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Abstract—There is a wealth of schema-free tables on the Web,
holding valuable information about quantities on sales and costs,
environmental footprint of cars, health data and more. Table
content can only be properly interpreted in conjunction with the
textual context that surrounds the tables. This paper introduces
the quantity alignment problem: bidirectional linking between
textual mentions of quantities and the corresponding table cells,
in order to support advanced content summarization and faster
navigation between explanations in text and details in tables. We
present the BriQ system for computing such alignments. BriQ
is designed to cope with the specific challenges of approximate
quantities, aggregated quantities, and calculated quantities in text
that are common but cannot be directly matched in table cells.
We judiciously combine feature-based classification with joint
inference by random walks over candidate alignment graphs.
Experiments with a large collection of tables from the Common
Crawl project demonstrate the viability of our methods.

I. INTRODUCTION

Tables not just epitomize relational databases, but are also
widely used to represent data on the Web (embedded in
HTML pages) and in enterprises (in spreadsheets). Unlike in
databases, these tables are often created in an ad-hoc manner,
without proper schema design and with highly heterogeneous
formats of attribute values. Therefore, the interpretation of
tables, by human analysts and other users, often hinges on
additional text that discusses the table content.

Figure 1 shows excerpts of Web pages from the domains of
health, environment and finance. The currency of the financial
numbers in Figure 1c becomes clear only when reading the
text. Likewise, it is the text of Figure 1b that points the user
to the most expensive of the three cars.

To make sense of tables, it is thus crucial that table rows,
columns and individual cells are connected with relevant
snippets in the surrounding text. For entire rows and for cells
with names of products, companies, locations, etc., this is the
problem of entity linking [33]. Specific methods for tables as
input have been developed [2], [18], [19]. However, this does
not capture the quantities in individual cells. Linking quantities
has been addressed in [13], [31], but these works assume
that a knowledge base or reference system of canonicalized
quantities (with standardized measures, proper units, etc.)
is available. In practice, knowledge bases for quantities are
merely small and limited to special domains.

In this paper, we aim to link quantities without making such
assumptions. We do so by linking table cells with relevant
pieces of the text that accompanies a table. This supports users

in two ways. First, in going from tables to text, they obtain
explanations of the mere numbers in cells and their relevance
for the topic at hand. Second, in going from text to tables, the
user can drill down on statements in terms of detailed numbers.
Figure 1 illustrates these benefits by the overlaid bidirectional
edges. Quantity alignment links the text to data from the tables,
and vice versa. Hence, it can be combined with entity linking
techniques to augment knowledge bases. Furthermore, quantity
alignment creates an opportunity for advanced automatic text
summarization [10], [22], which currently does not include
table data. Once our system identifies aligned quantities, it
is possible to determine which table rows, columns, and
individual cells are referenced by the text summary—so that
they can be added to it. And since our approach distinguishes
between simple single-cell references and aggregates, it can
provide hints to an automatic text summarizer. For instance,
knowing that one sentence references a row sum, while another
discusses individual values in the same row, the summarization
algorithm could decide to include the former in the summary,
but not the latter.
Problem Statement: We formalize the problem of bridging
quantities in tables and text as a quantity alignment problem:
For a text document with one or more tables,

• detect quantity mentions in text that refer to table cells
• and map these mentions to their proper cells.

Here, quantity mentions are textual expressions that contain
numbers, but also include phrases that refer to aggregation,
ranking and change rates. For example, in Figure 1a, the phrase
“total of 123 patients” refers to an aggregate value, namely, the
sum of the values in the sales column. In Figure 1b, “the least
affordable option” refers to the maximum price in a column,
and in Figure 1c, “increased by 1.5%” refers to the rate of
change.

Although the problem resembles that of entity linking, it is
more challenging (and unexplored) for several reasons:

• There is no explicit knowledge base that contains all targets
(namely, entities) of the desired mapping. In our setting,
the targets of the alignment are the values in table cells
(often in incomplete or noisy formats), and the number of
possible mention-cell pairs that could be aligned is huge.

• Quantity mentions in text often differ in their formats from
their counterparts in table cells. For example, “37K EUR”



A total of 123  patients who undergo 
the drug trials reported side effects, of 
which there were 69 female patients 
and 54 male patients. The most 
common side affect is depression, 
reported by 38 patients; and the least 
common side affect is eye disorder, 
reported by 5 patients. 

side effects male female total
Rash 15 20 35 
Depression 13 25 38
Hypertension 19 15 34
Nausea 5 6 11 
Eye Disorders 2 3 5 

a) Example about Health

The final ratings are dominated by the 
PHEV from Audi (2.67) and ICE from 
Volkswagen (2.67). Audi A3 e-tron is the 
least affordable option with 37K EUR in 
Germany and 39K USD in the US. The 
Ford Focus Electric, lowest rating (1.33), 
is a 2K EUR (2.3K USD) cheaper 
alternative with 0 CO2 emission and 
105 MPGe fuel consumption.

BEV PHEV ICE
Focus E A3 VW Golf

German MSRP 34900 36900 33800 
American MSRP 29120 38900 29915 
Emission (g/km) 0 105 122 
Fuel Economy 105 70.6 61.4
Final rating 1.33 2.67 2.67 

b) Example about Environment c) Example about Finance

In 2013 revenue of $3.26 billion CDN
was up $70 million CDN or 2% 

from the previous year. The net 
income of 2013 was $0.9 billion CDN. 
Compared to the revenue of 2012, 
it increased by 1.5%.

Income gains (in Mio)
2013 2012 2011

Total Revenue 3,263 3,193 2,911
Gross income 1,069 1,053 0,877
Income taxes 179 177 160
Income 890 876 849

Fig. 1. Examples of Web Tables with Explanatory Texts

(in Figure 1b) refers to “36900” in a cell with row header
“German MSRP” (in a rotated table). Such approximate
mentions are frequent.

• Aggregate quantities that appear in text in forms such
as “total of 123 patients” (Figure 1a) are not necessarily
present in any table cell, but simply correspond to a column
total. In such cases, the text mention should be aligned with
all cells of the respective column to be summed up.

• Other forms of calculated quantities like maximum values,
differences, change rates, etc., require alignments of text
phrases like “least affordable” (Figure 1b), “up $70 million
Cdn” (Figure 1c), “increased by 1.5%” (Figure 1c) etc.
with a set of cells, typically in the same row or column.

Our Approach: For aligning quantity mentions in text with
cells in tables, we have developed a full-fledged system called
BriQ (for “Bridging Quantities in tables and text”). The core
of BriQ is a hybrid algorithm for mapping mentions onto
cells, by first learning a supervised classifier that accepts or
drops mention-cell candidate pairs. The classifier not only
serves to prune the search space, but also yields a prior
for additional unsupervised steps based on random walks
over appropriately weighted candidate graphs. The latter steps
harness joint inference over the full alignment of all mentions
in a document and all candidate cells in one or more tables
within the document. To minimize dependence on hard-to-
obtain training data and to cope with larger scale, the joint
inference is unsupervised.

