
Submodularity of Distributed Join Computation
Rundong Li

Northeastern University, Boston, USA

rundong@ccs.neu.edu

Mirek Riedewald

Northeastern University, Boston, USA

m.riedewald@northeastern.edu

Xinyan Deng

Northeastern University, Boston, USA

reena@ccs.neu.edu

ABSTRACT
We study distributed equi-join computation in the presence of

join-attribute skew, which causes load imbalance. Skew can be

addressed by more fine-grained partitioning, at the cost of input du-

plication. For random load assignment, e.g., using a hash function,

fine-grained partitioning creates a tradeoff between load expecta-

tion and variance. We show that minimizing load variance subject

to a constraint on expectation is a monotone submodular maximiza-

tion problem with Knapsack constraints, hence admitting provably

near-optimal greedy solutions. In contrast to previous work on

formal optimality guarantees, we can prove this result also for self-

joins and more general load functions defined as weighted sum of

input and output. We further demonstrate through experiments

that this theoretical result leads to an effective algorithm for the

problem of minimizing running time, even when load is assigned

deterministically.
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• Information systems → Parallel and distributed DBMSs;
• Theory of computation → Distributed algorithms; • Com-
puting methodologies→ Distributed algorithms; MapReduce
algorithms;
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1 INTRODUCTION
We consider equi-joins in distributed environments, in particular

clusters of physical machines or virtual machines in the cloud.

While there is renewed interest in multiway joins, this work fo-

cuses on binary joins, including self-joins, which are the “bread

and butter” join operators in distributed computation frameworks

such as MapReduce and Spark, and in relational databases. (Queries

joining more than two relations can be implemented through mul-

tiple binary joins.) We consider the most general problem scenario
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where (1) the join may or may not be a foreign key join, (2) load is

defined as the weighted sum of input and output, and (3) the join

attribute(s) in the given input might show any degree of skew.

The standard approach for joining two large data sets S and T is

the classic algorithm relying on hash-based partitioning. It balances

load well for low to moderate degree of join-attribute skew, but

achieves poor speedup when high skew causes some workers to

receive an excessive amount of load. This type of inherent skew

can be addressed by a more fine-grained input partitioning. In

particular, heavy hitters, i.e., join attribute values that occur with

high frequency, can be split into smaller sub-groups—at the cost of

input duplication. Consider the simple example of a two-worker

cluster and inputs S = Sa andT = Ta where all tuples have the same

join attribute value a. (Hence the equi-join here computes Cartesian

product Sa ×Ta .) Hash partitioning assigns the entire input to one

of the two workers, leaving the other idle. The resulting max load
in the system, i.e., the load assigned to the worker receiving most

load, then is |Sa | + |Ta | input tuples and |Sa | |Ta | output tuples.
Alternatively, one could split Sa in half and assign a partition to

each worker. To still produce all output tuples,Ta has to be assigned

to both workers. As a result, max load across workers improves to

|Sa |/2 + |Ta | input and |Sa | |Ta |/2 output tuples.
The simple example highlights a tradeoff between total load

and load balance. Partitioning Sa into two sub-groups increased

total input by |Ta |, resulting in higher load overall. On the other

hand, load could be distributed more evenly over the two workers,

reducing the max load assigned to any worker. This raises several

interesting questions: Which of the inputs should be partitioned?

How much should it be partitioned? And how are these decisions

affected by other join groups?

In general, our goal is to determine the partitioning of heavy-

hitter join groups that minimizes the max load assigned to any

worker. For random load assignment, max load is determined by

load expectation and variance. In particular, given two partition-

ings with the same load expectation, we prefer the one with lower

variance, because it has a higher probability of distributing the load

evenly. Hence we study the problem of minimizing load variance
subject to a threshold on load expectation.

Our work is the first to provide formal optimality guarantees that

(1) do not ignore constant factors and (2) extend to a more general

load function accounting for both input and output. We identify

precise conditions that guarantee it to be a monotone submodu-

lar optimization problem with Knapsack constraints, admitting a

greedy solution with strong optimality guarantees. Intuitively, this

novel algorithm aims to maximize variance reduction per input

duplicate generated by a sub-group partitioning.

