
Noname manuscript No.
(will be inserted by the editor)

Abstract Cost Models for Distributed Data-Intensive
Computations

Rundong Li · Ningfang Mi · Mirek
Riedewald · Yizhou Sun · Yi Yao

Received: date / Accepted: date

Abstract We consider data analytics workloads on distributed architectures,
in particular clusters of commodity machines. To find a job partitioning that
minimizes running time, a cost model, which we more accurately refer to as
makespan model, is needed. In attempting to find the simplest possible, but
sufficiently accurate, such model, we explore piecewise linear functions of in-
put, output, and computational complexity. They are abstract in the sense
that they capture fundamental algorithm properties, but do not require ex-
plicit modeling of system and implementation details such as the number of
disk accesses. We show how the simplified functional structure can be ex-
ploited to reduce optimization cost. In the general case, we identify a lower
bound that can be used for search-space pruning. For applications with ho-
mogeneous tasks, we further demonstrate how to directly integrate the model
into the makespan optimization process, reducing search-space dimensionality
and thus complexity by orders of magnitude. Experimental results provide ev-

This work was supported by a Northeastern University (NU) Tier 1 award, by the National
Institutes of Health (NIH) under award number R01 NS091421, by the Air Force Office
of Scientific Research (AFOSR) under grant number FA9550-14-1-0160, and by the NSF
Career Award under award number 1741634. The content is solely the responsibility of the
authors and does not necessarily represent the official views of NU, NIH, AFOSR or NSF.

R. Li
CCIS, Northeastern University, Boston, USA, E-mail: rundong@ccs.neu.edu

N. Mi
ECE, Northeastern University, Boston, USA, E-mail: ningfang@ece.neu.edu

M. Riedewald
CCIS, Northeastern University, Boston, USA, E-mail: m.riedewald@northeastern.edu

Y. Sun
Dept. of Computer Science, UCLA, USA, E-mail: yzsun@cs.ucla.edu

Y. Yao
ECE, Northeastern University, Boston, USA, E-mail: yyao@ece.neu.edu

2 Rundong Li et al.

idence of good prediction quality and successful makespan optimization across
a variety of operators and cluster architectures.

Keywords Distributed Analytics · Makespan Minimization · Cost Model ·
Data Partitioning

1 Introduction

With the ubiquitous availability of clusters of commodity machines and the
ease of configuring them in the Cloud, there is growing interest in executing
data analytics workloads in distributed environments such as Hadoop MapRe-
duce and Spark. For effective use of resources, a job needs to be partitioned
into tasks running in parallel on different workers. We will use the term worker
to refer to a single processing unit, i.e., a single physical or virtual core. Hence
a c-core machine would support up to c concurrent workers.

Given an analytics operator in a data-intensive computation, our goal is to
minimize its total execution time by determining (1) a partitioning of its work,
(2) the number of tasks these partitions are mapped to, and (3) the degree of
parallelism for task execution. We equivalently refer to this execution time as
the makespan of the corresponding set of tasks.

In contrast to previous work, our goal is to include operator-specific parti-
tioning parameters into the optimization process. This is important, because
user-defined data processing operators are common in Hadoop and Spark
dataflows, and it is often difficult to determine which partitioning-parameter
values will result in the fastest job execution time. For illustration, consider a
user who wrote a MapReduce program for dense matrix multiplication based
on the well-known block partitioning. It partitions the left matrix into B0-by-
B1 blocks, and the right one into B1-by-B2 blocks. (See Section 4.4 for details.)
In addition to number of tasks and degree of parallelism during execution, the
user now also has to choose the best values for B0, B1, and B2. To do so with
state of the art approaches, she essentially had two options.

First, she could train a blackbox machine learning model to predict
makespan from a variety of features [2], including the block sizes, input size,
output size, number of tasks, degree of parallelism, task size variance, and so
on. This approach is convenient for the user, because it does not require deep
understanding of distributed system interactions. The model can be trained
automatically on labeled data, obtained from an appropriate benchmark that
measures makespan for a variety of configurations. Unfortunately, finding the
minimum-makespan configuration in a blackbox model requires exhaustive
trial-and-error probing of the model. While a single prediction might only
take a microsecond, exploring all combinations of just 10 different values for
10 parameters would take 1010 microseconds, i.e., almost 3 hours.

Second, she could explore DBMS cost models, which estimate the cost of
an operator as the sum of the number of operations performed, weighted by
per-operation cost. These models require a fairly complete understanding of
system-level details, e.g., the number of random and sequential I/O performed.

Abstract Cost Models for Distributed Data-Intensive Computations 3

Those depend on implementation details of the underlying system and are dif-
ficult to specify for makespan estimation in distributed systems. Furthermore,
DBMS cost models do not take resource bottlenecks into account.

To address the shortcomings of existing techniques, we propose to generally
follow the machine-learning approach, but to do so with the simplest possible
model type. The model’s structure should enable fast makespan optimization,
while at the same time being flexible enough to capture a distributed execution
“sufficiently” accurately.

Arguably the simplest approach with any hope for being practically useful
is to estimate task execution time as a linear combination of its input size
(I), output size (O), and computation complexity (C) as c0 + c1I + c2O +
c3C. The parameters intuitively represent fixcosts (c0), data transfer rates
(c1, c2), and processing speed (c3). This model is abstract in the sense that
it reflects algorithm properties, not implementation or system aspects. Since
the parameters are estimated based on training data obtained from actual
benchmark executions on the same cluster, they represent averages over a
large number of low-level processing steps and thus automatically account for
underlying processing complexities [5].

To use an abstract model like c0 + c1I + c2O + c3C for makespan opti-
mization, the user has to express I, O, and C as functions of the partitioning
parameters of interest. This requires human expertise, but is strictly easier
than for traditional DBMS cost models. Note that the resulting function might
not be linear in the partitioning parameters. Consider the first map phase of
matrix multiplication, for which in Section 4.4 we derive map task duration as
c10 +c11(N0N1+N1N2)/n1+c12(N0N1B2+N1N2B0)/n1. All that was needed
to obtain this formula were (1) input size per task ((N0N1+N1N2)/n1) and (2)
output size and computation complexity per task ((N0N1B2 +N1N2B0)/n1).
We believe that this represents a relatively small burden, because the program
designer has to understand the algorithmic impact of partitioning choices any-
way, in order to design an effective distributed program.

This relatively small additional effort for the programmer to reveal high-
level algorithm properties to the optimizer pays big dividends in optimization
time, compared to simply providing the operator as a blackbox. For example,
matrix multiplication has 10 partitioning parameters (Section 4.4), requiring
exploration of a 10-dimensional space of combinations. Our approach reduces
complexity to three dimensions, because for the other seven our model can
derive optimal settings analytically. Assuming 10 values explored in each of
those 7 dimensions, this reduces optimization cost by a factor of 107!

But can an abstract makespan model capture the complexities of a dis-
tributed system, in particular task interactions and resource bottlenecks?
Fortunately, any function can be approximated with multiple linear pieces.
Our experiments show that for a piecewise linear model (Fig. 1), it only takes
a small number of pieces to be sufficiently accurate. The reason for this lies in
the way resources are consumed. Consider a network link that can transmit
data at a certain rate. Ideally, transmitting twice the amount of data should
take twice as long. However, in practice greater competition for resources typ-

4 Rundong Li et al.

parallelism
degree (18,36](0,18]

(0, 5M] (5M,10M]

task input

Round 2

(0, 36]

Round 1

(0, 1M] (1M, 8M] (8M, 12M]

task output

T T T

T T T
I,O,C I,O,C I,O,C

I,O,C I,O,C I,O,C

Fig. 1: Schematic illustration of piece-
wise linear models for a 2-round com-
putation with homogeneous tasks. The
model for round 1 is partitioned on
task input size only. The model for
round 2 is partitioned on both paral-
lelism degree and task output size.

0 200 400 600 800 1000
shuffled data size per reduce task

0

50

100

150

200

250

a
v
e
ra

g
e
 s

h
u
ff

le
 t

im
e
 (

se
co

n
d
s)

Fig. 2: Shuffle time vs. data size (MB)
for round 2 of the matrix product al-
gorithm

ically increases overhead cost and hence the effective transmission rate may
drop. Figure 2 shows a typical observation for a MapReduce program, where
the time for shuffling data across the network increases more rapidly after
about 600MB. The model can capture this behavior by using a different slope
for larger data.

Piecewise linear models also offer two additional benefits. First, the pro-
gram designer does not need to specify the dependency of I, O, and C on
the partitioning parameters overly accurately, as long as the formula captures
the dominating terms. For instance, for a program whose computation cost
is C = n log n + n +

√
n, it suffices to specify C = n log n—something the

programmer is familiar with from traditional O-notation complexity analy-
sis. The only downside is that the model may potentially need more linear
pieces to be sufficiently accurate. As a second benefit, the model pieces pro-
vide insights about bottlenecks. For example, for the reduce phase of sorting
(Section 4.3), model training for a cluster of quad-core machines determined
that three pieces were needed when all four cores were used. Input coefficient
c1 had value 5.5, 9.9, and 12 for “small”, “medium”, and “large” input size,
respectively. For executions using only two cores per machine, the model cre-
ated only two such pieces with c1 equal to 4.4 for “small”, and 4.9 for “large”
inputs. Hence it automatically captured the I/O-dominated nature of sorting.
With four cores competing for data access, larger input size stresses I/O and
memory bus more than when only two cores are used.