Our methods pay particular attention to the challenges of
aggregated (e.g., column totals) and calculated quantities (e.g.,
change rates). We do this by carefully generating candidates in
the form of “virtual cells,” standing for cell combinations such
as table columns or same-row cell pairs. For example, a virtual
cell is generated for a column total even if the table itself does
not explicitly show the total. We devise various techniques to
prune the number of such virtual candidate cells, to ensure
computational tractability and to control spurious matches.

Contributions: Salient points of this paper are:
• We introduce and formalize the novel problem of quantity

alignment for Web pages that contain text and one or more
ad-hoc tables.

• We present the BriQ system1, including a two-stage algo-
rithm for computing alignments, with a trained classifier as
a prior and unsupervised, random-walk-based, techniques
for global inference.

• Comprehensive experiments, with a large collection of
Web tables and high-quality ground-truth annotations,
demonstrate the practical viability of the BriQ method and
its superior performance over two baselines.

II. SYSTEM OVERVIEW

A. Computational Model

The BriQ method takes the following inputs:
• A piece of text, like a (part of a) web page, with a set of
m text mentions of quantities X = {xi : i = 1, . . . ,m}.

• A table q with r rows and c columns and a set of n
mentions of quantities T = {tj : j = 1, . . . , n}.

Text mentions include terms containing numbers or numer-
als such as “123 patients”, “37K EUR”, “1.5%” or “twenty
pounds”. To focus on informative quantities, we eliminate
date/time, headings (such as “Section 1.1”), phone numbers
and references (such as “[2]”, “Win10”).

Table mentions include two types of quantities. The first
are explicit single-cell mentions, such as ‘36900’ in Table 1c,
second row, third column. Given a table with r rows and c
columns we have at most r · c single-cell quantity mentions.
The second type of are composite quantity mentions (or
virtual-cell mentions), computed as an aggregation of one or
more table cells, such as ‘123’, the sum for the fourth column
in Table 1a.

1code and dataset available at:
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/briq/
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Fig. 2. BriQ System Architecture

We consider a broad range of aggregate functions that take
two or more table cells as input and produce a single quantity:
• Sum: given q quantities, sum(y1, .., yq) =

∑q
i=1 yi

• Difference: given 2 quantities, diff(a, b) = a− b
• Percentage: given 2 quantities, pct(a, b) = a

b · 100%
• Change Ratio: given 2 quantities, ratio(a, b) = a−b

a

• Average: given q quantities, avg(y1, ..., yq) =
∑q

i=1 yi

q

• Max or Min: given q quantities, maxq
i=1 yi or minq

i=1 yi

These composite quantities may be present in a table already,
but we also consider them if they are not explicit as the
surrounding text may still refer to totals, diffs, etc. Hence the
notion of virtual-cell mentions. In our experience, aggregates
almost always refer to cells in the same row or column. More
precisely, sum, average, min, and max tend to be computed
for an entire row or column, resulting in O(r + c) composite
quantity candidates in the table. Since difference, percentage,
and change ratio aggregate two values in a row or column,
there are O(

(
r
2

)
+
(
c
2

)
) candidates for them. This leads to a

quadratic (in table size) search space for the alignments, which
is prohibitive for large tables. We will present adaptive filtering
techniques for carefully pruning this search space.

Note that this model can be generalized by considering
aggregations over other subsets of table cells, and even cells
in different tables. For example, the text in Figure 1c could
possibly refer to “the total income of the last two years,” which
is the sum of two cells (in the 2013 and 2012 columns) rather
than a row total. With this generalization, the search space
of the alignment problem would further increase, becoming
exponential in table size already when arbitrary subsets of
cells in a row or column are considered. The BriQ framework
can handle this extended setting as well, and we studied it
experimentally. It turned out, however, that such sophisticated
cases are very rare, and hence did not have any impact on the
overall quality of the BriQ outputs. For run-time efficiency, we
consider only the case where sums and averages are restricted
to entire rows or entire columns or two cells in the same row
or same column, leaving the rare cases for future work.

The BriQ framework can handle a broad range of aggrega-
tion functions. However, in our experiments we only consider
aggregations that appeared in at least 5% of the tables, because
we need a sufficient number of examples to train and evaluate
our models. Therefore, we only consider the following four
aggregations in our experiments: sum, difference, percentage
and change ratio.

For aligning quantity mentions between text and table, we
aim to compute as output a subset of mention pairs 〈xi, tj〉
where xi ∈ X is a text mention and tj ∈ T is a table mention,
including virtual cells for composite quantities. These pairs
should denote the same quantity with high confidence. For

the examples in Figure 1, the algorithm output should include
the following pairs:
• 〈 “total of 123”, sum(‘35’,‘38’,‘34’,‘11’,‘5’) 〉,
• 〈 “least affordable option with 37K EUR”, ‘36900’ 〉 ,
• 〈 “increased by 1.5%”, ratio(‘890’,‘876’) 〉.

BriQ also returns the locations of the mentions, which we
omitted here for the sake of presentation. Note that alignments
include approximate values such as “37K EUR” and composite
quantities that are not explicitly present in the table, such as
‘ratio(‘890’,‘876’).’ The alignment would ideally be a total
mapping, covering all text mentions in the input. However,
realistic cases may contain numbers in text that do not refer
to any table—so we compute a partial mapping.

B. BriQ Architecture

Figure 2 gives a pictorial overview of the BriQ system
architecture. In the following, we outline each of the shown
components.

1) Table-Text Extraction: This module takes as input a web
page and splits it into coherent segments, which we refer
to as documents. Each document consists of a sequence of
paragraphs and one or more tables to which the text refers.
For each document, quantity mentions are extracted from
the text and the tables, using regular expressions. Virtual
cells—for aggregated quantities—are automatically generated
by considering: (i) all rows and columns for totals; and (ii)
all pairs of cells in the same row or column for difference,
percentage, and change ratio.

2) Mention-Cell Pair Classification: This module first com-
putes features for each text mention and each table mention by
analyzing surrounding context. Also, similarity-based features
are computed for each pair of text mention and table cell that
could be a candidate pair for alignment. We use manually
annotated web pages with ground-truth alignment to train a
binary classifier that accepts or rejects candidate pairs.

The classifier operates locally in the sense that it predicts the
alignment confidence for each mention-cell pair in isolation,
i.e., it does not consider several mention-cell pairs together
for joint inference. It serves two purposes: First, it enables
the subsequent filtering step, which significantly reduces the
number of candidate pairs. This is essential for achieving ac-
ceptable running time in the more expensive global resolution
step. Second, it provides a prior for that global resolution step.

3) Adaptive Filtering: This stage filters the classifier’s
output to arrive at a sufficiently small set of candidate pairs that
the subsequent global resolution can handle. The filtering uses
the confidence scores of the classifier, but also considers more
sophisticated measures to adapt to the specifics of different
situations.