While these theoretical results are the main objective, they also

lead to an effective practical algorithm for deterministic load assign-
ment. We hypothesize that optimizing for lower variance makes the

partitions “easier” to distribute evenly, striking the right balance

https://doi.org/10.1145/3183713.3183728
https://doi.org/10.1145/3183713.3183728
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Variable Meaning
w number of worker nodes in the cluster

S , T input relations

A join attribute and set of its possible values

H H ⊆ A is the set of heavy hitter candidates

Sa , Ta Sa = {s ∈ S : s .A = a}, Ta = {t ∈ T : t .A = a}
ph for rectangular partitioning: number of parti-

tions for input Sh , h ∈ H ; for triangular parti-

tioning: number of rows and columns of upper

triangular matrix

qh only for rectangular partitioning: number of

partitions for input Th , h ∈ H
E[L] expectation of random variable L
V[L] variance of random variable L
α , γ load weight factors

Ω finite set of elements for representing sub-

group partitionings

M maps a set X ⊆ Ω to a rectangular sub-group

partitioning [(ph ,qh )]h∈H or triangular sub-

group partitioning [ph ]h∈H
R cost model to estimate running time of dis-

tributed join computation

Table 1: Important notation

between input duplication and load balance. We demonstrate this

empirically in an extensive experimental study; establishment of

a formal relationship is left for future work. This work makes the

following main contributions:

• Weprecisely quantify load expectation and variance for state-

of-the-art sub-group partitioning strategies under random

load assignment. This analysis uses the most general load

model from the literature and also applies to self-joins and

equi-joins that are not foreign-key joins.

• We establish a relationship between load expectation, vari-

ance, and max load through Chebyshev’s inequality, leading

to the optimization problem of minimizing load variance

subject to a threshold on its expectation.

• For this optimization problem, we derive precise conditions

that guarantee it to be amonotone submodular maximization

problem with Knapsack constraints. Based on this result, we

propose novel near-optimal greedy solutions.

• We demonstrate experimentally how the theoretical results

can be leveraged to reduce running time compared to the

state of the art for distributed join computation, even when

load is assigned deterministically.

2 FOUNDATIONS
Table 1 provides an overview of important notation.

Join problem:We consider the equi-join between two data sets

S = {s1, s2, . . . , s |S |} and T = {t1, t2, . . . , t |T |}, where |X | denotes

the cardinality of set X . This includes the special case of a self -join
when S = T . Without loss of generality, let the schemas of S and T
both contain an attribute A on which both are joined. Equi-joins

on multiple attributes can be converted to an equivalent join on a
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Figure 1: Join group 1 is partitioned into p1 = 3 by q1 = 4 sub-
groups. Each s ∈ S1 has to be assigned to a row, requiring
qa copies of s. Similarly, each t ∈ T1 is assigned to a column.
The choice of row and column does not matter for correct-
ness. For even load distribution over the sub-groups, rows
and columns are chosen uniformly at random.

single attribute. To avoid clutter, we follow common practice and

slightly abuse notation by using A also to denote the set of possible

values of this attribute—context will make the meaning clear.

Our goal is to compute the equi-join S ◃▹ T = {(si , tj ) ∈ S ×T :

si .A = tj .A} usingw worker nodes in the system. Let Sa = {s ∈ S :

s .A = a} and Ta = {t ∈ T : t .A = a} be the subsets of tuples from
S and T , respectively, with join attribute value a. We will refer to

Sa ∪Ta as the group for join attribute value a. Then the equi-join

can be expressed as

S ◃▹ T =
⋃
a∈A

Sa ×Ta ,

i.e., the union of Cartesian products for each group.

Like all previous work on joins with skewed input, we assume

that simple count statistics for “large” join groups are given. In

contrast to previous work, the set of heavy hitters does not have

to given. Our approach can work with any set H ⊆ A of heavy

hitter candidates, determining automatically which ones (not) to

partition.

Sub-group partitioning: For each a ∈ A, (pa ,qa ) defines a
uniform sub-group partitioning of join group a. There are paqa
sub-groups, each receiving |Sa |/pa tuples from Sa and |Ta |/qa tu-

ples from Ta . As a consequence, each sub-group produces
|Sa | |Ta |
paqa

output tuples. Figure 1 shows an example for a hypothetical group

1 with p1 = 3 and q1 = 4. Records such as s7 ∈ S1 and t4 ∈ T1
are randomly assigned a row number between 1 and pa or column

number between 1 and qa , respectively. This implies that the input

tuple is assigned to all sub-groups in the corresponding row or

column. In the example, s7 was assigned to 1.5, 1.6, 1.7, and 1.8.

