝜌𝑊0 (𝑟 ) +1, 𝜌𝑊0 (𝑟 ) +2,
𝜌𝑊0 (𝑟 )+3, and 𝜌𝑊0 (𝑟 )+4—and take themedian time of all satisfiable
ones. In each experiment, we use Gurobi.

Parameter Ranges
𝑘 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

𝜌𝑊0 (𝑟 ) [𝑘 + 1, 𝑘 + 21] (default is 𝑘 + 10)
𝑚 2, 3, 4, 5
|−→𝑟 | 1, 2, 3, 4, 5

Table 2: Parameter settings

Varying 𝑘 (Figure 7a). As 𝑘 increases, execution time increases
because the solver must consider a larger space of settings for the
indicator variables. Execution time is acceptable even for large 𝑘 .

Varying 𝜌𝑊0 (𝑟 ) (Figure 7b). There is no clear trend as tuples
at different original ranks are selected as the expected tuple 𝑟 . This
is reasonable, because it depends on the specific tuple values how
hard it is to determine weights to move it up 10 positions.

Varying𝑚 (Figure 7c). As the number of ranking attributes and
hence program variables increases, so does running time. The im-
pact is negligible for the SAT problem, whose satisfiability problem
is easier than the optimization problem for BOX.

Varying |−→𝑟 | (Figure 7d). As we increase the number of the
expected tuples, execution time increases approximately linearly.
When there are 5 expected tuples, the problem is unsatisfiable,
hence no time is recorded for BOX. (For SAT, the time reported is
until UNSATISFIABLE is returned.)

6.5 BOX: Scalability

We use the synthetic data to explore the effectiveness of the tech-
niques introduced in Section 5. Here we set 𝑘 = 50, 𝜌𝑊0 (𝑟 ) = 51,
𝑚 = 3, |−→𝑟 | = 1, and the weight constraint to be Cube, since it
generally is the slowest. After removing all dominators and domi-
natees, about 10%, 5%, and 90% of the tuples remain as competitors
for the uniform, correlated, and anti-correlated distribution, re-
spectively. Therefore, for the same data size, running time on the
anti-correlated distribution is generally higher.

Varying 𝑛 (Figures 7e to 7g). By default, we set the cluster
number to be half of the competitor number, the binary-search
timeout for each iteration to 1 min and the convergence threshold
of Algorithm 1 to 0.01. Note the log scale on both axes. Both tech-
niques reduce running time and can achieve more speedup for more
aggressive parameter settings (fewer clusters, shorter timeout).

Tradeoff of binary search (Figure 7h).We explore the tradeoff
between approximation quality and running time of binary search.
Each data point represents a run from Figures 7e to 7g whose
running time was greater than 1 min. Most points gather in the
top left corner, demonstrating a good speed-up with little loss in
quality.

Tradeoff of clustering (Figure 7i).We explore the impact of
cluster number on inner-box perimeter and execution time. We use
the uniform dataset for 𝑛 = 1, 000, 000 with the other parameters as
mentioned above. As cluster size is reduced, strong performance
gains can be realized with fairly little impact on box size (until
about 0.3). Then box size drops more rapidly, but the tradeoff may
still be worth it, because a smaller box obtained in seconds is often
better than no response for minutes or hours.
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2 3 4 5
Number of attributes

0

50

100

150

200

Ex
ec

ut
io

n 
tim

e(
s)

SAT
Triangle BOX
Cube BOX

(c) NBA data, Equation (7)

1 2 3 4 5
Number of expected tuples

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n 
tim

e(
s)

SAT
Triangle BOX
Cube BOX

(d) NBA data, Equation (7)
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(g) Anti-correlated data, Equation (7)
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Figure 7: Performance on BOX. C indicates use of clustering; B binary search (Section 5).

6.6 Impact of Other Design Choices

Why not use the brute force approach for SAT? We demon-
strate the importance of using indicator variables (Section 3.1). In
Figure 8a, we show representative results for uniform data when
using Gurobi, setting 𝑘 = 10, 𝜌𝑊0 (𝑟 ) = 11,𝑚 = 3, |−→𝑟 | = 1 and vary-
ing 𝑛 from 30 to 50. Even for these tiny datasets, execution time
of the brute force approach rises rapidly due to the combinatorial
number of problem instances explored.

Why not use the direct BOX encoding with quantifiers,

disjunction, and negation (Equation (5))? Both Gurobi and Z3
do not support optimization with quantified constraints, but we
were able to implement Equation (5) in the Z3 theorem prover using
our binary-search procedure (Section 5.2). We present results for
𝑘 ∈ {10, 20, 30} and set 𝜌𝑊0 (𝑟 ) = 𝑘 + 1, 𝑛 = 50, 𝑚 = 3, |−→𝑟 | = 1,

weight constraint to Cube, using 3 synthetic datasets. In Figure 8b,
each point represents a run that returns a valid inner box.2 We
can see that our monotonic core approximates the direct-encoding
solution well, with much faster execution time. Note also that the
dataset here is extremely small. Direct encoding for 𝑛 > 100
tuples resulted in solver timeouts and runtime exceptions.