This work makes the following main contributions:

1. We propose a linear makespan model for the rounds of a data-intensive
computation (Section 2) and show how it can account for bottlenecks
through domain partitioning into a piecewise linear model. For makespan
optimization, we show how model structure can be exploited to prune the
optimization-parameter search space (Section 3).

Abstract Cost Models for Distributed Data-Intensive Computations 5

DFS DFS

Round 1 Round 2 Round 3

shuffle shuffle
Local computation

Fig. 3: Distributed data-intensive computation as sequence of rounds, consist-
ing of shuffle followed by local computation. Each box in a column symbolizes
a worker.

2. In Section 4, we introduce an instantiation of the general model for prob-
lems with homogeneous tasks. It enables us to prove even stronger results,
significantly reducing the dimensionality of the optimization-parameter
search space and thus decreasing optimization cost by orders of magni-
tude.

3. We present a framework for model training in Section 5.
4. We show through extensive experiments (Section 6) that the proposed mod-

els are sufficiently accurate, i.e., capture the relative makespan behavior
for different optimization-parameter settings. This is explored for essential
data analytics operators (join, sort, matrix product).

Related work is discussed in Section 7, and we conclude in Section 8.

2 General Model

Despite the diversity of analytics operators, at the system level every dis-
tributed data-intensive computation relies on the same basic building block:
local data processing on multiple worker machines in parallel, preceded by
global data exchange to get the appropriate input to each worker. In line with
nomenclature of modern big-data processing platforms Hadoop MapReduce
and Spark, we will refer to the latter as shuffle phase; and we will use the
term round (of computation) for the building block (see Figure 3). We are
interested in the simplest possible, but “sufficiently accurate” cost model for
the running time of a round, which we refer to as makespan model.

Our proposed function for modeling running time T of a round is defined
as

T = β0 + β1I + β2Im + β3Om + β4Cm + β5τm. (1)

β0 accounts for the fixcosts of starting up the round, which can be significant
in a distributed setting. Term β1I captures the impact of the total amount

6 Rundong Li et al.

Variable Meaning
w number of worker nodes in the cluster
p degree of parallelism during distributed execution
n number of tasks
Z set of operator-specific parameters, controlling its partitioning
I, O, C total input size, output size, and computation cost of a round of

computation
Im, Om, Cm, τm input size, output size, computation cost, and number of tasks

assigned to the most loaded worker
R, S join input relations
A join attribute and set of its possible values
Ra, Sa Ra = {r ∈ R : r.A = a}, Sa = {s ∈ S : s.A = a}
ra, sa number of partitions for input Ra and Sa, respectively; a ∈ A

Table 1: Important notation

of input I to be shuffled and transferred to the workers. For the remaining
four terms, notice that computation on the different workers happens in par-
allel. Hence makespan, in contrast to traditional DBMS cost optimization, is
determined by the most loaded worker, a.k.a. “straggler”. Consequently, the
model does not depend on the total input, output, and computation on all
workers, but only on the input (Im), output (Om), and computation (Cm)
on that one straggler. Term β5τm accounts for the fixcost for starting up and
shutting down the τm tasks assigned to this worker. This and other important
notation is shown in Table 1.

2.1 General Practical Aspects

Model training happens offline, i.e., before the model can be used for opti-
mization of a given job. It follows the standard approach of supervised learning
in general, and linear regression in particular. First, a suite of benchmark jobs
is executed, covering a variety of values for model variables I, Im, Om, Cm,
and τm. For each job, round execution time T is recorded, resulting in a 6-
tuple (I, Im, Om, Cm, τm, T). Given a set of such tuples, standard least-squares
estimation produces the best-fit values of the β-coefficients. Due to the small
number of variables, overfitting is not a concern and hence we do not apply
regularization. (Our experiments confirm similar prediction accuracy on both
training and withheld test data.)

For more details about the model training process, refer to Section 5. Train-
ing of piecewise linear models is analogous, with the additional step of data-
driven determination of a domain partitioning when needed (see Section 2.2).

Model use. In order to use the proposed model, the programmer has
to express variables I, Im, Om, Cm, and τm as functions of the partitioning
parameters she would like to tune. We demonstrate this for three diverse op-
erations below, showing that often the model can also be simplified. It will
become clear that our abstract model is much easier to determine than a
corresponding DBMS-style cost model based on low-level operations.

Abstract Cost Models for Distributed Data-Intensive Computations 7

In addition to the automatically learned β-coefficients and the user-
provided functions for variables I, Im, Om, Cm, and τm, the optimizer only
needs traditional selectivity estimation, identical to the same functionality in
a DBMS, in order to estimate intermediate result size for data processing
pipelines consisting of multiple rounds. Then it can estimate the values of I,
Im, Om, Cm, and τm for each round, and simply plug them into Eq. 1 to
estimate round time.

Model realism. Will this abstract model be sufficiently accurate to be
useful? Indeed, it is more powerful than it may at first seem. To see this,
consider the following possible concerns.

The shuffle phase does not transfer all data in bulk before the local compu-
tation phase—both are usually interleaved. This means that after completing
a task belonging to a round, the worker might later process another task of
the same round. In that case, the worker requests input data for the new task
after the completion of the previous one. Equation 1 still applies, because,
mathematically, it simply captures the fact that total input I to a round is
essential for capturing shuffle cost, no matter the actual interleaving of data
transfer and local computation. If data transfer is spread over multiple waves
of tasks, then the model might automatically determine a lower value of β1,
i.e., lesser impact of larger total input on makespan.

When input is not evenly balanced across workers, then total input I might
not suffice to explain variations in shuffle time. In that case, term β2Im can
pick up some of the effects. An analogous argument applies to other low-level
system operations. For instance, a map task might have to spill buffer content
to disk. The corresponding reading and writing time will be accounted for by
the Im and Om terms. When larger output causes more frequent buffer spilling,
the model can capture this automatically by learning that a larger β3 value is
needed for a model piece covering larger Om values. (See discussion of piecewise
linear models below.) In general, since the β-parameters are estimated from
actual benchmark executions, they represent averages over a large number
of low-level processing steps. This agrees with recent results by Duggan et
al. [5], who showed that a single variable can account for underlying processing
complexities in their performance prediction approach.

A MapReduce combiner is treated like any other local computation func-
tionality in a round. It affects the user-specified functions for Om and Cm, as
well as the value of I for the following reduce phase.

We next discuss the two major challenges in making the linear model prac-
tically applicable: accounting for interaction effects and determining Im, Om,
Cm, and τm.

2.2 Accounting for Task Interactions and Bottlenecks

Interaction effects occur when tasks executed in parallel on a multicore pro-
cessor compete for resources, e.g., memory bus and local disk(s). They also
occur when multiple machines compete for access to shared network links

8 Rundong Li et al.

or switches, slowing down data transfer and local computation. This can be
captured by partitioning our model into k ≥ 1 ranges (p0, p1], (p1, p2],. . . ,
(pk−1, pk] of degrees of parallelism. Bottlenecks appear not only when multi-
ple tasks compete for resources. The local computation of a task might also get
delayed by I/O wait time caused by its own I/O operations, requiring different
model coefficient values for different ranges of input and output size.

The result of partitioning the design space is a family of piecewise linear
models, each with its own combination of values for (β0, β1, β2, β3, β4, β5). We
say that a model covers the corresponding partition defined by a range of
parallelism degrees (p), total input size (I), and input size (Im) and output
size (Om) on the most loaded worker. The partitioning can be determined in
a fully data-driven manner from the training data, e.g., by minimizing the
residual sum of squares [30] or by using a model tree [24]. For parallelism
degree, we ensure that the number of cores per CPU is considered as follows:
For a cluster consisting of w/c c-core machines, all interval endpoints that are
multiples of the number of workers, i.e., all values in {i ·w/c : i = 1, 2, . . . , c},
are explicitly considered as possible split points for a parallelism-degree range.
Intuitively, these values correspond to a degree of parallelism of 1 to c per
physical machine. Figure 1 illustrates the overall structure of the proposed
models. It shows a stylized example for the homogeneous task case, discussed
in Section 4. For each round of the computation, there is a separate piecewise
linear model.

2.3 Estimating Max Load

Estimating Im, Om, Cm, and τm, i.e., the input size, output size, computation,
and number of tasks on the most loaded worker can be challenging. If the
number of tasks in a round is less than or equal to the number of workers, w,
then τm = 1 and it suffices to identify the “heaviest” individual task. When
the number of tasks exceeds w, then some workers will receive multiple tasks
and Im, Om, Cm, and τm will depend on the actual scheduling policy used for
assigning tasks to workers.

Notice that schedulers in distributed data-processing systems like MapRe-
duce and Spark actively attempt to balance load at runtime by assigning tasks
incrementally. In particular, initially just w tasks will be scheduled—one task
per worker. Only after a worker reports completion of a task, will it receive
the next. Hence when the number of tasks is “sufficiently” large and load be-
tween tasks does not vary “too much”, then each worker will receive a similar
share of the total load. This implies that one could estimate Im as total input
divided by w, Om as total output divided by w, and Cm as total computation
time divided by w.