Similarly, t4 was assigned to sub-groups 1.2, 1.6, and 1.10. Notice

that exactly one sub-group (1.6 in the example) receives both s7 and
t4. Hence result (s7, t4) will be output exactly once—by the worker

processing sub-group 1.6.

Previous work showed that this style of rectangular partitioning
achieves asymptotically near-optimal load assignment for Cartesian

product [27] and equi-join [2]. Those results apply to the general

case. For the special case of natural self-joins, e.g., SELECT * FROM
S AS S1, S AS S2 WHERE S1.A = S2.A, triangular partitioning,
also provably near-optimal, was introduced to reduce input duplica-

tion [6]. For self-joins on different attributes, e.g., SELECT * FROM
S AS S1, S AS S2 WHERE S1.A = S2.B, triangular partitioning
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Figure 2: Join group 1, for p1 = 4, is partitioned into (p1 +
1)p1/2 = 10 sub-groups. Each s ∈ S1 has to be assigned to
a row and column with the same index, requiring p1 copies
of s. The choice of row/column does not matter for correct-
ness. For even load distribution over the sub-groups, rows
and columns are chosen uniformly at random.

cannot be applied. In the rest of the paper, we will use self-join as a

shorthand for natural self-join.

Instead of apa -by-qa matrix, it creates an upper triangularmatrix

with pa rows and columns as illustrated in Figure 2. An input tuple

is randomly assigned to a number between 1 and pa , implying its

assignment to all sub-groups in the corresponding row and column.

In the example, s3 was assigned to row and column 2, i.e., sub-

groups 1.2, 1.5, 1.6, and 1.7. Tuple s7 was assigned to row/column

3, corresponding to sub-groups 1.3, 1.6, 1.8, and 1.9. Similar to the

rectangular partitioning, there is exactly one sub-group (1.6 in the

example) that receives both inputs. It—and only it—is the one to

produce output pairs (s3, s7) and (s7, s3). Note that the join has to

output both results, while the duplication problem for which the

partitioning was introduced, only required one of the two. (This

slightly widens the gap between lower and upper bound for output

load by a small constant factor between 1 and 2 compared to the

results shown in [6].)

In general, each sub-group on the diagonal is assigned |Sa |/pa
input tuples, outputting all |Sa |

2/p2a pairs. Off-diagonal sub-groups

each receive 2|Sa |/pa input tuples—half “vertically” and half “hori-

zontally” (see shading in Figure 2). They each produce 2|Sa |
2/p2a

output tuples—all pairs of “vertical” and “horizontal” inputs in both

orders, (horizontal, vertical) and (vertical, horizontal).

3 LOAD EXPECTATION AND VARIANCE
In previous work, load was defined as the amount of input, output,

or a linear combination of both. We use the most general of these

models and define load as the weighted sum γ I + αO , for γ ,α ≥ 0,

where I and O denote input and output cardinality, respectively.

This general load definition is needed, because in practice per-input

and per-output tuple cost can vary significantly, e.g., depending if

the join result is kept in memory (for further processing) or written

to files.

Let li denote the load induced by (sub) group i . To analyze the
total load assigned to a worker, we define random variable Li whose
value is li if the sub-group is assigned to that worker, and zero

otherwise. Note that when assigning (sub) groups randomly, then

Li is independent of all Lj for any other (sub) group j. Expected

load L is defined as

E[L] = E[
∑
i
Li ] =

∑
i
E[Li ] =

1

w

∑
i
li (1)

Variance is defined as V[L] = E[L2] − E2[L]. From Eq. 1 follows

E2[L] = (
1

w

∑
i
li )

2 =
1

w2

∑
i

∑
j
li lj . (2)

For E[L2], we obtain

E[L2] = E[(
∑
i
Li )

2] = E[
∑
i

∑
j
LiLj ] =

∑
i

∑
j
E[LiLj ]

=
∑
i

∑
j,i
E[LiLj ] +

∑
i
E[L2i ] =

1

w2

∑
i

∑
j,i

li lj +
1

w

∑
i
l2i .

(3)

This derivation uses that L2i takes on value l2i with probability 1/w ,

and zero otherwise. From Eq. 2 and 3 follows

V[L] =
1

w

∑
i
l2i −

1

w2

∑
i
l2i =

w − 1

w2

∑
i
l2i (4)

The actual load amounts li depend on the sub-group partitioning.
We next analyze rectangular and triangular partitioning separately.