4) Global Resolution: This module takes as input the
candidate mention-pairs from the classifier and outputs the
final alignment of quantities between text and tables. It uses
the classifier confidence values as prior weights, and employs
global inference methods such as random walks over graphs
to resolve the alignments.

III. TABLE-TEXT EXTRACTION

Web pages, such as Wikipedia articles or product test re-
ports, can be very long and cover a variety of thematic aspects,
along with several tables. We therefore pre-process and split
them into coherent documents. Since paragraphs form a natural
unit in text for discussing a specific aspect, we use them as
atomic building blocks. More precisely, we define a coherent
document to be a paragraph together with all “related” tables
from the same Web page. Related tables are identified by
computing pairwise similarities between all paragraphs and
all tables in the page, and then selecting those with similarity
above a threshold. We consider tokens in the entire content
of the table including column headers and captions. Note that
a paragraph may have more than one related table, and a table
might be related to multiple paragraphs.

For each document, we extract all quantity mentions from
both text and tables, using regular expression matching (e.g.,
‘\d+\s*\p{Currency_Symbol}’ for monetary values).
Quantities are extracted from text as follows: first we identify
and remove complex quantities that involve multiple parts,
such as ‘5 ± 1 km per hour’. Then, we extract simple
quantities, such as ‘$500 million’ and ‘1.34%’. This order
ensures that complex quantities are not erroneously split into
several matches. For tables, we employ the same procedure
and attempt to extract a single quantity mention per cell,
together with its unit (if present). In addition, we also attempt
to extract information about the unit from each row and
column header, footer, and the caption. We normalize quantity
mentions; for example ‘0.5 million’ transformed to ‘500 000’.

IV. MENTION-PAIR CLASSIFICATION

This stage of the BriQ system applies supervised learning
to predict if a text mention does refer to a table mention so
that they should be aligned. This binary classifier performs
local resolution in the sense that it makes a prediction for an
individual mention-pair, not taking into account dependencies
between predictions made for different mention-pairs. Such
couplings will be considered by the global resolution later,
at much higher computational costs, however. The confidence
scores of the classifier serve as prior weights for the joint
inference at the global resolution stage.

A. Classification Algorithms

We use a Random Forest (RF) classifier for this purpose.
RFs are among the most powerful classifiers that are not
prone to overfitting. An RF classifier consists of an ensemble
of decision trees, each trained on an independent bootstrap
sample of the training data. The final prediction for an input
is obtained based on the majority vote of the individual trees,

returning the fraction of votes for the “related” class as the
probability of the mention-pair being related. It has been
shown that RFs yield well calibrated probabilities [5], [25],
which is important for our usage of RF outputs fed into the
global resolution stage.

B. Features

We judiciously designed a variety of features that capture
information a human reader would use in order to determine
if text mention x and table cell t denote the same quantity.
The alternative—automatic representation learning, e.g., with
Deep Learning—was not viable for our problem due to the
limited amount of labeled data and the high cost for obtaining
it (see Section VII). Overall, we believe that the complexity of
our problem setting is better served by modeling informative
features rather than solely relying on end-to-end learning with
limited training data.

The most obvious basic feature is surface form similarity,
f1(x, t). We adopted the Jaro-Winkler distance measure to
compute the string similarity between the surface form of the
text mention against the table mention. We use Jaro-Winkler
because it emphasizes a match at the beginning of the string,
which is desirable when comparing quantity mentions. For
example, a quantity mention “26.7$” in the text is closer to
“26.65$” than to “29.75$”.

B.1. Context Features

Local context word overlap, f2(x, t), measures the simi-
larity between the local contexts of a pair of text and table
mention. A window of n words preceding and following the
text mention is considered; for the table mention it is the full
row and the full column content. The feature value is defined
as the weighted overlap coefficient between the two bags of
words. That is, we assign a weight to each word relative to its
position. We use the following formula to compute the weight
of a word e at distance d from the text mention:

weight(e) = 1−
(

d

stepSize
· stepWeight

)
,

where stepWeight is the discounted weight at each stepSize
away from the text mention. Then, we compute the overlap
coefficient using these weights. We tune n, stepSize, and
stepWeight on the withheld validation dataset.

Global context word overlap, f3(x, t), is similar to
f2(x, t), but uses the entire paragraph as the context of the
text mention; and the entire table content as the context of
the table mention.

Local context phrase overlap, f4(x, t), measures the
similarity between the noun phrases in the local context of
text and table mention. The local context of the text mention
is the sentence in which the text mention occurs; and for the
table mention it is the full row and the full column content.



For example, the noun phrase “segment profit’ in Figure 3.

Global context phrase overlap, f5(x, t), is defined analo-
gously, but considers noun phrases in the entire paragraph as
the global context of the text mention; and the noun phrases
in the entire table as the global context of the table mention.

B.2. Quantity Features

Relative difference between normalized quantity values,
f6(x, t) = |x−t|

max(x,t) , reflects the numeric distance between
mentions. Here, x and t denote the numerical values of the
respective mentions, after normalization. In Figure 1 the
normalized value of mention ‘37K EUR’ is 37000.

Unnormalized relative difference between quantities,
f7(x, t), is the relative difference of the values without
normalization. For example, the unnormalized value of
mention ‘37K EUR’ is 37.

Unit match, f8(x, t), is a four-valued categorical feature
that captures the degree to which the quantity units match.
A strong match occurs when both mentions have a specified
unit and these units match; a weak match when both mentions
have no specified units; a weak mismatch when only one
mention has a specified unit; and a strong mismatch when
both mentions have a specified unit and these units do not
match.

Scale difference, f9(x, t), is the difference in the orders
of magnitude between two quantities. For example, the scale
difference of ‘37000’ and ‘37’ is 3 (powers of ten).

Precision difference, f10(x, t), captures the difference in
the number of digits after the decimal point. For example the
precision difference of ‘1.5’ and ‘1.543’ is 2.

Approximation indicator, f11(x, t), reflects if the
text mention is accompanied by a modifier indicating an
approximation. This categorical feature can take on values
‘approximate’, ‘exact’, ‘upper bound’, and ‘lower bound’.
These are derived from text cues like “ca.”, “about”, “nearly”,
“more than”, etc.

Aggregate function match, f12(x, t), is the degree to which
the aggregate function for computing the value of the cell
or virtual cell matches the kind of aggregation for the text
mention as inferred from text cues. We implement this by
looking up the words around the text mention in a dictionary
that maps words to names of aggregate functions. (We set the
neighborhood size by default to five words; but this could also
be tuned on the validation data.) Analogous to the unit-match
feature, there are four possible values: strong match, weak
match, weak mismatch, and strong mismatch. For example in
Figure 1(a) the inferred aggregation of mention ‘total of 123
patients’ is sum and it has a strong match with the aggregation

of the virtual cell carrying the sum of the last column; and it
has a strong mismatch with the virtual cell carrying the average
of the last column.