Unfortunately, when task load is highly skewed, e.g., one of the tasks ac-
counts for half of the total load, then those averages would result in significant
under-estimation. We propose the following general technique for addressing
this problem through lightweight simulation. Given a set of tasks, one can sim-

Abstract Cost Models for Distributed Data-Intensive Computations 9

Problem Partitions with Z
1 2

3 4

5 6

1 23 45 6

1 3
task 1

5 6
task 2

2 4
task 3

n=3

Execution: p=2

time

task 1

task 2

task 3
2 waves:

Fig. 4: Relationship between Partitioning Parameters

ply execute the task assignment algorithm used by the scheduler. Task running
time is estimated using the model parameters, i.e., for task i with input Ii, out-
put Oi, and computation complexity Ci, the estimate is β2Ii+β3Oi+β4Ci+β5.

3 Makespan Optimization Using the General Model

The structure of a linear model provides valuable insights about the impor-
tance of the different terms. In particular, the larger the value of a coefficient,
the greater the term’s impact on makespan. In addition to insights, simple
model structure can be exploited to reduce optimization cost. We show this
for the general model in this section, then discuss even stronger results in
Section 4.2 for operators with homogeneous tasks.

3.1 Search Space Exploration

The optimization-parameter search space consists of all combinations of pos-
sible values for the tuning parameters of interest. We focus on parameters
controlling problem partitioning into tasks, and their parallel execution:
– number of tasks: n,
– degree of parallelism during execution: p (p ≤ w),
– a set Z of operator-specific parameters controlling problem partitioning.

Figure 4 illustrates the relationship between the parameters. Notice that
changing the value of a parameter z ∈ Z may affect total input, output, and
computation cost of the round. For example, a more fine-grained partitioning
may require additional input duplicates. On the other hand, different values
for n or p do not affect total input size (I), total output size (O), or total
computational complexity (C)—they only control how the different partitions
are “packaged” into tasks and how many tasks are executed concurrently,
respectively. We will explain this in more detail for an example in Section 3.3.

3.2 Search Space Pruning

The following lemma will enable us to limit the search space of operator-
specific parameters controlling problem partitioning, by establishing a lower
bound for makespan of a round. Intuitively, this lower bound corresponds
to the (possibly unattainable) ideally balanced load assignment where each

10 Rundong Li et al.

worker receives the same number of tasks and the same share of total input,
output, and computation. The min{p, n} term accounts for scenarios when the
number of tasks (n) is smaller than the degree of parallelism (p): then at most
n of the p workers can receive a task.

Lemma 1 No matter how n tasks of a round with total input I, total output
O, and total computation C are assigned to p concurrent workers, round time
T is lower-bounded by T̄ = β0 + β1I + β2

I
min{p,n} + β3

O
min{p,n} + β4

C
min{p,n} +

β5
n

min{p,n} .

Proof Let Ii, Oi, and Ci denote input, output, and computation for task i,
1 ≤ i ≤ n. Then I =

∑n
i=1 Ii, O =

∑n
i=1Oi, and C =

∑n
i=1 Ci. This implies

for the total load induced by all tasks:

n∑
i=1

(β2Ii + β3Oi + β4Ci + β5) = β2I + β3O + β4C + β5n.

The load on the most loaded worker must be greater than or equal to the
average load per worker, i.e., (β2I + β3O + β4C + β5n)/p. Also notice that
the “heaviest” task even by itself will induce a load at least as high as the
average over all tasks, i.e., (β2I+β3O+β4C+β5n)/n. The load of the worker
receiving that task will therefore be lower-bounded by the per-task average
as well. This immediately implies the same lower bound for the most loaded
worker in the system (whose total assigned load is at least as high as that of
the worker receiving the heaviest task). Putting these lower bounds together,
we obtain

β2Im + β3Om + β4Cm + β5τm ≥

max

{
β2I + β3O + β4C + β5n

p
;
β2I + β3O + β4C + β5n

n

}
,

and hence T ≥ β2I+β3O+β4C+β5n
min{p,n} , completing the proof of the lemma. ut

Lemma 1 can be exploited for search space pruning as follows. For given
task number n and degree of parallelism p, we immediately obtain a lower
bound T̄ based on total inherent input size, inherent output size, and inher-
ent computation of a round. The inherent values are those for the unparti-
tioned execution of the operator. Partitioning can never decrease them, but
will typically increase them, e.g., require additional input copies or additional
computation steps for post-processing.

Whenever more fine-grained partitioning increases I, O, or C, the corre-
sponding value of lower bound T̄ will increase accordingly. Hence exploration
of even more fine-grained partitioning can be terminated as soon as the lower
bound exceeds the best makespan found so far. We illustrate this for joins
in Section 3.3. Even when more fine-grained partitioning does not increase
the lower bound, it still provides valuable information. Knowing that the best

Abstract Cost Models for Distributed Data-Intensive Computations 11

Algorithm 1 : GreedyJoinPartition

Input: count statistics [|Ra|]a∈A, [|Sa|]a∈A

Input: starting partitioning [(ra = 1, sa = 1)]a∈A

Input: weight function weight

1: while termination condition not met do
2: Increment the ra or sa that maximizes the ratio of benefit and cost
3: // Benefit = load variance reduction when incrementing the corresponding ra or sa
4: // Cost = weight assigned by weight to the corresponding ra or sa
5: Determine I, Im, and Om for the new partitioning
6: Evaluate makespan model T = β0 + β1I + β2Im + β3Om for the new I, Im, Om

7: return partitioning [(ra, sa)]a∈A with lowest predicted makespan

makespan found so far is within a small factor of the lower bound, the user
may decide to stop exploration early.

Note that when applying Lemma 1 to piecewise linear models, each piece
could return a different lower bound. The entire model’s lower bound is the
minimum of the per-piece lower bounds, over all pieces that could still be
reached during the optimization-parameter space exploration. (For instance, if
application parameter settings are explored in increasing order of total input
size I, then model pieces for smaller input size ranges do not need to be
considered for the lower bound.)

3.3 Example: Equi-Join

Consider equi-join R ./ S = {(r, s) ∈ R × S : r.A = s.A} and let Ra = {r ∈
R : r.A = a} and Sa = {s ∈ S : s.A = a} be the subsets of tuples from R
and S, respectively, with join attribute value a. We will refer to Ra ∪ Sa as
the group for join attribute value a. Then the equi-join can be expressed as
R ./ S =

⋃
a∈ARa × Sa, i.e., the union of Cartesian products for each group.

For skewed input, some groups are significantly larger than others, causing
load imbalance and hence a delay in job completion. Skew can be addressed
by splitting large groups into smaller sub-groups, e.g., using rectangular parti-
tioning. More formally, the set Z of operator-specific partitioning parameters
is defined as the set of integer pairs {(ra, sa) : ra ≥ 1, sa ≥ 1, a ∈ A}, or
[(ra, sa)]a∈A for short. The best partitioning algorithm to date by Li et al. [20]
explores Z by greedily incrementing the ra or sa that maximizes a benefit-cost
ratio based on load variance reduction versus additional input duplication due
to subgroup partitioning (Alg. 1). Note that the algorithm relies on a simpli-
fied version of Eq. 1: There the term for Cm is omitted, because computation
cost is linear in input and output; and the β5τm term collapses into β0, because
the number of tasks is set equal to the degree of parallelism and hence τm = 1.

[20] determines the values for I, Im, and Om in line 5 by executing a load
assignment strategy such as random or LLD when packing the (sub) groups
into tasks. Since the makespan model in Alg. 1 is a special case of our general
model (Eq. 1), we can leverage Lemma 1 to terminate the loop in a princi-
pled way. More precisely, it is easy to see that with increasing ra and sa, the

12 Rundong Li et al.

lower bound T̄ will increase because I keeps increasing due to the additional
input duplicates. Hence the while-loop can be terminated safely (i.e., with the
guarantee that no better makespan can be found for more fine-grained parti-
tioning) as soon as the lower bound exceeds the predicted makespan for the
best partitioning found so far.

4 Homogeneous Tasks

This section presents analytical results that enable a significantly greater re-
duction in optimization cost for a class of problems where all tasks have “sim-
ilar” load. We refer to these as homogeneous tasks. Task homogeneity occurs
frequently in practice, typically by design, because the programmer attempts
to distribute load evenly over the workers. For example, for distributed sorting,
input is range-partitioned based on (approximate) quantiles, so that each par-
tition receives about the same amount of data. Even for equi-joins, hash par-
titioning often distributes load fairly evenly as long as groups are not “overly
skewed.”

4.1 Makespan Model for Homogeneous Tasks

In the homogeneous model, each of the n tasks handles approximately 1/n
of the total input, output, and computation. Schedulers also can easily bal-
ance load across workers, assigning about n/p tasks to each of the p work-
ers. When n is not divisible by p, the most loaded worker will receive
dn/pe of the tasks. Together with Eq. 1, we obtain makespan β0 + β1I +
dnp e

(
β2
I
n + β3

O
n + β4

C
n + β5

)
.