3.1 Rectangular Partitioning
As discussed in Section 2, each heavy hitter group h ∈ H is parti-

tioned into ph -by-qh equal-sized sub-groups, where ph ≥ 1,qh ≥ 1.

Setting ph = qh = 1 implies no sub-group partitioning for this

group. Sub-group partitioning creates phqh subgroups, each with

|Sh |/ph+ |Th |/qh input and |Sh | |Th |/(phqh ) output tuples. Together
with Eq. 1 and Eq. 4, this implies for the load induced by the heavy-

hitter (sub) groups on a worker

E[L] =
1

w

∑
h∈H

phqh

(
γ
|Sh |

ph
+ γ

|Th |

qh
+ α

|Sh | |Th |

phqh

)
=

1

w

∑
h∈H

(γqh |Sh | + γph |Th | + α |Sh | |Th |). (5)

V[L] =
w − 1

w2

∑
h∈H

phqh

(
γ
|Sh |

ph
+ γ

|Th |

qh
+ α

|Sh | |Th |

phqh

)
2

=
w − 1

w2

∑
h∈H

(
γ 2

qh
ph

|Sh |
2 + γ 2

ph
qh

|Th |
2 +

α2

phqh
|Sh |

2 |Th |
2

+2γ 2 |Sh | |Th | +
2αγ

ph
|Sh |

2 |Th | +
2αγ

qh
|Sh | |Th |

2

)
. (6)

3.2 Triangular Partitioning
As discussed in Section 2, each heavy hitter group h ∈ H is par-

titioned into an upper triangular matrix of ph rows and columns.

Setting ph = 1 implies no sub-group partitioning for this group. We

need to distinguish between sub-groups on and off the diagonal.

There are ph sub-groups on the diagonal, each with |Sh |/ph input

and |Sh |
2/p2h output. The remaining ph (ph − 1)/2 sub-groups have

2|Sh |/ph input and 2|Sh |
2/p2h output. Together with Eq. 1 and Eq. 4,

this implies for the load induced by the heavy-hitter (sub) groups
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on a worker

E[L] =
1

w

∑
h∈H

(
ph

(
γ
|Sh |

ph
+ α

|Sh |
2

p2h

)
+
ph (ph − 1)

2

(
γ
2|Sh |

ph
+ α

2|Sh |
2

p2h

))
=

1

w

∑
h∈H

(
γph |Sh | + α |Sh |

2

)
(7)

V[L] =
w − 1

w2

∑
h∈H

©­«ph
(
γ
|Sh |

ph
+ α

|Sh |
2

p2h

)
2

+
ph (ph − 1)

2

(
γ
2|Sh |

ph
+ α

2|Sh |
2

p2h

)
2ª®¬

=
w − 1

w2

∑
h∈H

(
2 −

1

ph

) (
γ |Sh | +

α

ph
|Sh |

2

)
2

. (8)

4 LOAD OPTIMIZATION
Worker load L is a random variable and the one-sided version of

Chebyshev’s inequality states that for any random variable X and

constant k > 0, Pr(X ≥ E[X ]+k) ≤ V[X ]

V[X ]+k2
. Setting k = 10

√
V[X ]

and applying this inequality to load L, we obtain

Pr(L ≥ E[L] + 10
√
V[L]) ≤ 1/(1 + 102) < 0.01,

i.e., the probability of a worker’s load to exceed load expectation

by more than 10 standard deviations is less than 1%. Given two

load configurations with the same expectation, we therefore pre-

fer the one with lower standard deviation (and hence variance).

This leads to the following optimization problem of minimizing
load variance subject to a threshold on load expectation. Maximizing

negative variance is equivalent to minimizing variance.

Problem 1. Maximize −V[L] subject to E[L] ≤ θ .

We next prove structural properties of this optimization problem

that will enable fast greedy heuristics with strong approximation

guarantees. In particular, we show this problem to be a monotone

submodular maximization problem with Knapsack constraints.

4.1 Monotonicity Properties
For monotonicity, we prove strong results for both rectangular and

triangular sub-group partitioning. Due to their popularity in data-

base queries, the special case of foreign-key joins is listed explicitly.

Note that in the input where the join attribute is the key, cardinal-

ity of the group is equal to 1. All proofs are in the appendix. They

mathematically derive the change in variance as the sub-group

partitioning becomes more fine-grained.

Theorem 4.1. Negative variance −V[L] for rectangular partition-
ing [(ph ,qh )]h∈H is monotonically increasing in ph and qh , h ∈ H ,
if α ≥ γ (ph + 1)/|Sh | and α ≥ γ (qh + 1)/|Th |.