V. ADAPTIVE FILTERING

As discussed in Section II, it is essential for performance
to significantly reduce the number of mention-pair candidates
for global resolution, typically from 1000s of candidates to
100s for tractability of global inference algorithms. An obvious
approach for the necessary filtering would be to use the
classifier’s confidence scores: we could retain only candidates
above a certain threshold, or we could keep a certain number
of highest-scoring candidates. While superficially appealing,
it is rather rigid and disregards the need to handle different
kinds of quantity mentions in a more flexible way, e.g.,
simple quantities vs. aggregate quantities. Hence we devised
an adaptive filtering strategy as follows. First we develop a text
mention tagger to predict the aggregation function for each
text mention, or tag the mention as a single-cell match. Then,
we prune mention-pairs based on this tagger’s outcome. In a
second step, we further prune mention-pairs based on value
difference and unit agreement. Finally, we sort mention-pairs
according to classifier scores, and select top-k mention-pairs
for each quantity mention based on mention type and score
distribution.

A. Text-Mention Tagger

We tag text mentions, based on local features, with one of
the following labels: difference, sum, change ratio, percentage,
or single cell. Each of the four aggregation labels is associated
with a small list of manually compiled cue words, such as
“total, summed, overall, together” for sum, and analogous lists
for the other tags. Likewise, words like “around, about, ca.,
approximately, nearly, almost” are considered as indicators for
mention values being approximate. Observing the presence of
such cue words in the proximity of a text mention is used for
the following features that the tagger considers:
• Approximation Indicator: A categorical feature that spec-

ifies an approximation indicator accompanying the men-
tion. The indicator is inferred from the immediate context
of the text mention, where the immediate context is
a window of 10 words around the text mention. The
approximation indicator can take one of the following
values: approximate, exact, upper bound, lower bound,
and none.

• Aggregation Function Features: For each aggregation
function we compute the count of supporting cue words
in the mention context under the following scopes:

1) Immediate Context: contains the tokens occurring
within a window of 10 words around the text
mention.

2) Local Context: contains the tokens occurring in the
same sentence with the text mention.

3) Global Context: contains the tokens occurring in the
same paragraph with the text mention.



• Scale: numerical value indicating the order of magnitude
of the text mention.

• Precision: numerical value indicating the number of
digits after the decimal point.

• Unit: a categorical feature that specifies the unit associ-
ated with the mention. The following is the list of units
we consider: dollar, euro, percent, pound, and unknown
unit.

• Exact Match in Table(s): the number of table mentions
that exactly matches the surface form of the text mention.
This number is summed up over all tables associated with
the document.

We train the tagger, as a simple classifier, with a small labeled
dataset, withheld from all other components and experiments.
The tagger achieves high precision for the four kinds of
aggregation functions. We intentionally optimize for high
precision, at the expense of lower recall: the tagger sometimes
confuses text mentions that match single cells with aggregates,
incorrectly tagging them as sum or diff etc. However, this is
not a problem as we can prune mention-pairs conservatively,
by avoiding to eliminate single-cell matches at this stage. We
use the tagger for the following pruning heuristics for mention-
pairs:
• We keep all mention-pairs for single-cell mentions in

tables.
• We prune aggregate mention-pairs if the aggregation

function for the virtual cell does not match the predicted
tag.

So this pruning step typically discards mention-pairs for all but
one aggregation-function virtual cell, but keeps all mention-
pairs with single cells. Further pruning steps for the single-cell
cases are presented next.

B. Mention-Pair Pruning

Pruning based on Value Difference and Unit Mismatch:
Based on the confidence scores returned by the mention-pair
classifier, we prune mention-pairs whose numeric values
differ by more than a threshold v if the classifier score is
less than p. We tune the values of v and p on the withheld
validation dataset. In addition, for mentions with specified
units, we prune mention-pairs that disagree in unit.

After these pruning steps, we select the top-k candidate pairs
for each text mention by the following criteria:
• Mention Type: We determine the mention type based

on its surface form, context and the table mentions
it potentially pairs with. A text mention can be exact
(12.374), approximate (12.4) or truncated (12.3). First
we rely on the context to determine the type of the
quantity mention, by extracting quantity modifiers, such
as ‘approximately’, ‘exactly’, and ‘about’. If the context
is insufficient to determine the mention type, we compare
the surface form of the mention to that of potential table
mentions with high confidence returned by the classifier.
Then, we determine the mention type by majority vote.

Sales were up 5% on both a reported and organic basis, compared with the second quarter
of 2012. Segment profit was up 11% and segment margins increased 60 bps to 13.3%
primarily driven by strong productivity and volume leverage.

Table 1: Transportation Systems
($ Millions) 2Q 2012 2Q 2013 % Change
Sales 900 947 5%
Segment Profit 114 126 11%
Segment Margin 12.7% 13.3% 60 bps

Table 2: Automation & Control
($ Millions) 2Q 2012 2Q 2013 % Change
Sales 3,962 4,065 3%
Segment Profit 525 585 11%
Segment Margin 13.3% 14.4% 110 bps

Fig. 3. Example with Coupled Quantities

For example, if most of the high-confidence potential
table mentions exactly match the text mention, then the
text mention is exact. For exact mentions we pick the top
kexact mention-pairs and for approximate and truncated
mentions we pick the top kapprox mention-pairs, where
kexact and kapprox are tunable parameters.

• Distribution Entropy: We consider the distribution of
confidence scores returned by the classifier for the pairs
with the same text mention. Sometimes, this distribution
can be so skewed that only few candidates need to be
kept, whereas in other cases a large number of candidates
could be near-ties and should all be kept. To reflect this
intuition, we compute the entropy of the distribution,
and adjust k for the top-k candidates in proportion to
the entropy. We set a specific threshold for the entropy
value, and for distributions with entropy falling below this
threshold, we pick the top ks mention-pairs, otherwise we
pick the top kl mention-pairs, where ks and kl are tunable
parameters.

VI. GLOBAL RESOLUTION

The need for joint inference over candidate pairs for multi-
ple text mentions arises due to dependencies among mentions,
which need to be harnessed to resolve ambiguties. Consider
the example in Figure 3. The text mentions “11%” and
“13.3%” have exact matches in both of the shown tables, and
local-resolution algorithms cannot infer the proper alignment.
However, when considering these two mentions jointly with
“60 bps” and “5%”, it becomes clear that all of these refer to
the first table.

We have devised an unsupervised algorithm for this kind of
global resolution. The algorithm encodes dependencies among
mentions into a graph and uses random walks to infer the best
joint alignment. We also considered an alternative algorithm
based on constraint reasoning with Integer Linear Program-
ming (ILP) and experimented with it, but that approach did
not scale sufficiently well.