We propose to further simplify this formula by dropping the first two terms,
resulting in the following makespan model H for homogeneous tasks:

H =

⌈
n

p

⌉(
β2
I
n

+ β3
O
n

+ β4
C
n

+ β5

)
(2)

Notice that dropping terms does not make the model “less correct,” but simply
reduces its flexibility in capturing real-world behavior. For instance, β0 is a
per-job fixcost, while β5 represents per-task fixcost. Without β0 in the formula,
the model can implicitly account for the effect of β0 by increasing β5. The same
applies to β1I and β2I/n, which both model a dependency of makespan on
input I. Our experiments will show that the resulting models are sufficiently
accurate for makespan optimization.

Analogously to the discussion in Section 2.2, we propose a piecewise linear
model to account for task interactions and bottlenecks. For Eq. 2, partitioning
is considered for parallelism degree (exactly as for the general model), per-task
input size, and per-task output size. Figure 1 shows a stylized example, with
1-dimensional lines as stand-in for a plane in 3-dimensional space.

Abstract Cost Models for Distributed Data-Intensive Computations 13

4.2 Makespan Optimization for Homogeneous Tasks

The following powerful lemma enables us to derive the optimal task number
and parallelism degree for all applications with homogeneous tasks. Recall that
in a piecewise linear model, each piece covers some range (pl, ph] for parallelism
degree, range (il, ih] for input, and range (ol, oh] for output. Intuitively, the
lemma states that parallelism degree should be set to the largest value possible
for the linear piece, i.e., ph. And the number of tasks, n, should be set to the
smallest possible multiple of ph that is allowed based on the input and output
range constraint for the linear piece. Note that changing the number of tasks
affects the input and output per task, i.e., for some values of n, I/n or O/n
might not be inside range (il, ih] and (ol, oh], respectively. If n cannot be set to
a multiple of ph, then it should be set to the largest possible value allowed for
this linear piece. In the special case of the model being a single linear piece, the
lemma implies that both parallelism degree p and number of tasks n should
be set to w. This makes perfect sense, because in the absence of non-linear
behavior, it is best to use all machines and to achieve this with the smallest
number of tasks possible (i.e., one task per worker).

Lemma 2 Let H = dnp e
(
β2
I
n + β3

O
n + β4

C
n + β5

)
be a makespan model cov-

ering range (pl, ph] for parallelism degree, range (il, ih] for input, and range
(ol, oh] for output. Then H is minimized by setting p = ph and n =
min{dnl/pheph;nh}, where nl = max{dI/ihe; dO/ohe} and nh = min{bI/(il+
1)c; bO/(ol + 1)c}.

Proof First consider the constraints on the number of tasks, n, imposed by
the range for input and output size. For input, per-task input I/n has to fall
into range (il, ih], which implies I/ih ≤ n < I/il; and analogously O/oh ≤
n < O/ol. Together, and taking into account that n has to be integer, this
yields n ∈ [nl, nh], where nl = max{dI/ihe; dO/ohe}, and nh = min{bI/(il +
1)c; bO/(ol + 1)c}.

To find the value of p that minimizes H = dn/pe(β2I/n+β3O/n+β4C/n+
β5), notice that none of the terms other than n/p is affected by the choice of p,
and that dn/pe in monotonically non-decreasing in p. Hence the optimal choice
for p is the largest value possible, i.e., p = ph. This implies that we are left to
determine the value of n that minimizes H(p = ph) = dn/phe(β2I/n+β3O/n+
β4C/n + β5). To deal with the ceiling function, we separate the problem into
two cases.

Case 1: the range of possible values for n contains a multiple of ph. We
show that the smallest such multiple minimizes H. Formally, the case condition
states that there exists an integer k ≥ 1 such that nl ≤ kph ≤ nh. For any such
k, consider all n ∈ [nl, nh] with dn/phe = k, i.e., all n that satisfy (k− 1)ph <
n ≤ kph. For these values of n, let Hk = k(β2I/n+β3O/n+β4C/n+β5). Note
that I, O, and C are not affected by the choice of n. The problem partitioning
is controlled by the operator-specific partitioning parameters in set Z; the
choice of n only determines how these partitions are grouped into tasks. As a

14 Rundong Li et al.

consequence, Hk is minimized by choosing the largest n in (k−1)ph < n ≤ kph,
i.e., n = kph.

We now determine the optimal choice for k. For n = kph, H =
dkph/phe(β2I/(kph) + β3O/(kph) + β4C/(kph) + β5), which simplifies to H =
(β2I + β3O + β4C)/ph + kβ5. Since (β2I + β3O + β4C) is not affected by the
choice of n, this function is minimized for the smallest possible k, i.e., for
k = dnl/phe and hence n = dnl/pheph.

Case 2: the range of possible values for n does not contain a multiple of
ph. Then there exists an integer k′ ≥ 1 such that (k′− 1)ph < nl ≤ nh < k′ph.
This implies dn/phe = k′ for all values of n in (nl, nh]. Like for case 1, this
function is minimized for the largest possible choice of n, i.e., nh.

To combine the solutions derived for both cases, note that in case 1,
dnl/pheph ≤ nh. For case 2, the case condition implies dnl/phe = dnh/phe.
Together with dnh/phe ≥ nh/ph (by definition of the ceiling function),
this implies dnl/phe ≥ nh/ph and hence dnl/pheph ≥ nh. Hence setting
n = min{dnl/pheph;nh} will minimize H, no matter which of the two cases
applies. ut

4.3 Example: Sorting

Sorting plays a central role in data analysis, therefore we first demonstrate
how to apply abstract piecewise linear makespan models to the classic sort
algorithm in Hadoop MapReduce. Consider a user who is satisfied with the
Hadoop defaults for the map phase (one map task per file chunk, assign tasks
to all workers), but would like to optimize the reduce phase. She performs the
following analysis to leverage our approach.

Let N denote the size of the input data. The map phase only shuffles the
input, hence reduce phase input size is I = N . Its output is the sorted data set,
resulting in O = N . Reduce tasks simply merge pre-sorted runs they receive
from the mappers, therefore C = N as well. Note that each reduce task is
responsible for a range of keys. A good implementation creates q ranges based
on (approximate) q-quantiles, therefore Z = {q} is the set of operator-specific
parameters. Note that in order to generate nr reduce tasks, one simply sets
q = nr. With pr denoting parallelism degree in the reduce phase, this analysis
implies for Eq. 2:

Hr =

⌈
nr
pr

⌉(
β2
N

nr
+ β3

N

nr
+ β4

N

nr
+ β5

)
=

⌈
nr
pr

⌉(
cr0 + cr1

N

nr

)
,

where cr0 = β5 and cr1 = β2 + β3 + β4. Note how terms for variables with the
same function collapse in the linear model.

Overall, the user only had to select the homogeneous-task case and specify
I = O = C = N . Then our approach automatically solves argminnr,pr Hr.
Using Lemma 2, the optimizer immediately derives the optimal settings of pr
and nr for each piece of the piecewise linear model, selecting the pair with the
lowest predicted makespan as the global winner. Details are shown in Alg. 2.

Abstract Cost Models for Distributed Data-Intensive Computations 15

Algorithm 2 : Find pr and nr that minimize Hr of sorting

Input: N ; M = set of models Hr, each covering some range (pl, ph] of parallelism degrees,
range (il, ih] of reduce-task input sizes, and range (ol, oh] of reduce-task output sizes

1: for all m ∈M do // Model piece m covers (pl, ph], (il, ih], (ol, oh]
2: t← time returned by model m when setting pr and nr according to Lemma 2
3: Keep track of smallest t
4: Return minimal time t and its (pr, nr) combination

Instead of exhaustively exploring many (nr, pr) combinations, optimization
cost is linear in the number of model pieces. Using a larger number of linear
pieces improves model accuracy, but increases optimization cost—a directly
tunable tradeoff.

To appreciate how the optimization process takes task interactions and
bottlenecks into account, consider first the special case where the model con-
sists of a single linear piece covering parallelism degrees (0, w], input size (0, x],
and output size (0, x], for some sufficiently large x > N . The for-loop in Alg. 2
would be executed once, returning pr = w and nr = min{w;N} = w. (Note
that N/x < 1 and we assume N ≥ w, i.e., the number of workers does not ex-
ceed the number of input records.) Stated differently, the algorithm determines
that the problem should be partitioned into w tasks—one per worker—and all
tasks should be executed in a single wave in parallel.

Now consider a cluster of w/2 dual-core machines and assume that when
using both cores on a worker, the memory bus on the worker slows down data
transfer rate from memory to core, causing the cores to wait for data. During
model training, our approach would automatically determine from the training
data that two different linear models are needed: one covering parallelism
degree pr ∈ (0, w/2], and the other pr ∈ (w/2, w]. The for-loop in Alg. 2 now
compares predicted makespan for two configurations of (pr, nr): (w/2, w/2)
for the model covering pr ∈ (0, w/2] and (w,w) for the model covering pr ∈
(w/2, w]. Stated differently, if the memory-bus bottleneck leads to a severe
slowdown, the optimal solution may be to use only half of the cores—one per
machine—and execute the reduce phase in a single wave of w/2 concurrently
executed tasks. This perfectly captures the intuition that if the memory bus
is the bottleneck (and not the CPU), then it may be better to only use one of
the two cores per machine.

4.4 Example: Dense Matrix Product

Dense matrix multiplication represents a more challenging workload with high
data transfer costs, but also significant CPU load in some rounds due to the
large number of multiplications and additions. Furthermore, matrix partition-
ing increases total cost due to data replication. Dense matrix multiplication
was identified as an important computation problem in a recent UC Berkeley
survey on the parallel computing landscape [3].