Theorem 4.2. For the special case of a foreign key join, i.e., |Th | =
qh = 1 for all h ∈ H , negative variance −V[L] for rectangular
partitioning [(ph ,qh )]h∈H is monotonically increasing in ph .

Theorem 4.3. Negative variance−V[L] for triangular partitioning
[ph ]h∈H is monotonically increasing in ph , h ∈ H , if α ≥ γph/|Sh |.

4.2 Submodularity Properties
Submodularity is a property of some discrete functions defined over

sets. Intuitively, a submodular function shows diminishing returns,
i.e., adding a new element to set X results in greater increase of the

function value than adding it to a superset of X .

Definition 4.4. Let Ω be a finite set and f : 2
Ω → R be a

function that maps any subset of Ω to a real number. Function

f is submodular if for every X ⊆ Y ⊆ Ω and every x ∈ Ω − Y ,
f (X ∪ {x}) − f (X ) ≥ f (Y ∪ {x}) − f (Y ).

To be able to apply the concept of submodularity to our load opti-

mization problem, its objective function −V[L] has to be converted

into a function over sets. We propose the following construction.

Recall that −V[L] is defined over input tuples of the type [(ph ,
qh )]h∈H and [ph ]h∈H for rectangular and triangular partitioning,

respectively. To convert such a partitioning into a set, we represent

more fine-grained partitionings with larger sets. In particular, any

number n can be represented as a set of n elements. However, we

also need to distinguish ph versus qh , and between the different

h ∈ H . We achieve this by defining each element as a triple (h, i, j),
where h ∈ H identifies to which join group the element belongs, i
distinguishes between the inputs (p’s versus q’s; omitted for trian-

gular partitioning), and j distinguishes between the elements for

the same join group and input. Formally, define

Ω =
⋃

h∈H,1≤j≤ |Sh |

{(h, 0, j)} ∪
⋃

h∈H,1≤j≤ |Th |

{(h, 1, j)}.

For example, assume there are two heavy hitter groups h = 1

and h = 2 with |S1 | = 4, |S2 | = 2, |T1 | = 1, and |T2 | = 3. Then

Ω = {(1, 0, 1), (1, 0, 2), (1, 0, 3), (1, 0, 4), (2, 0, 1), (2, 0, 2), (1, 1, 1), (2,

1, 1), (2, 1, 2), (2, 1, 3)}. Sub-group partitioning with p1 = 2, p2 = 1,

q1 = 1, and q2 = 2 can then be expressed by set {(1, 0, 1), (1, 0,

2), (2, 0, 1), (1, 1, 1), (2, 1, 1), (2, 1, 2)}, but also {(1, 0, 2), (1, 0, 4), (2,

0, 2), (1, 1, 1), (2, 1, 1), (2, 1, 3)} etc. In general, value ph is encoded

by a set of ph elements of type (h, 0, ∗) from Ω; and analogously

(h, 1, ∗) for qh . Incrementing ph by 1 then corresponds to adding

another element of type (h, 0, ∗) to this set.

For the reverse direction, i.e., to map any subset of Ω to a sub-

group partitioning, we define a mapping functionM that is defined

as follows: Given X ⊆ Ω, for each h ∈ H , M sets ph to the number

of elements whose first field has value h and second field 0 (i.e., it

counts all (h, 0, ∗)) in X , and qh to the number of elements whose

first and second field are h and 1, respectively (i.e., it counts all

(h, 1, ∗)) in X .

For rectangular partitioning, we can now express objective func-

tion −V[L] in Problem 1 equivalently with set function f1:

f1(X ) = −
∑
h∈H

phqh

(
γ
|Sh |

ph
+ γ

|Th |

qh
+ α

|Sh | |Th |

phqh

)
2

, (9)

where X ⊆ Ω and [(ph ,qh )]h∈H =M(X ). Recall that by construc-

tion of M, adding an element x ∈ Ω − X to X has the effect that

the corresponding ph or qh increases by 1, while all others remain

unaffected. Hence f1 is monotonically increasing if and only if

the corresponding variance function is as well (see Section 4.1).
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For triangular partitioning, we define a monotone set function f2
analogously as

f2(X ) = −
∑
h∈H

(
2 −

1

ph

) (
γ |Sh | +

α

ph
|Sh |

2

)
2

. (10)

We can now prove submodularity of f1 and f2 by analyzing their
discrete derivatives. This yields the following strong results; all

proofs are in the appendix.