A human reader who glances a text mention and wants
to identify to which table cell it refers, would first consider
some matching values, including approximate or aggregate
matches. These are candidate pairs, which we encode as edges
in a graph, using the classifier’s confidence scores as prior
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edge weights. In case of ambiguity, the human user would
then spot neighboring quantities in either text or table to
assess the possible options and refine the hypothesis space
of viable pairs. This would include looking at other quantities
in textual proximity as well as other table cells in the same
row or column. This intuition of human inference is cast
into dependency edges between such context-related mentions,
in both text and table—with weights based on relatedness
strengths. Finally, the “strongest paths” connecting a text
mention with table mention candidates determine the best
alignment. We cast this intuition into a random walk over the
weighted graph.

A. Graph Construction

We construct an undirected edge-weighted graph G =
(V,E) for each document:
• The node set V consists of all quantity mentions in the

document’s text and tables.
• The edge set E consists of three kinds of edges connect-

ing related nodes: text-text edges, table-table edges, and
text-table edges as explained below.

Text-text edges: There is an edge for each pair of text
quantity mentions that are within a certain proximity or have
similar surface forms. Edge weights (Wxx) are computed
based on the following linear combination of proximity and
string similarity:

Wxx(x1, x2) = λ1fprox(x1, x2) + λ2fstrsim(x1, x2).

The hyperparameters λ1 and λ2 are tuned using grid search
on the withheld validation dataset. We define fprox(x1, x2) as
the number of tokens separating the two mentions, divided by
the length of the document. String similarity fstrsim(x1, x2) is
defined as the Jaro-Winkler distance as described in Section
IV-B.

Table-table edges: There is an edge for each pair of table
quantity mentions in the same row or the same column of the
same table. Edge weights Wtt are set uniformly for each pair
of table mentions sharing the same row or the same column.

Text-table edges: There is an edge for each pair of text
and table mention that is kept by the adaptive filtering stage.
Edge weights (Wxt) are set to the confidence scores returned
by the classifier. This can be viewed as an informed prior for
the global resolution stage.

After this initial graph construction, all edge weights are
normalized to obtain a stochastic graph, via dividing each
node’s outgoing weights by the total weight of these edges.

B. Graph Algorithm

Random walk with restart (RWR): Random walks have
been widely used for ranking and alignment tasks over graphs
(e.g. [15], [26], [34]), the most famous case being PageRank.
In our setting, we employ random walks with restart: starting
from a text mention, the graph is stochastically traversed,
with a certain probability of jumping back to the initial node.
This technique is also known as topic-specific or personal-
ized PageRank [12]. It approximates the stationary visiting
probabilities π(t|x) of table-mention node t for walks starting
from a text mention x. Our implementation iterates RWRs for
each text mention until the estimated visiting probabilities of
the candidate table mentions change by less than a specified
convergence bound. This way we can rank the candidate table
mentions t for the text mention x. Finally, this information is
combined with the prior scores σ(t|x) of the previous-stage
classifier, leading to the overall scoring:

OverallScore(t|x) = α · π(t|x) + β · σ(t|x), (1)

with hyper-parameters α and β (which are tuned on the
validation data).

Alignment decisions: The RWR from text mention x
computes π(t|x) for each table mention t. Pair 〈x, t∗〉 forms
an alignment if and only if (i) t∗ is the table mention with the
highest overall score OverallScore(t∗|x), and (ii) its overall
score OverallScore(t∗|x) exceeds a tunable threshold ε.
Interestingly, making an alignment decision adds knowledge,
and we propose to exploit that by updating the graph. In
particular, after identifying an alignment 〈x, t∗〉, x cannot
have alignments with any other table mention, and hence we
modify the graph by removing all edges (x, t) for any t 6= t∗

(if no alignment is found for x, then all text-table edges
adjacent to x are removed.) This way the next RWR for
another text mention is able to leverage the new alignment
information for improved results. This introduces a new issue:
the order in which text mentions are processed. We discuss
our approach to this next.

Entropy-based ordering: Note that a correct alignment
decision will improve knowledge for future RWR executions,
but an incorrect alignment decision can be harmful. Hence one
intuitively should make decisions for the easier text mentions
first, and then factor this information into the later decisions
on the harder cases. To quantify the difficulty of aligning a
text mention, we use the entropy of the classifier’s confidence
scores (see Section V). High entropy, close to uniform scores,
means that there are several candidates among the table
mentions that are not easy to distinguish. Low entropy, with
highly skewed scores, indicates that there is one strongly
preferred candidate—with the extreme case of having exactly
one candidate only. Thus we process text mentions in order of



Algorithm 1: Graph-based global resolution
Data: undirected edge-weighted graph G = (V,E); set

C of mention-pair candidates (x, t) ∈ E with
prior confidence scores σ(x, t)

Result: subset A ⊆ C of pairs for final alignment

A := ∅;
for each text mention x with ∃t : (x, t) ∈ C do

normalize {σ(x, t) : (x, t) ∈ C} to a probability
distribution;

compute its entropy H(x);
end

for each x in increasing order of H(x) do
run RWR from x to compute stationary
probabilities π(t|x) for all t with (x, t) ∈ C;

OverallScore(t|x) = α · π(t|x) + β · σ(t|x);
let t∗ := argmaxt OverallScore(t|x);

if OverallScore(t∗|x) > ε then
add (x, t∗) to A;
delete edges (x, t) for all t 6= t∗ from G;

end
else

delete edges (x, t) for all t from G;
end

end

increasing entropy. Once an alignment is resolved for a text
mention, only this text-table edge is kept and all edges to other
table-mention candidates are removed.

Pseudo-code for the overall graph algorithm is given in
Algorithm 1.

VII. EXPERIMENTAL SETUP

A. Data

To evaluate BriQ, we use the Dresden Web Table Corpus
(DWTC) which comprises about 125 Million tables extracted
from 3.6 Billion web pages in the Common Crawl of July
2014 [8]. We compiled two datasets:
• tableS: a small annotated corpus from 495 web pages

with complete assessment of ground-truth alignments,
used to evaluate precision and recall of our method, and

• tableL: a large set from 1.5 million web pages, used to
perform run-time measurements and demonstrate scala-
bility of our method.

To construct the larger tableL corpus, we filtered the DWTC
collection for web pages that meet a variety of criteria: En-
glish language, table(s) containing numerical cells, numerical
mentions in text, overlap of tokens between table(s) and text.
The resulting 1.5 million pages mostly fall under five major
topics: finance, environment, health, politics, and sports (as
determined by simple surface cues, and validated by manual
sampling).

The tableS corpus is constructed from tableL by randomly
selecting 505 pages and having them manually annotated by

8 hired annotators, all being non-CS students. We refrained
from using mturk-like crowdsourcing for this purpose, as the
annotation required fairly sophisticated guidelines and very
thorough inspection of web pages; crowd workers would
be unlikely to meet this quality assurance. In total, the 8
annotators spent about 130 person-hours on judging text-table
mention pairs, and classifying them by their type: exact-match
with single cell, sum, average, percentage, difference, ratio,
minimum, maximum, unrelated, or other.