16 Rundong Li et al.

Map

U11 U12

U21 U22

V11

V21

Map

Map

U11

U12

U21

U22

V11

V21

V11

V21

Map

Map

Map

C11(2)

C11(1)

C21(1)

C21(2)

C11

C21

Multiplication Job Aggregation Job

C11(1)

C11(2)

C21(1)

C21(2)

N1 / B1

N0 / B0

N1 / B1

N2 / B2

Reduce

Reduce

Reduce

Reduce
Reduce

Reduce

Fig. 5: Block-wise parallel matrix multiplication in 4 rounds. U is partitioned
into 2× 2 blocks, V into upper and lower half, i.e., (B0, B1, B2) = (2, 2, 1).

Consider a programmer who implemented the classic block-partitioning
algorithm for dense matrix-matrix multiplication in MapReduce. As illustrated
in Figure 5, input matrix U with dimensions N0 × N1 is partitioned into
B0 · B1 blocks, each of size N0/B0 by N1/B1; V (with dimensions N1 × N2)
is partitioned into B1 · B2 blocks, each of size N1/B1 by N2/B2. Each block
from U will be multiplied with the B2 corresponding blocks from V , for a
total of B0 · B1 · B2 block-pair multiplication tasks. Note that each U block
is duplicated B2 times, each V block B0 times. The data duplication (map:
round 1) and local multiplication (reduce: round 2) form the multiplication
job (m-job). If B1 > 1, then each block-pair product represents only a partial
result. In that case an aggregation job (a-job) needs to read and re-shuffle
these partial results (map: round 3) and sum them up (reduce: round 4).

Based on this understanding of the computation, the programmer now
proceeds as discussed for the sort program, expressing input, output, and
computation in terms of the partitioning parameters. In addition to pi and
ni, i ∈ {1, 2, 3, 4}—the parallelism degree and number of tasks in each of
the four rounds—this includes the operator-specific partitioning parameter set
Z = {B0, B1, B2}. Note that n2 = B0B1B2 according to the above analysis.

The resulting per-round makespan models are as shown below. For read-
ability, we present the version with collapsed terms for variables with identical
functions. (Note that rounds 3 and 4 are executed if and only if B1 > 1.)

H1 = (c10 + c11(N0N1 +N1N2)/n1 + c12(N0N1B2 +N1N2B0)/n1) · dn1/p1e,

H2 = (c20 + c21(
N0N1

B0B1
+
N1N2

B1B2
) + c22

N0N2

B0B2
+ c23

N0N1N2

B0B1B2
) · dB0B1B2/p2e,

H3 = (c30 + c31N0N2B1/n3) · dn3/p3e,
H4 = (c40 + c41N0N2B1/n4 + c42N0N2/n4) · dn4/p4e.

The problem partitioning that minimizes estimated makespan is defined as
argminB0,B1,B2,p1,p2,p3,p4,n1,n3,n4

H1+H2+H3+H4. With traditional cost mod-
els, this would require trial-and-error exploration of a 10-dimensional search
space. Using our approach, we can again leverage Lemma 2 to derive optimal
settings for all parallelism degrees and task numbers. Hence the optimization

Abstract Cost Models for Distributed Data-Intensive Computations 17

problem simplifies to

argmin
B0,B1,B2

H1 +H2 +H3 +H4. (3)

This reduces optimization cost by orders of magnitude, from search in 10
dimensions to 3 dimensions. (Note that optimization cost is linear in the total
number of linear pieces, across all rounds.)

5 Model Training

Recall the basic approach to model training as introduced in Section 2.1: A
suite of profiling benchmarks is executed on the cluster, producing a labeled
set of training records. Each record is a tuple of values for the model variables
(input, output, computation, number of tasks), and its label is the correspond-
ing observed makespan. The values of the β-parameters are determined from
the labeled data using the standard least squares approach. While this follows
standard machine learning practice, there are a few subtleties in the specific
context of our problem.

Representative training data. Mainstream supervised learning meth-
ods, including linear regression, assume that training data is drawn from the
same distribution as the “unseen” data, i.e., inputs for which the model will
be used to predict the label. For our makespan model, this means not only
should the profiling benchmarks include a variety of input sizes, output sizes,
and computation costs, but they also need to be executed for a variety of
parallelism degrees. Furthermore, we propose on-the-fly model fitting based
on the following two observations: First, due to the small number of variables
and the simple model structure, it does not take more than a few dozen train-
ing records to estimate the model coefficients. Second, we are dealing with
a relatively simple function surface. Makespan is (approximately) monotoni-
cally increasing in input size, output size, and computation cost. Hence the
best training records for predicting the makespan of an unseen data point are
those “closest” to it. When predicting makespan for a given configuration at
runtime, we therefore select the 30 most similar training records and determine
the β-coefficients on-the-fly from these 30 training records. On-the-fly model
fitting takes only milliseconds.

A surrogate measure for makespan. In a distributed execution, de-
termining start and end time of a round requires careful measurement and
solid understanding of system-internals. (Notice that this is a challenge for
the system admin, not for users and application developers!) On the other
hand, it is fairly straightforward to measure running times of individual tasks.
We therefore are interested in exploring if our makespan models are still us-
able if actual makespan measurements in the training data are replaced by a
surrogate measure based on individual task running times. In particular, for
the homogeneous-task case we propose as a surrogate measure the product of
number of task waves dn/pe and average task running time. Our experiments
in Section 6.2 show, that it indeed works very well.

18 Rundong Li et al.

Table 2: Cluster Specifications

Name #Machines
#Cores per

Machine
#Workers

Memory per
Machine

Software

9h36 10 4 36 8 GB Hadoop 1.2
2h24 3 12 (virtual) 24 47 GB Hadoop 2.4
20h160 21 8 160 64 GB Hadoop 2.4
7h14 8 2 14 8 GB Hadoop 1.2
EmrX X + 1 1 (virtual) X 3.75 GB Hadoop 2
6s12 7 2 12 8 GB Spark 1.6.1
Emr12s 7 2 (virtual) 12 7.5 GB Spark 1.6.1

Determining the value of Cm. Values for input size I of a round, as well
as total input size Im, output size Om, and number of tasks τm on the most
loaded worker are easy to observe during benchmark execution. For compu-
tation cost Cm, we have to apply the user-provided function to the observed
variables the function depends on. Consider an operator where a partition’s
computation complexity is n log n for input of size n. If the most loaded worker
received two partitions whose input sizes are n1 and n2, respectively, then we
record Cm = n1 log n1 + n2 log n2.

Simpler model for collapsed terms. Recall from the analysis of sorting
and matrix product, how model terms collapse when variables are expressed by
the same function. To exploit this, one can fit a model in the low-dimensional
space. This enables use of smaller training sets.

6 Experiments

We implemented all algorithms in Hadoop MapReduce or Spark, and con-
ducted experiments on eleven different systems with diverse properties. They
include in-house clusters (9h36,2h24,6s12,7h14), a research cluster (20h160)
provided by CloudLab [32] and EMR clusters with various sizes (EmrX, where

X = 10, 20, 30, 40, 50, and Emr12s) on Amazon Web Services. For details see
Table 2.

For simplicity, in most experiments on Hadoop, the number of map tasks
is left at the default value, i.e., total map input size divided by Hadoop Dis-
tributed File System (HDFS) block size. Only for small data sets whose size is
smaller than the product of desired parallelism degree and HDFS block size,
we set the number of map tasks equal to the desired parallelism degree.

The design of the profiling benchmark for model-parameter fitting is an
open challenge. For applications where the same queries are periodically re-
executed, e.g., social network analysis as the network evolves, it would be
beneficial to execute a specialized benchmark containing only those queries,
and covering a narrow range of input and output sizes based on current and
near-future graph properties. On the other hand, for an infrequently used
custom operator, it might not be feasible to include it in the benchmark at
all. Optimal profiling-benchmark design is beyond the scope of this paper. For
proof-of-concept of our approach, we need to show that for some “reasonable”

Abstract Cost Models for Distributed Data-Intensive Computations 19

benchmark, the resulting model is effective for makespan optimization. Note
also that the system can collect free training data each time an operator is
executed during data analysis. Since join, sorting, and matrix product are
common operators, it is reasonable to assume that dozens of training records
for them exist. In the experiments, we then fit the collapsed models (e.g., Hr =
dnr/pre(cr0 +cr1N/nr) for reduce phase of sorting as discussed in Section 4.3)
to the training records from the same operator. To avoid overly optimistic
results, we ensure that there are no more than about 100 training records
and they cover a wide variety of values for model variables. Furthermore, only
simple synthetic data is used for profiling. This way predictions made for other
synthetic data distributions and for real data are a true test how well the model
extrapolates to distributions it has never seen before.