Theorem 4.5. Function f1 for rectangular partitioning [(ph ,

qh )]h∈H is submodular if α ≥
√
2(ph + 1)γ/|Sh | and α ≥

√
2(qh +

1)γ/|Th |.

Theorem 4.6. For the special case of a foreign key join, i.e., |Th | =
qh = 1 for all h ∈ H , function f1 is submodular.

Theorem 4.7. Function f2 for triangular partitioning [ph ]h∈H is
submodular if α ≥ γph/|Sh |.

4.3 Knapsack Constraints
A Knapsack constraint on set X ⊆ Ω is a constraint of the type∑

x ∈X
c(x) ≤ B,

where c(x) is the non-negative integer “weight” of an element x and

B is a non-negative threshold value [21]. This section shows that

constraint E[L] ≤ θ of Problem 1 is such a Knapsack constraint.

Recall that Section 4.2 defined the elements in Ω to be triples of

type (h, i, j), where h denotes the group and i the input (S versusT ).
For rectangular partitioning, set c(h, 0, j) = |Th | and c(h, 1, j) = |Sh |.
This models the fact that increasing ph to ph + 1 requires one addi-
tional copy of Th to be assigned to the corresponding sub-groups

(and analogously for increasing qh ). For triangular partitioning, set
c(h, 0, j) = |Sh |, because adding another row and column to the

upper triangular matrix results in an extra copy of Sh .
For rectangular partitioning, based on Eq. 5, constraint E[L] ≤ θ

is equivalent to∑
h∈H

(qh |Sh | + ph |Th |) ≤

(
wθ −

∑
h∈H

α |Sh | |Th |

)
/γ .

It is easy to see that for any X ⊆ Ω that contains ph elements of

type (h, 0, ∗) and qh elements of type (h, 1, ∗), the sum of the corre-

sponding weights c(x) equals
∑
h∈H (qh |Sh | +ph |Th |). Sincew , θ , γ ,

and

∑
h∈H α |Sh | |Th | are independent of the sub-group partitioning,

the right side (wθ −
∑
h∈H α |Sh | |Th |)/γ is a constant as desired.

The analysis for triangular partitioning is analogous.

4.4 Near-Optimal Greedy Heuristic
Submodularity can be exploited for efficiently and near-optimally

solving Problem 1 using fast greedy heuristics. They find Pareto-

optimal combinations of load expectation and variance.

For a non-negative monotone submodular function with Knap-

sack constraints, a simple greedy algorithm finds a solution that

is guaranteed to be within factor (1 − 1/e)/2 of the optimal max

value [21]. (Functions f1 and f2 can bemade non-negative by adding

a sufficiently large constant. This does not affect monotonicity or

submodularity.) This algorithm idea applied to our problem results

in novel join partitioning Alg. 2. It starts with the given join groups,
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Figure 3: Example of GreedyPartition steps

Algorithm 1 : GreedyPartition

Input: heavy hitter candidate statistics [|Sh |]h∈H , [|Th |]h∈H
Input: starting partitioning [(ph ,qh )]h∈H
Input: weight function weight
1: while

∑
h∈H (qh |Sh | + ph |Th |) ≤ θ do

2: Increment the ph or qh that maximizes the ratio of benefit

and cost

3: /* Benefit = amount of variance reductionwhen incrementing

the corresponding ph or qh */

4: /* Cost = weight assigned by weight to the corresponding

ph or qh */

5: end while
6: Undo the last increment operation /* It exceeded the threshold.

*/

7: return new partitioning [(ph ,qh )]h∈H

i.e., ph = 1 and qh = 1 for all h ∈ H . It then greedily increases

the ph or qh with the greatest ratio of variance reduction to input

duplication increase, i.e., it uses a cost-benefit greedy partitioning

approach. Sometimes this strategy can diverge significantly from

the optimal solution. To guarantee the (1 − 1/e)/2 approximation

ratio, it is sufficient to execute the greedy partitioning also for

uniform weights and choose the better of the two solutions.

Figure 3 illustrates a sequence of GreedyPartition’s steps. Even

if all join groups are declared as potential “heavy hitters”, it auto-

matically focuses on splitting the largest ones first. Once their sub-

groups are sufficiently small, it will start partitioning the medium

ones, etc; possibly increasing partition number for large groups

further in a later iteration.