The inter-annotator agreement, with Fleiss’ Kappa [9] being
0.6854, was substantial. All mention pairs confirmed by at
least two annotators were kept, resulting in a final tableS
corpus of 495 pages corresponding to 1,598 documents with
1,703 tables and 7,468 distinct text mentions of quantities.

B. Classifier Training

The tableS dataset was randomly split into disjoint training
(80%), test (10%) and validation sets (10%). For each ground-
truth mention pair in the training data (serving as positive
samples), we automatically generated 5 negative samples by
picking the table cells with the highest similarity to the positive
sample (i.e., approximately the same values and similar con-
text). These included many virtual cells for aggregate values,
making the task very challenging. Table I gives a break-down
of positive and negative samples by mention type.
We counter the label imbalance (#pos � #neg) by giving
different weights to the positive and negative labels in the clas-
sifiers’ loss functions [14], [16]. These weights are inversely
proportional to the ratio of the positive or negative labels in the
dataset. The loss function is optimized for the area under the
ROC curve, to ensure that neither precision nor recall could
be neglected.

TABLE I
CLASSIFIER TRAINING DATA.

type #pos type #neg
single-cell 4376 single-cell 3315
sum 267 sum 9300
percent 115 percent 4995
diff. 134 diff. 7924
ratio 141 ratio 5002
total 5039 total 39767

C. Metrics, Tuning and Testing

The traditional classifier performance metrics like accuracy
and error rate are not informative in our setting with high
imbalance between the positive and negative class. Therefore,
we use precision, recall and F1 as major metrics to evaluate
the BriQ system.

For tuning hyper-parameters, we use the withheld validation
set of the annotated tableS corpus (10%). We use grid search
to choose the best values for the hyper-parameters, for the
classifiers as well as for the graph-based algorithm.

For testing classifiers, we use the withheld part of the
annotated tableS corpus (10%). We apply the learned models



on all possible mention pairs between text and table (i.e., not
just limited to the negative samples generated for training.)
Overall, the test set has 687,321 mention pairs out of which
only 0.1% are correct. The global resolution algorithm is tested
with the outputs of the classifier and the adaptive filtering
stage, typically reducing the size by two orders of magnitude.

D. Baselines
We compare BriQ against the following two baselines:
• Classifier-only (RF): the Random Forest algorithm de-

ployed in the first stage of BriQ, trained the same way
as BriQ. For each text mention, the cell of the classifier’s
top-ranked mention-pair is chosen as output.

• Random-Walk-only (RWR): a graph-based algorithm sim-
ilar to the one used in the second stage of BriQ. The
algorithm uses all features that are available to BriQ (see
Section IV-B). However, as there are no prior probabil-
ities computed from the first stage, these features are
combined using uniform weights and then normalized to
graph-traversal probabilities. Also, there is no pruning of
any mention-pairs, making this baseline fairly expensive
while still being an interesting comparison point.

We also considered an additional baseline derived from our
earlier work on linking quantities to a knowledge base (QKB)
[13]. Given a candidate mention-pair, we map both the text
mention and the table cell to the QKB, this way normalizing
them. Then we compare the two mentions if they are the
same (i.e., link to the same QKB entry with exact-matching
values). While this takes care of unit matching, it is limited
to the units registered in the QKB and does not nearly cover
all the diverse units in our large-scale input data. Moreover,
the test can work only if the values of the two normalized
mentions match exactly. For approximate matches where one
text mention could be mapped to different single or virtual
cells, the approach is unsuitable. Since approximate matches
are very frequent in our test data, we did not pursue this
possible baseline any further.

VIII. EXPERIMENTAL RESULTS

A. Alignment Quality
We conducted experiments with three variations of text

mentions, with increasing difficulty:
• Original text mentions, as given in the document. This

is the main experiment.
• Truncated text mentions, where we removed the least

significant digit of each original text mention. For exam-
ple, 6746, 2.74, 0.19 became 6740, 2.7, and 0.1. This is
meant as an additional test of robustness, making all test
cases more difficult.

• Rounded text mentions, where we numerically rounded
the least significant digit of each text mention. For
example, 6746, 2.74, 0.19 became 6750, 2.7, and 0.2.
This is meant as a stress test, with the additional challenge
of making surface-form similarity less informative.

Original mentions: Table II shows the results for the original,
truncated and rounded mentions. For the original mentions,

BriQ outperforms both baselines, RF and RWR, by a large
margin, regarding both precision and recall. BriQ achieved an
F1 score of more than 70%, which is remarkably high given
the noisy nature of the real-life data and the difficulty of the
alignment problem.

TABLE II
RESULTS FOR original, truncated and rounded TEXT MENTIONS.

Original Truncated Rounded
RF RWR BriQ RF RWR BriQ RF RWR BriQ

recall 0.43 0.52 0.68 0.27 0.42 0.58 0.13 0.34 0.49
prec. 0.37 0.53 0.79 0.25 0.44 0.63 0.10 0.35 0.52
F1 0.40 0.53 0.73 0.26 0.43 0.60 0.11 0.34 0.51

Truncated and rounded mentions: As expected, the results
for truncated and rounded mentions in Table II show a drop
in quality, and the decrease is more pronounced for rounded
mentions. In both of these situations, BriQ has the best results.
For truncated mentions, BriQ still achieves fairly good quality,
with an F1 score of ca. 60%. For rounded mentions, it achieves
decent quality, with an F1 score of ca. 51%. In contrast, the
two baselines degrade strongly. Especially, the RF classifier
alone is not competitive at all, demonstrating our insight that
the quantity alignment problem cannot be solved solely by
supervised end-to-end machine learning.
Results by Mention Type: Tables III, IV and V break down
the results by aggregation type: sum, difference, percentage,
change ratio and single-cell match. BriQ clearly outperforms
RF and RWR on all mention types and RWR outperforms
RF on all types except for single-cell. As expected, BriQ
has the best F1 score, 79%, on text mentions that refer to
a single table cell. For sum and difference, BriQ achieved
fairly good F1 scores of 72% and 43%, respectively. For
the remaining two cases—percentage and ratio—all methods
dropped substantially in output quality. The reason is that these
cases are rather infrequent, so that the classifier gave them very
low prior scores, a bias effect that the global resolution could
not fully compensate.