6.1 General Model

We first study the general model (Eq. 2), applied to join and sorting.
Queries. JOIN computes the full equi-join on the join key, emitting all result
tuples. JOIN-AGG computes an equi-join whose results are aggregated on-the-
fly as they are generated. (We compute the sum over a non-join attribute.)
Only a single output tuple is emitted for each join group. Sorting sorts a set
of integers in increasing order.
Data. For joins, we use both synthetic and real data sets. Zipf-n-z denotes
a pair of synthetic data sets with Zipf-distributed join attribute, with skew
parameter z. If the two inputs have different z, we include both, e.g., Zipf-
5m-[1,0] indicates that one data set has z = 1, the other z = 0. For real-world
data sets, skew often falls between 0.25 and 1.0, where z = 0 results in uniform
distribution. cloud-5m denotes a pair of real data sets containing 5 million
tuples randomly sampled from a set of cloud reports [13]. They are joined
on latitude, which was quantized into 10 equi-width bins to model a climate-
zone based correlation analysis. ebird-all is another real data set containing
1.89 million bird sightings, each with 1657 attributes describing properties of
observation event, climate, landscape, etc [23]. ebird-basic is the same set,
but with only the 953 most important columns. For both eBird data sets, we
compute the self-join on three Boolean attributes, capturing presence (yes or
no) of the top-3 most frequently reported bird species in North America. This
was motivated by correlation studies exploring habitat properties based on
species appearance patterns.

These data sets cover a wide range of values of I, Im and Om. Specifically,
for JOIN, we have I ∈ [106, 2 ·109], Im ∈ [105, 5 ·108] and Om ∈ [9 ·107, 2 ·109];
for JOIN-AGG, we have I ∈ [5 · 108, 2 · 1011], Im ∈ [2 · 108, 4 · 109], and Om ∈
[1010, 5 · 1011]. The profiling benchmark consists of 100 join queries (20 per
parallelism degree; covering degrees 10, 20, 30, 40, and 50), executed on simple
synthetic data, each generated as follows. First, we draw a value for I, Im,
and Om uniformly at random from the above ranges. Then we create a pair of
join inputs with the following properties: There are p different join keys such

20 Rundong Li et al.

0
1000

2000
3000

4000
5000

ground truth (seconds)

0

1000

2000

3000

4000

5000

p
re

d
ic

ti
o
n
 (

se
co

n
d
s)

y=x

(a) JOIN on 7h14

0
1000

2000
3000

ground truth (seconds)

0

1000

2000

3000

p
re

d
ic

ti
o
n
 (

se
co

n
d
s)

y=x

(b) JOIN-AGG on 7h14

0
200

400
600

800
1000

1200

ground truth (seconds)

0

200

400

600

800

1000

1200

p
re

d
ic

ti
o
n
 (

se
co

n
d
s)

y=x

(c) Sorting on Emr30

Fig. 6: General model: predicted vs. measured makespan. Both training
(red dots) and test cases (green triangles) are near the blue dotted perfect-
prediction line.

that the largest group has input and output size Im and Om, respectively. The
other p− 1 join groups are equal to each other in input and output per group,
selected so that total input and output size reach the target values. Despite
being trained on these simple data distributions, the makespan model is very
accurate for the Zipf and the real data as discussed below.

For Sorting, we create data sets consisting of 100 million to 1.2 billion
randomly generated numbers of type Long (8 bytes per record) for training
and testing on EmrX, X ∈ {10, 20, 30, 40, 50}. These data sets result in I ∈
[108, 1.2 · 109] and Im = Om ∈ [2 · 106, 1.2 · 108]. The profiling benchmark is
generated as discussed for joins by randomly drawing 50 configurations from
the ranges (10 per parallelism degree).

6.1.1 Prediction Accuracy

To test our approach, we apply it to real data and to synthetic data not used
for training. Figure 6 shows that our model can accurately predict makespan,
for both training and test data, and on both the local cluster 7h14 and in
the cloud on Emr30. Not surprisingly, the simpler sort operation is easier to
predict. Relative error tends to be around 1% and never exceeds 5%. For JOIN,
the root mean squared error (RMSE) for training and test data are 332.97 and
148.66, respectively. For JOIN-AGG, they are 157.27 and 158.67, respectively.
For Sorting, they are 15.81 and 6.57, respectively.

6.1.2 Optimizing Operator-Specific Parameters

We apply the general model to determine the optimal values of operator-
specific parameters for Join and Sorting on Amazon EMR clusters consist-
ing of virtual machines with a single core each. To isolate the effect of these
parameters, we set parallelism degree and number of tasks to the number of
partitions created based on the operator-specific parameters.

For Join, more fine-grained partitioning increases I, while it may or may
not decrease β2Im + β3Om + β4Cm. The challenge for the optimizer is to de-
termine the right tradeoff between these two factors. Figure 7a shows results

Abstract Cost Models for Distributed Data-Intensive Computations 21

0

200

400

600

800

1000

1200

5 10 15 20

M
ak

es
pa

n

Number of Partitions

(a) JOIN-AGG on Emr20

0

400

800

1200

1600

10 20 30 40 50

M
ak

es
pa

n

Number of Partitions

#recs=8.0E+8

#recs=4.0E+8

#recs=2.0E+8

(b) Sorting on Emr50

Fig. 7: Optimal Operator-Specific Partitioning.

for the Cartesian product of two data sets, each containing 660, 000 tuples
with 1000 integer attributes. Our model predicted the best makespan for 12
partitions, and Figure 7a indicates that this indeed is the winning setting.
Similarly, for Sorting, the model suggested to use 50 partitions on all 50
workers, independent of input size. Figure 7b confirms that this indeed mini-
mizes makespan.

6.1.3 Safe Pruning for Distributed Join

Figure 8 reports load and predicted makespan as Alg. 1 greedily explores join-
group partitionings. Max load first decreases due to improved load balancing
for smaller partitions, quickly approaching average load. Hence Lemma 1 is
very effective in determining a safe stopping point beyond which no better
makespan can be found. In Figure 8a, in step 11, the average load per worker
(blue dots) reaches 1.41 · 109, which is greater than the minimal max load
(red dots) found before (1.40 · 109 in step 3). Hence it is safe to terminate the
greedy algorithm in step 11. Similarly, in Figure 8b, the average load in step
51 (8.39 ·108) surpasses the minimal max load (8.38 ·108 in step 30) and hence
the greedy algorithm can safely terminate. Note that if the user is satisfied
with a partitioning within 10% of optimal, then Lemma 1 makes it possible to
determine that iterations can be terminated already after 16 steps.

Our experiments generally show that it is practical and efficient to use
the safe termination condition. Table 3 lists the number of extra steps (from
the step where the optimal partitioning was found) until safe termination was
detected based on Lemma 1. Note that 40 steps take only about half a second
of computation time.

6.2 Homogeneous-Task Model

The main purpose of these experiments is to provide a proof of concept that
the simplified homogeneous makespan model with a “small” number of linear

22 Rundong Li et al.

0	

1000	

2000	

3000	

4000	

5000	

6000	

0.00E+00	

1.00E+09	

2.00E+09	

3.00E+09	

4.00E+09	

5.00E+09	

6.00E+09	

0	 10	 20	 30	 40	

Running	Tim
e	(sec)	

Lo
ad

	

Step	

	average	load		
	max	load		
	running	:me	

(a) ebird-all on 7h14

0	

40	

80	

120	

160	

200	

0.00E+00	

2.00E+09	

4.00E+09	

6.00E+09	

8.00E+09	

1.00E+10	

0	 10	 20	 30	 40	 50	

Running	Tim
e	(sec)	

Lo
ad

	

Step	

	average	load		
	max	load		
	running	;me	

(b) cloud-5m on Emr50

Fig. 8: Number of greedy partitioning steps versus load and predicted
makespan (running time of the join) for JOIN-AGG.

Table 3: Additional steps after finding optimum, until safe termination

Data set Cluster # Extra Steps Data set Cluster # Extra Steps
ebird-all 7h14 8 zipf-5m-[1,0] 7h14 21
ebird-basic 7h14 16 zipf-5m-[0.25,0] 7h14 34
cloud-5m 7h14 37 ebird-all Emr50 6
zipf-5m-1.0 7h14 10 cloud-5m Emr50 35

0.0 0.5 1.0 1.5 2.0 2.5 3.0

number of records 1e9

0

100

200

300

400

500

600

700

m
a
p
 p

h
a
se

 t
im

e
 (

se
co

n
d
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

number of records 1e9

0

200

400

600

800

re
d
u
ce

 p
h
a
se

 t
im

e
 (

se
co

n
d
s)

Fig. 9: Sorting: measured value of H
vs. input size on 9h36 for Map (left)
and Reduce (right) phase

0 150 300 450 600 750
ground truth (seconds)

0

150

300

450

600

750

p
re

d
ic

t
(s

e
co

n
d
s) y=x

0 100 200 300 400 500
ground truth (seconds)

0

100

200

300

400

500

p
re

d
ic

t
(s

e
co

n
d
s) y=x

Fig. 10: Sorting: predicted vs. mea-
sured value of H on 9h36 for Map
(left) and Reduce (right) phase

pieces is accurate enough to rank “good” above “bad” partitionings. In all
experiments, the piecewise linear model for a round had between 1 and 7 pieces.
To explore the feasibility of the easier-to-obtain surrogate makespan measure,
we replaced in all training records true makespan with the surrogate measure
(Section 5). This makes the model less accurate, but as our experiments will
demonstrate, it is still effective for makespan optimization.