Why optimize for box perimeter instead of volume?While
our approach works for both volume and perimeter maximization,
the objective function for perimeter is linear; for volume it is a
polynomial of degree𝑚, which slows down the solvers. Figure 8c
presents a heatmap for the ratio of the execution time for volume vs
perimeter optimization. We use synthetic uniform data, set 𝑛 = 100,

2Sometimes the perimeter ratio can slightly exceed 1.0 because the solution of direct
encoding is implemented in an approximate way through binary search. In that case,
we set the parameter ratio to 1.0, giving an advantage to direct encoding.
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Figure 8: Experimental results for Section 6.6

𝜌𝑊0 (𝑟 ) = 𝑘 + 1, |−→𝑟 | = 1, weight constraint to Cube, and vary 𝑘 and
𝑚. When 𝑘 and𝑚 increase, the ratio increases rapidly. Note again
the extremely small dataset. When solving the Triangle BOX of
the first case in Section 6.2, optimizing perimeter only takes about
3 sec, while volume takes more than 1 hour.

7 RELATEDWORK

Why not? Chapman and Jagadish [7] introduce “why-not” as the
problem of identifying the relational operator that is responsible
for an expected tuple to be missing from the query output. Later
research focused on formalizing why-not provenance and general-
izing the queries supported [4], as well as automatically generating
a refined query whose output includes the expected tuples [40].

Why-not on top-𝑘 queries. In a series of articles, He, Lo et al
introduce why-not problems for top-𝑘 queries [21, 22, 47], which
return a refined top-𝑘 query that includes the missing tuples. They
explore tradeoffs between increasing 𝑘 and minimal changes to the
weight vector𝑊 . Our why-not-yet problems are different: we are
interested in finding weight vectors that improve the ranking of
expected output tuples, not increase 𝑘 . Nevertheless, as we discuss
in Section 6, it is possible to extend their approach into a solu-
tion for our problem. They rely on clever sampling and pruning
strategies, making this the best known sampling-based solution
for our problem. A similar sampling strategy was also proposed in
the context of the “modifying𝑊 and 𝑘 problem” for reverse top-𝑘
queries [17, 32]. As our experiments show, sampling is inherently
limited when using it for SAT, BEST, and POINT; and it cannot solve
BOX. Other related work on why-not on top-𝑘 queries explored
specialized solutions in the context of applications that manage
keyword queries and 2-dimensional spatial coordinates [8–10, 51].

Reverse top-k queries. Vlachou et al. [41, 42] introduce reverse
top-𝑘 queries of 2 types. Themonochromatic type finds all𝑊 where
a query tuple ranks among the top-𝑘 , while in the bichromatic type
the weight vectors must be chosen from a given set of candidates.
Follow-up work explores variations and extensions [11, 17, 28, 32,
33, 43–45, 50]. In our why-not-yet problems, no candidate set for
𝑊 is given, therefore solutions for the bichromatic type cannot
be used. (They focus on efficiently eliminating given candidates,
while in our problems the candidates have to be found.) For the
monochromatic type, an exact solution only exists for𝑚 = 2 where
𝑤2 = 1−𝑤1. For larger𝑚, previouswork acknowledges the hardness

of finding an exact solution [42] and hence resorts to sampling-
based approaches [17, 32].

Fair score-based ranking. [48] survey the SOA for fair score-
based ranking. The most related is work by Asudeh et al [3], which
aims to modify a linear ranking function to ensure sufficient rep-
resentation of groups in the top-𝑘 . We experimentally compare to
this approach when adapted to our problem. A similar method is
used in [2] to find stable rankings.

Other query explanation work. Our work fits into the general
context of database usability [27] and reverse datamanagement [36].
Some approaches there explainmissing query answers by proposing
data modifications [23, 25]; which is related to how-to queries
that change input to get a desired output [37]. The most recent
work in this space includes extensions to explain missing answers
over nested data [13, 14] and the use of diagrams, examples, query
graphs, conditional instances, respectively, to help users understand
queries [18, 29–31, 38]. There is also renewed interest in studying
the connection between causality and explanations [16, 35, 39].

8 CONCLUSION

We propose the first general exact solution for problems SAT, BEST,
and POINT. Adopting sampling approaches from related work can
only provide approximate answers or results in infeasible running
time for BEST. In general, sampling becomes ineffective when only
a small fraction of the space of possible weight vectors ranks the
expected tuples among the top-𝑘 . For BOX, we propose the first
known solution. To make it practical and scalable, we propose
the notion of a monotonic core. Our clustering approach enables
the user to improve running time for all problems as desired by
controlling the number of clusters, with moderate loss in result
quality even for large data.

Interesting avenues for future work are computing a compact
description of the entire set of weight vectors that rank the expected
tuples among the top-𝑘 and generalizing the approach to noisy and
unreliable data.
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