TABLE III
RESULTS BY MENTION TYPE FOR ORIGINAL MENTIONS, USING RF.

sum diff. percent change ratio single-cell
recall 0.00 0.27 0.03 0.06 0.48
prec. 0.00 0.04 0.02 0.01 0.70
F1 0.00 0.06 0.03 0.02 0.57

TABLE IV
RESULTS BY MENTION TYPE FOR ORIGINAL MENTIONS, USING RWR.

sum diff. percent change ratio single-cell
recall 0.61 0.33 0.09 0.18 0.57
prec. 0.52 0.22 0.43 0.27 0.57
F1 0.56 0.26 0.15 0.21 0.57

Effectiveness of Adaptive Filtering: The adaptive filtering
is crucial for BriQ to reduce the input size of the global
resolution stage. Table VI shows the selectivity of our filters
(i.e., the ratio of retained mention pairs to all mention pairs



TABLE V
RESULTS BY MENTION TYPE FOR ORIGINAL MENTIONS, USING BRIQ.

sum diff. percent change ratio single-cell
recall 0.74 0.62 0.10 0.20 0.75
prec. 0.71 0.33 0.75 0.30 0.84
F1 0.72 0.43 0.17 0.24 0.79

that the classifier dealt with) and the recall after the filters.
These numbers clearly demonstrate the enormous gains of the
filtering stage. Conversely, the near-optimal recall numbers in
the table show that we rarely make false-negative errors: BriQ
effectively avoids erroneously dismissing good candidates
from the mention-pair space.

TABLE VI
SELECTIVITY AND RECALL AFTER FILTERING.

type selectivity recall
sum 0.01 1.00
difference 0.01 0.87
percentage < 0.01 0.91
change ratio < 0.01 0.88
single-cell 0.04 0.91
overall 0.01 0.91

B. Ablation Study

We studied the influence of different feature groups on the
two baselines and BriQ. We divide our feature space into three
feature groups:
• surface form similarity.
• context features, including local and global word over-

lap, local and global noun phrases overlap, aggregate
function match, and approximate indicator.

• quantity features, including relative value difference,
unnormalized value difference, unit match, precision dif-
ference, and scale difference.

For the ablation study, we carried out three experiments, each
corresponding to one feature group left out, thus training,
tuning and testing the three models end-to-end on the re-
maining features. Table VII shows the F1 score, precision and
recall of the three experiments in comparison with the full-
feature model. The results underline the robustness of BriQ in
comparison to the other baselines. Although BriQ’s recall is
affected by leaving out some features, its precision is stable.
Leaving out context features leads to the highest degradation
in BriQ’s performance. Interestingly, leaving out the quantity
features resulted in improvements of the RF classifier. The
reason is that, without these features, the classifier has fewer
virtual cells to consider (i.e., approximately matching values
from aggregation of several table cells), making it easier to
get the frequent single-cell cases right. However, BriQ still
outperformed the RF classifier by a large margin.

C. Run-Time Results

BriQ is implemented in PySpark using Python, NetworkX,
and SciPy libraries for the graph algorithm. For the RF
classifier, we use R with the caret package, integrated into

TABLE VII
ABLATION STUDY: RECALL, PRECISION AND F1 SCORE

Recall Precision F1
RF RWR BriQ RF RWR BriQ RF RWR BriQ

all features 0.43 0.52 0.68 0.37 0.53 0.79 0.40 0.53 0.73
w/o surf. sim. 0.37 0.36 0.65 0.33 0.39 0.77 0.35 0.37 0.70
w/o context 0.43 0.38 0.59 0.34 0.44 0.77 0.38 0.41 0.67
w/o quantity 0.43 0.31 0.61 0.54 0.35 0.77 0.48 0.33 0.68

BriQ by the rpy2 library. All experiments were run on a
Spark cluster with 10 executors, each with 6 cores and 30GB
of memory, and with 50GB of driver memory. Training and
tuning takes about 10 hours (on a very large dataset), with
the grid search for the best hyper-parameters being the major
factor (as it is often the case in machine learning). This is a
one-time pre-processing effort.

To measure the run-time performance of BriQ for processing
documents, we use the tableL dataset of about 1.5 million web
pages. Table VIII shows the throughput of BriQ in terms of
completed documents per minute, broken down into different
thematic domains (e.g., quantities in finance are different in
nature from quantities in sports). The throughput numbers
clearly indicate that BriQ is practically viable at large scale.
Moreover, it is 30 time faster than the RWR baseline that has
a throughput of 76 documents per minute.

TABLE VIII
BRIQ THROUGHPUT BY DOMAIN.

pages documents mentions #docs/min
environment 118,724 986,180 3,062,943 2,935
finance 325,853 3,374,175 10,596,979 5,029
health 102,132 879,388 1,930,975 4,604
politics 128,318 2,762,873 4,123,800 6,223
sports 527,263 2,173,832 7,393,225 863
others 309,292 3,141,865 6,796,835 2,588
total 1,511,582 13,318,313 33,904,757 2,478

Table IX gives more statistics for each of these domains. We
see that documents on sports led to a large number of virtual
cells for aggregated values, incurring higher load and hence
resulting in lower throughput than for the other domains.

TABLE IX
TABLE STATISTICS BY DOMAIN.
rows columns single cells virtual cells

environment 7 4 21 243
finance 7 4 16 142
health 3 2 4 26
politics 8 3 17 137
sports 8 6 35 523
others 7 4 21 252
average 7 4 19 220

IX. DISCUSSION

Anecdotal examples: Figure 5 shows three alignments
computed by BriQ. Examples (a) and (b) illustrate the ability
to detect and align change rates and percentages to the correct
cell pairs. In example (c), BriQ is even able to discover the



CATEGORY OCTOBER 2011 OCTOBER 2012

Passenger 

Vehicles
184,611 246,725

Commercial 

Vehicles
62,013 66,722

Three-wheelers 49,069 55,241

Two-wheelers 1,144,716 1,285,015

Sugato Sen, senior director, SIAM said, “The 

car sales growth rate that we have achieved 

this October is the highest since January 2011, 

which was at 25.27 per cent. In terms of 

volumes, this is the highest since March this 

year when it was at 2,29,866 units.” Overall, 

246,725 passenger vehicles were sold in the 

domestic market, which is an increase of 

33.65% over the 184,611 units sold in the 

corresponding period last year

ratio

People
Fulham

Gardens
Australia

Total 5,911 18,769,249

Male 2,907 9,270,466

Female 3,004 9,498,783

Aboriginal and 

Torres Strait 

Islander people

23 410,003

On Census Night 7th August 2001, 

5,911 people were counted in Fulham

Gardens (State Suburbs): of these 

49.2% were male and 50.8% were 

female. Of the total population 0.4% 

were Aboriginal and Torres Strait 

Islander people

perc.

a) Detected change ratio. b) Detected percentage

Company 

Name

Q3 EPS 

Estimate

Q3 

Actual 

EPS

Q3 FY 

2012 Net 

Earnings

Q3 FY 2013 

Net 

Earnings

Bed Bath & 

Beyond

$1.15 $1.12 $232.8 

Million

$237.2 

Million

The 

Container 

Store Group

$0.08 $0.11 $(9.49) 