6.2.1 Sorting

We present measurements on clusters 9h36 and Emr10. All piecewise models
for 9h36 are partitioned into ranges (0, 18] and (18, 36] on parallelism degree.
Partitioning on task input and output size varies. We created 54 queries, each
defined by a data set and a number of waves for execution. Data sets are drawn
from a pool of 15 sets, each with a cardinality selected randomly between 100
million and 2.7 billion, containing random numbers of type Long (8 bytes per
record). The number of waves is selected randomly between 1 and 10. We

Abstract Cost Models for Distributed Data-Intensive Computations 23

Table 4: Degree of parallelism vs. measured and predicted makespan on 9h36.

number of
records

degree of parallelism = 18 degree of parallelism = 36

true (sec) prediction true (sec) prediction
1.17E+9 790 601.96 698 564.21
1.26E+9 835 657.36 723 629.59
1.62E+9 1056 842.00 1050 833.66
1.80E+9 1146 928.18 1112 926.13
2.43E+9 1558 1254.39 1524 1288.04
2.70E+9 1751 1408.24 1741 1465.02

randomly select 41 of these queries to fit the regression-model parameters,
while the other 13 are used for testing.

Figure 9 presents the relationship between input size and the value of H
(Eq. 2). The y-axis reports H computed from observed I, O, and C. (Degree
of parallelism was set to the number of workers for all runs.) The dotted green
line shows a piecewise linear model fitted to the data.

Figure 10 compares predicted and measured values ofH for map and reduce
phase of sorting on cluster 9h36. The red dots are for training cases, while the
green triangles are for test cases. All individual times and the overall trend
are captured very accurately, as the relative errors are mostly around 1%, and
never exceed 5%. For map phase, the RMSEs for training and testing are 0.98
and 1.16, respectively. For the reduce phase, they are 3.29 and 1.81.

Table 4 shows that accurate estimation of H can still result in significant
underestimation of makespan. This is caused by the use of the surrogate mea-
sure (number of waves times average task time, instead of true makespan, for
model training), which does not capture delays caused by stragglers. However,
this bias is consistent, allowing the model to capture the trend correctly, no
matter if all cores or only half of them is used per machine. For large inputs,
it identifies the I/O-related bottleneck: doubling the number of cores used
per machine results in virtually no improvement of makespan when data size
reaches 1.6 billion records.

6.2.2 Matrix Multiplication

All models are partitioned into parallelism-degree ranges based on multiples
of the number of machines in the cluster; partitioning on input and out-
put size varies. The training set consists of 104 problem instances, cover-
ing 12 different matrix-size combinations (square matrices from 10k × 10k
to 30k × 30k and also extreme rectangular ones up to 200 × 4 · 106), each
with 3 to 20 (B0, B1, B2)-combinations. We randomly pick the matrix sizes
and (B0, B1, B2)-combinations in the above ranges. We then test the model
on 57 independent problem instances, drawn from the same distribution. As
Fig. 11 shows, predicted and true value of H are again very close. The training
RMSEs for the four rounds (2 MapReduce jobs) are 6.99, 9.78, 1.69 and 6.82,
respectively; the testing RMSEs for the four rounds are 4.95, 5.86, 1.11 and
3.00, respectively.

24 Rundong Li et al.

0 20 40 60 80
100

ground truth (seconds)

0

20

40

60

80

100

p
re

d
ic

t
(s

e
co

n
d
s) y=x

(a) M-Job: Map

0
100

200
300

400
500

ground truth (seconds)

0

100

200

300

400

500

p
re

d
ic

t
(s

e
co

n
d
s) y=x

(b) M-Job: Reduce

0 20 40 60 80
100

ground truth (seconds)

0

20

40

60

80

100

p
re

d
ic

t
(s

e
co

n
d
s) y=x

(c) A-Job: Map

0 20 40 60 80
100

ground truth (seconds)

0

20

40

60

80

100

p
re

d
ic

t
(s

e
co

n
d
s) y=x

(d) A-Job: Reduce

Fig. 11: Matrix product: predicted vs. measured value of H on 9h36. The test
cases (red dots) are near the perfect-prediction line (blue dotted line).

Like for sorting, our model underestimates true makespan due to the use
of the surrogate measure, but can still correctly separate “good” from “bad”
partitionings. In all cases our approach would find a near-optimal configura-
tion. Table 5 confirms this for both synthetic and real data sets (from the UCI
Machine Learning Repository [21]). There our technique is applied to the step
where the data matrix is multiplied with its own transpose. Table 6 confirms
that this observation also holds for Spark.

Note that for both real data sets (Table 5d, 5e), our model correctly dis-
covers that setting (B0, B1, B2) to (1, 18, 1) results in lower makespan than
(1, 36, 1). We confirmed that due to I/O bottlenecks, it is better to only use
half of the available cores per machine, even though round 2 performs a huge
number of arithmetic operations (more than 11 · 109 for the Census data).

7 Related Work

Structured cost models that capture execution details are essential for query
optimization in relational DBMS [25], and they can be highly accurate when
tuned [33]. Recent work has shown that DBMS-style optimization can also
be applied to other workloads, e.g., gradient descent computation that com-
monly occurs in machine learning [17]. Li et al. [19] rely on DBMS optimizers,
and hence low-level cost models, to determine asymmetric data partitioning
for heterogeneous clusters. When applied to homogeneous clusters of equally
capable machines, e.g., on the Amazon cloud, these models assign the same
input share to each worker, but do not optimize the partitioning parameters
discussed in this article.

DBMS cost models motivated similar approaches for MapReduce and other
distributed data analysis systems [34, 31, 22, 15, 29]. Simplified cost models for
Hadoop and Spark systems are also proposed [12, 11], but they focus on the im-
pact of adding more worker machines, ignoring the impact of operator-specific
partitioning parameters. Our work is orthogonal to research on lowering the
cost of MapReduce programs by minimizing the number of rounds [10, 18].

As an alternative to structured cost models, blackbox-style machine learn-
ing techniques were explored for a variety of performance prediction prob-
lems [2, 5, 6, 8, 14]. For all previous cost models, the effect of partitioning

Abstract Cost Models for Distributed Data-Intensive Computations 25

Table 5: Ranking quality: predicted vs. true makespan (sec) for matrix product
(Hadoop MapReduce, (a)∼(c) are synthetic data, (d) and (e) are real data)

(a) 15, 000× 15, 000 matrices on 9h36

prediction ground truth
B0, B1, B2 makespan rank makespan rank

6, 1, 6 305.40 1 400.00 1
3, 3, 4 330.87 2 434.00 2
4, 1, 4 345.89 5 440.00 3
3, 3, 3 350.39 7 445.67 4
3, 4, 3 333.55 3 448.00 5
5, 1, 5 356.48 9 452.00 6
3, 2, 3 344.69 4 453.00 7
2, 6, 3 348.85 6 471.00 8
4, 2, 4 353.48 8 479.00 9
2, 9, 2 385.02 11 485.00 10
2, 6, 2 380.85 10 497.00 11
2, 4, 2 403.84 13 505.00 12
2, 8, 2 410.55 14 525.00 13
2, 7, 2 446.67 15 548.00 14
4, 1, 8 401.43 12 556.00 15
2, 2, 2 614.17 16 656.00 16
1, 18, 1 638.41 17 713.00 17
1, 36, 1 941.19 18 1,290.00 18

(b) 15, 000× 15, 000 matrices on 2h24

prediction ground truth
B0, B1, B2 makespan rank makespan rank

4, 1, 6 247.93 1 325.03 1
2, 4, 3 267.90 4 366.53 2
2, 3, 4 257.58 3 384.64 3
3, 2, 4 248.79 2 388.53 4
2, 6, 2 290.78 5 408.92 5
1,12, 2 356.74 6 455.77 6
1,24, 1 765.48 7 574.52 7

(c) 10, 000× 60, 000 matrices on 20h160

prediction ground truth
B0, B1, B2 makespan rank makespan rank

4,10, 4 124.57 1 186 1
4, 8, 5 128.14 2 204 2
2,20, 4 132.53 3 205 3
4, 5, 8 134.07 4 205 3
2, 8,10 137.51 5 206 5
1,20, 8 141.89 6 211 6
12, 1,12 171.08 7 238 7

(d) 68×2458285 matrices (1990 US Census
data) on 9h36

prediction ground truth
B0, B1, B2 makespan rank makespan rank

1,18, 1 30.93 1 95.00 1
1,36, 1 37.97 2 107.25 2
3, 2, 3 59.05 4 127.00 3
2, 9, 2 51.12 3 128.5 4
3, 4, 3 64.20 5 132.25 5
6, 1, 6 85.72 6 145.00 6

(e) 481× 191779 matrices (KDD Cup 1998
data) on 9h36

prediction ground truth
B0, B1, B2 makespan rank makespan rank

1,18, 1 24.12 1 94 1
1,36, 1 30.89 2 103 2
3, 2, 3 39.19 4 109 3
2, 9, 2 37.43 3 112 4
3, 4, 3 44.61 5 121 5
6, 1, 6 48.37 6 144 6

Table 6: Ranking quality: predicted vs. true makespan (in sec) for matrix
product (synthetic data, Spark)

(a) 800× 80, 000 matrices on 6s12

prediction ground truth
B0, B1, B2 makespan rank makespan rank

2, 2, 3 73.81 1 88.8 1
2, 3, 2 74.08 3 90.67 2
1,12, 1 73.88 2 96 3
1, 3, 4 87.84 4 101 4
1, 6, 2 100.10 7 101.4 5
1, 4, 3 96.79 6 104 6
3, 1, 4 133.95 9 109.5 7
1, 6, 1 92.80 5 113 8
2, 1, 3 154.30 11 134 9
1, 2, 3 134.22 10 141 10
1, 3, 2 131.48 8 154 11