Algorithm analysis: Alg. 1 has low computational complexity.

In each iteration of the while-loop, it computes cost and benefit for

all ph and qh . For cost, this involves a simple array lookup of the

weight vector. For benefit, V[L] is re-computed. Since incrementing

either ph or qh affects only 4 terms in Eq. 6 and 2 terms in Eq. 8

when incrementing ph , re-computation time is constant as well.

Hence the loop in Alg. 1 has computational complexity O(|H |).

5 FROM LOAD TO RUNNING TIME
This section demonstrates how the above theoretical results, in

particular Alg. 2, can be leveraged for designing a highly effective

skew-resistant equi-join algorithm for practical use. End users in

practice care about the time it takes to complete their job—the

running time of the distributed execution. To optimize for running

time, we follow a standard approach to tie load to running time.
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Algorithm 2 : SimpleGreedy

1: P1 = GreedyPartition([|Sh |]h∈H , [|Th |]h∈H , [(ph = 1,qh =
1)]h∈H , (weight(ph ) = |Th |, weight(qh ) = |Sh |)h∈H )

2: P2 = GreedyPartition([|Sh |]h∈H , [|Th |]h∈H , [(ph = 1,qh =
1)]h∈H , (weight(ph ) = 1, weight(qh ) = 1)h∈H )

3: return the partitioning Pi , i ∈ {1, 2}, that has lower variance

V[L]

First, we need to estimate how an individual worker’s running time

depends on its assigned input and output. This is a classic DBMS

join cost estimation problem. Second, since data needs to be moved

through the network to make input available to the appropriate

workers, communication cost has to be taken into account. For this,

we need to estimate network transfer time (plus time to deliver the

data to the application running on the worker)—also a standard

problem. We demonstrate this for the popular Reduce-side join

in MapReduce, an implementation of the classic hash join. Note

that the approach can be extended to implementation in other

distributed systems, e.g., Spark or a distributed DBMS, by adjusting

execution and data transfer cost estimation accordingly.

5.1 Join Algorithm
Reduce-side join does not make any assumptions about the initial

location of the given inputs in the distributed file system. It performs

a complete shuffle, assigning groups to workers (i.e., reduce tasks)

using a hash function. Given a sub-group partitioning [(ph ,qh )]h∈H ,

it is straightforward to extend the algorithm by treating each sub-
group as a separate join group. In summary, the algorithm consists

of the following steps:

(1) In the map phase, each worker reads (often locally stored)

input tuples, assigning them—and replicating if necessary—

to the corresponding reduce tasks.

(2) The input tuples are shuffled across the network so that each

worker (reduce task) receives its assigned (sub) groups.

(3) In the reduce phase, each worker processes the (sub) groups

assigned to it and emits the output records.

Algorithms 3 and 4 show the MapReduce pseudo-code. The self-join

implementation using the triangular partitioning is analogous.

5.2 Minimizing Running Time
Algorithm 1 finds the sub-group partitioning with near-minimal

variance, subject to a constraint θ on load expectation. With increas-

ing θ , load will be more evenly distributed across the workers (due

to lower variance), but the total amount of load increases (due to

higher expectation). Hence one has to determine the value of θ that

strikes the best balance between the two, such that running time

is minimized. In the join algorithm introduced in Section 5.1, sub-

group partitioning affects the amount of data emitted by the map-

pers and then shuffled/sorted across the network, and the amount

of input and output assigned to each reducer. Estimating data trans-

fer time depending on data size and local join processing cost on

a single worker are standard cost estimation problems. We use a

Algorithm 3 : Map

Input: partitioning [(ph ,qh )]h∈H (from distributed file cache)

Input: input tuple sh ∈ Sh or th ∈ Th
1: if input tuple is sh ∈ Sh then
2: row = random(0, ph − 1) /* Choose random integer from

range [0,ph − 1] */

3: /* Emit tuple copy to each sub-group in selected row */

4: for subKey = (row * qh ) to (row * qh + qh − 1) do
5: emit( (h, subKey), sh )

6: end for
7: else
8: col = random(0, qh −1) /* Choose random integer from range

[0,qh − 1] */

9: /* Emit tuple copy to each sub-group in selected column */

10: for subKey = col to ((ph − 1)qh + col) step qh do
11: emit( (h, subKey), th )

12: end for
13: end if

Algorithm 4 : Reduce

Input: key = (h, subKey); list of values of type sh ∈ Sh , th ∈ Th
1: Compute the cross-product between all sh ∈ Sh and th ∈ Th in

the input value list; emit all these pairs

simple linear estimation model
1
defined as

R = β0 + β1It + β2Im + β3Om . (11)

Here It denotes the total amount (in bytes) of reducer input (and

hence mapper output) shuffled/sorted, and Im and Om are the

amount (in bytes) of input and the cardinality of output, respec-

tively, assigned to the worker receiving the highest load. We train

a different such model for different ranges of output tuple sizes (in

bytes), using a logarithmic scale: tuple size between 0 to 100 bytes,

101 to 1000 bytes, 1001 to 10,000 bytes etc.