Million

$6.86 

Million

However, the Container Store's net income 

for the third quarter fell $16.3 million from 

the third quarter in fiscal 2012, earning the 

company a net loss of approximately $9.5 

million on account of the company's recent 

IPO-related expenses and shareholder 

payouts. On the brighter side, Bed Bath & 

Beyond gained a profit of $4 million from the 

same period one year earlier

diff.

b) Detected difference

Fig. 5. Examples of alignments discovered by BriQ

Number of bedrooms
Scenic Rim
(R) -
Beaudesert

% Queensland % Australia %

None (includes
bedsitters) 42 0.9 8,676 0.6 42,160 0.5

1 bedroom 204 4.5 64,983 4.2 363,129 4.7
2 bedrooms 582 13.0 260,607 16.8 1,481,577 19.1
3 bedrooms 1,895 42.2 651,208 42.1 3,379,930 43.6

4 or more bedrooms 1,669 37.2 532,756 34.4 2,350,132 30.3

Number of bedrooms
not stated 97 2.2 29,075 1.9 143,394 1.8

Average number of
bedrooms per
dwelling

3.2 -- 3.2 -- 3.1 --

Average number of
people per household 2.6 -- 2.6 -- 2.6 --

In Scenic Rim (R) - Beaudesert (Statistical Local Areas), of
occupied private dwellings 4.5% had 1 bedroom, 13.0% had 2
bedrooms and 42.2% had 3 bedrooms. The average number of
bedrooms per occupied private dwelling was 3.2. The average
household size was 2.6 people

Ponoko making cost $18

Ponoko materials cost $7

Ponoko shipping cost $5

Extra parts cost $2
Self assembly instructions
cost $1

Packaging cost $1
Misc $1

Your cost price $35

Your creative fee (30%) $15

Your wholesale price $50

Your retail fee (50%) $50

Your retail price $100

So, if your cost for an item is $25,
and you see similar items selling for
$100 retail, then a $50 wholesale
cost gives you a nice profit of $25

a) Wrong  alignment b) Wrong  alignment

August
2005

July
2005* YTD 2005 YTD 2004*

Stock Mutual
Funds 6.31 9.95 89.77 128.69

Taxable Bond
Mutual Funds 5.82 5.58 23.50 -6.94

Municipal Bond
Mutual Funds 1.49 1.69 5.72 -12.83

Hybrid Mutual
Funds 1.77 1.45 23.49 30.14

Bond funds remained about the same. ICI said that
fixed-income portfolios had an inflow of $7.32 billion
in August, compared with an inflow of $7.27 billion
in July. Taxable bond funds had an inflow of $5.82
billion in August, compared with an inflow of $5.58
billion in July. Municipal bond funds had an inflow of
$1.49 billion in August, compared with an inflow of
$1.69 billion in July

c) Undetected alignment

None

sum

Fig. 6. Examples of errors made by BriQ

approximate difference between two cells and align it properly.

Typical error cases: Figure 6 shows some of the typical
errors made by BriQ. The first case is in examples (a) and (b),
having same-value collisions with several cells in the tables. In
(a) the value ‘3.2’ exists in two cells in the same row with very
similar context. As the immediate context of the quantity ‘3.2’
in the text, underlined, does not contain any words related to
the columns, BriQ fails to identify the correct alignment. In
(b) the immediate context of the quantity ‘$50’ contains both
words ‘wholesale’ and ‘retail’. Moreover, the quantity ‘$100’
is closer to the incorrectly aligned cell ‘$50’. So BriQ fails
here because of high ambiguity.

The third example (c) illustrates the case where the imme-
diate context of the text mention ‘$7.32 billion’ has a single-
word overlap with the table context, “August”. In addition the
scale of the quantity (i.e., billion) is missing in the table. Such
cases are extremely difficult to deal with, since neither the
quantity features nor context features can help in finding the
correct alignment.

X. RELATED WORK

Web Tables: Schema-less ad-hoc tables embedded in Web
pages have first been brought to the database research agenda
by the seminal work of [3], [4], [21]. The focus of this work
was on enabling search engines to include tables as results
of keyword queries. Follow-up work tackled various forms
of light-weight data integration, like matching names in table
headers against queries, matching attributes of different tables
with each other, and inferring approximate schemas (e.g.,
[18], [19], [27], [35]).

Entity Linking: Mapping names of people, places, products,
etc. onto canonicalized entities in a knowledge base has
received great attention in the literature; a recent survey is
given by [33]. This work has mostly focused on surface
names in text documents. The most notable exceptions that
addressed names in tables (in combination with mapping
column headers) are [2], [19], [28]. Their methods for entity
linking vary from context-similarity-based rankings and
simple classifiers to advanced forms of probabilistic graphical
models for joint inference over a set of mentions.



Quantity Extraction: Recent work has addressed the task of
recognizing quantities in text and extracting them as proper
mentions (including units, reference range, etc.) [1], [13],
[20], [23], [29]–[32]. These methods are based on pattern
matching and/or machine learning models like Conditional
Random Fields. However, only [13], [31] go beyond mere
extraction and aim to canonicalize quantity mentions by
linking them to a knowledge base of measures and units. In
doing this, they rely on an explicit – in their cases small and
manually crafted – knowledge base, though. This approach
is limited in scope and does not scale to the wide diversity
of quantities in large collections of Web tables. The BriQ
approach, on the other hand, does not require an explicit
knowledge base and copes with the full scope of possible
inputs.

Coreference Resolution in NLP: A very different domain
with resemblance to our problem of quantity alignment is the
task of coreference resolution in natural language processing
(NLP). Given a text document with entity names as well as
underspecified expressions like pronouns (“he”, “she”, “her”
etc.) and common noun phrases (e.g., “the lead singer”, “the
founder of Apple” etc.), the task is to compute equivalence
classes of coreferences. For example, pronouns should be
linked to a name in the same or a preceding sentence. State-
of-the-art methods for this problem are mostly based on
rules and/or machine-learning techniques for clustering or
classification (e.g., [6], [7], [11], [17], [24]). None of these
considers mentions of quantities, though.

XI. CONCLUSION

We have introduced the new problem of aligning quantities
between text and tables. Our methodology combines super-
vised classification based on local contexts, adaptive filtering
techniques for computational tractability, and joint inference
methods for global resolution. Comprehensive experiments
with ad-hoc web tables show that all stages of this pipeline are
essential, and together can achieve good precision and recall
at affordable computational cost.

As for future work, we plan to investigate this problem
also in the context of enterprise content (e.g., spreadsheets
in documents) and specialized domains such as material
science or biomedical documents. Quantity alignment is an
important step towards semantically understanding numbers in
unstructured and semi-structured content. This in turn can open
up the path towards next-generation search engines that can
handle queries about quantities, such as Internet companies
with annual income above 5 Mio. USD, electric cars with
energy consumption below 100 MPGe (or equivalently, ca.
21 kWh/100km), or clinical trials with a daily anti-coagulant
dosage above 30 mg. All these examples are way beyond the
scope of today’s search engines; quantity understanding would
bring them closer to feasibility.
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