(b) 6000× 6000 matrices on Emr12s

prediction ground truth
B0, B1, B2 makespan rank makespan rank

3, 1, 4 144.73 1 149.5 1
2, 2, 3 152.50 2 152 2
2, 3, 2 156.63 3 162 3
1, 2, 6 171.79 5 170.5 4
1, 3, 4 166.27 4 171 5
1, 4, 3 180.81 6 173.5 6
1, 6, 2 184.95 7 195 7
2, 1, 3 251.14 9 254 8
1, 2, 3 268.33 8 268.5 9
1, 3, 2 277.20 11 277 10
1, 1, 6 266.92 10 304 11
1, 6, 1 365.17 12 362 12

parameters on makespan is relatively complex, hence makespan minimiza-
tion would have to rely on trial-and-error style exploration of possible pa-
rameter settings. For dense matrix multiplication, this corresponds to a 10-
dimensional space of (B0, B1, B2, p0, p1, p2, p3, n1, n3, n4) combinations. (Note
that Ernest [29] could possibly derive optimal settings for all pi, i = 0, . . . , 3,
reducing complexity to 6 dimensions.) In contrast, our approach sacrifices

26 Rundong Li et al.

some prediction accuracy to simplify model structure. This enables analytical
derivation of optimal settings for most parameters, reducing complexity to 3
dimensions for dense matrix multiplication.

Shi et al. [26] identify four key system parameters to optimize MapRe-
duce makespan. While similar in spirit to our approach, they do not include
operator-specific partitioning parameters in their analysis. And due to the
complexity of the model, there are no results comparable to our Lemmas that
enable more efficient optimization for the key parameters.

We use dense matrix multiplication to showcase model design and
makespan optimization for an analytics operator with a demanding I/O and
CPU profile. Previous work explored a variety of performance-related aspects
for matrix multiplication on parallel architectures. This includes load bal-
ancing [9], minimizing communication cost [1, 4, 16, 27], and optimizing for
memory hierarchy [7, 28].

8 Conclusions

Starting with the goal of minimizing makespan for distributed data-intensive
computation, we set out to identify the “simplest possible”, “sufficiently ac-
curate” model to predict makespan of data analytics operators. To this end,
we proposed abstract models that are piecewise linear functions depending
only on input, output, and computation complexity. Our approach has two
main benefits. First, it simplifies tying problem-partitioning parameters to
model variables (input, output and computation) for user-defined operators,
e.g., programs written in MapReduce or Spark. Second, we showed that the
linear structure can be exploited for more efficient optimization algorithms. It
enabled pruning of values from the optimization-parameter search space and
even a significant reduction of search space dimensionality (for homogeneous
tasks). For instance, optimization complexity was reduced from a search pro-
cess in ten dimensions to only three for matrix product; for sorting the optimal
solution was directly obtainable in closed form.

Our experiments indicated that a small number of pieces achieve sufficient
prediction quality, enabling us to find near-optimal problem partitionings very
efficiently. In future work, we will explore tuning of partitioning parameters
along with system parameters external to user programs, by integrating our
ideas into optimizers like Starfish [14].

References

1. Agarwal RC, Balle SM, Gustavson FG, Joshi M, Palkar P (1995) A three-
dimensional approach to parallel matrix multiplication. IBM Journal of
Research and Development 39(5):575–582

2. Akdere M, Cetintemel U, Riondato M, Upfal E, Zdonik S (2012) Learning-
based query performance modeling and prediction. In: ICDE, pp 390–401

Abstract Cost Models for Distributed Data-Intensive Computations 27

3. Asanovic K, Bodik R, Demmel J, Keaveny T, Keutzer K, Kubiatowicz J,
Morgan N, Patterson D, Sen K, Wawrzynek J, Wessel D, Yelick K (2009)
A view of the parallel computing landscape. Commun ACM 52(10):56–67

4. Ballard G, Buluc A, Demmel J, Grigori L, Lipshitz B, Schwartz O, Toledo
S (2013) Communication optimal parallel multiplication of sparse random
matrices. In: SPAA, pp 222–231

5. Duggan J, Cetintemel U, Papaemmanouil O, Upfal E (2011) Performance
prediction for concurrent database workloads. In: SIGMOD, pp 337–348

6. Duggan J, Papaemmanouil O, Çetintemel U, Upfal E (2014) Contender: A
resource modeling approach for concurrent query performance prediction.
In: EDBT, pp 109–120

7. Elmroth E, Gustavson F, Jonsson I, K̊agström B (2004) Recursive blocked
algorithms and hybrid data structures for dense matrix library software.
SIAM Review 46(1):3–45

8. Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI, Patterson
DA (2009) Predicting multiple metrics for queries: Better decisions enabled
by machine learning. In: ICDE, pp 592–603

9. van de Geijn RA, Watts J (1995) Summa: Scalable universal matrix mul-
tiplication algorithm. Tech. rep., University of Texas at Austin

10. Goodrich MT, Sitchinava N, Zhang Q (2011) Sorting, searching, and sim-
ulation in the mapreduce framework. In: ISAAC, pp 374–383

11. Gounaris A, Kougka G, Tous R, Montes CT, Torres J (2017) Dynamic
configuration of partitioning in spark applications. IEEE Transactions on
Parallel and Distributed Systems 28(7):1891–1904

12. Gunther NJ, Puglia P, Tomasette K (2015) Hadoop superlinear scalability.
Commun ACM 58(4):46–55

13. Hahn C, Warren S, Eastman R (2012) Extended edited synoptic cloud
reports from ships and land stations over the globe, 1952-2009 (ndp-026c)

14. Herodotou H, Babu S (2011) Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. VLDB 4(11):1111–1122

15. Huang B, Babu S, Yang J (2013) Cumulon: optimizing statistical data
analysis in the cloud. In: Proc SIGMOD, pp 1–12

16. Irony D, Toledo S, Tiskin A (2004) Communication lower bounds for
distributed-memory matrix multiplication. J Parallel Distrib Comput
64(9):1017–1026

17. Kaoudi Z, Quiane-Ruiz JA, Thirumuruganathan S, Chawla S, Agrawal
D (2017) A cost-based optimizer for gradient descent optimization. In:
SIGMOD, pp 977–992

18. Karloff H, Suri S, Vassilvitskii S (2010) A model of computation for mapre-
duce. In: SODA, pp 938–948

19. Li J, Naughton JF, Nehme RV (2017) Resource bricolage and resource
selection for parallel database systems. The VLDB Journal 26(1):31–54

20. Li R, Riedewald M, Deng X (2018) Submodularity of distributed join
computation. In: (Upcoming) SIGMOD

21. Lichman M (2013) UCI machine learning repository

28 Rundong Li et al.

22. Morton K, Balazinska M, Grossman D (2010) Paratimer: a progress indi-
cator for mapreduce dags. In: SIGMOD, pp 507–518

23. Munson AM, Webb K, Sheldon D, Fink D, Hochachka WM, Iliff M, Riede-
wald M, Sorokina D, Sullivan B, Wood C, Kelling S (2014) The ebird
reference dataset, version 2014. Cornell Lab of Ornithology and National
Audubon Society, Ithaca, NY

24. Quinlan JR, et al (1992) Learning with continuous classes. In: Australian
joint conference on artificial intelligence, vol 92, pp 343–348

25. Ramakrishnan R, Gehrke J (2003) Database Management Systems, 3rd
edn. McGraw-Hill

26. Shi J, Zou J, Lu J, Cao Z, Li S, Wang C (2014) Mrtuner: a toolkit to
enable holistic optimization for mapreduce jobs. VLDB pp 1319–1330

27. Solomonik E, Demmel J (2011) Communication-optimal parallel 2.5d ma-
trix multiplication and lu factorization algorithms. In: Euro-Par 2011 Par-
allel Processing, pp 90–109

28. Valsalam V, Skjellum A (2002) A framework for high-performance ma-
trix multiplication based on hierarchical abstractions, algorithms and op-
timized low-level kernels. Concurrency and Computation: Practice and
Experience 14(10):805–839

29. Venkataraman S, Yang Z, Franklin M, Recht B, Stoica I (2016) Ernest: effi-
cient performance prediction for large-scale advanced analytics. In: NSDI,
pp 363–378

30. Vieth E (1989) Fitting piecewise linear regression functions to biological
responses. Journal of Applied Physiology 67(1):390–396

31. Wang G, Chan CY (2013) Multi-query optimization in mapreduce frame-
work. In: VLDB, pp 145–156

32. White B, Lepreau J, Stoller L, Ricci R, Guruprasad S, Newbold M, Hibler
M, Barb C, Joglekar A (2002) An integrated experimental environment
for distributed systems and networks. In: OSDI, pp 255–270

33. Wu W, Chi Y, Haćıgümüş H, Naughton JF (2013) Towards predicting
query execution time for concurrent and dynamic database workloads.
VLDB 6(10):925–936

34. Zhang X, Chen L, Wang M (2012) Efficient multi-way theta-join processing
using mapreduce. In: VLDB, pp 1184–1195