The model parameters are obtained using linear regression from

training runs, where we vary the total amount of data shuffled by

the mappers in order to estimate β0 and β1. Parameters β2 and β3,
which correspond to γ and α , respectively, in the load model, are

estimated by executing joins for varying input and output sizes.

Essentially, we estimate the data transfer speed of the network

and the local join processing time at the individual worker ma-

chines. Hence only small training data is needed: we obtained good

estimates from a few dozen training runs.

Algorithm 5, which we refer to as GreedyPartition-R, shows
the corresponding version of GreedyPartition (Alg. 1) with running-

time model R. The concrete termination condition for the while-

loop is discussed below. In line 5, to apply running time model R,

the values of It , Im , andOm need to be derived from sub-group par-

titioning [(ph ,qh )]h∈H . This is trivial for It =
∑
h∈H (qh |Sh |σS +

ph |Th |σT ), where σS and σT denote the size (in bytes) of an input tu-

ple from S andT , respectively. However, Im , andOm depend on the

assignment of (sub) groups to workers. Our algorithm can consider

1
More detailed and accurate models could be used, but our experiments indicate that

even this simple estimate is sufficient for capturing the main running time trends.
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Algorithm 5 : GreedyPartition-R

Input: heavy hitter candidate statistics [|Sh |]h∈H , [|Th |]h∈H
Input: starting partitioning [(ph ,qh )]h∈H
Input: weight function weight
1: while termination condition not met do
2: Increment the ph or qh that maximizes the ratio of benefit

and cost

3: /* Benefit = amount of variance reductionwhen incrementing

the corresponding ph or qh */

4: /* Cost = weight assigned by weight to the corresponding

ph or qh */

5: Determine It , Im , and Om for the new partitioning

6: Evaluate running-time model R for the new It , Im , Om
7: end while
8: return partitioning [(ph ,qh )]h∈H with lowest predicted run-

ning time

any load assignment function, including random and deterministic

scheduling heuristics.

For random assignment of (sub) groups to workers, one typically

uses hash functions, in particular universal hashing. A hash function

maps each (sub) group key to a worker. In order to increase the

probability of finding a well-balanced (sub) group assignment, this

approach would use k ′ > 1 hash functions, selected randomly from

the universal family.

For deterministic load assignment, note that minimizing β2Im +
β3Om corresponds to a classic minimum makespan scheduling

problem that is known to be NP-hard. A simple greedy heuristic

was shown to give a 4/3-approximation [13]. It assigns (sub) groups

in decreasing order of their induced load, i.e., β2(
|Sh |σS
ph
+

|Th |σT
qh

)+

β3
|Sh | |Ta |
phqh

, one-by-one, always to the worker with the least load.

We will refer to this algorithm as least-loaded decreasing (LLD).
The running time of LLD is k logk , where k =

∑
h∈H phqh denotes

the number of heavy hitter (sub) groups.

While-loop termination condition. As the greedy algorithm

increments the number of partitions for heavy-hitter groups, max

load will initially decrease as big groups are broken up and load

can be more evenly distributed. (This is not a monotonic behavior:

max load might rise and fall repeatedly in the process.) At the same

time, average load will monotonically increase, because the number

of input duplicates increases. Figure 4 shows a typical behavior we

observed in our experiments. The first few partitionings quickly

reduce the gap between max and average load, indicating rapidly

improving load balance. As this gap closes, the potential for run-

ning time reduction from better load distribution diminishes and

the steadily increasing average load begins to have a dominating

effect on running time. This causes running time to first drop, then

reach a minimum, from which it steadily starts increasing again.

To ensure reliable identification of this turning point, we propose

the following while-loop termination condition: model-estimated

running time dropped by less than 1% total over the lastw iterations.

In our experiments, even for heavily skewed data, the algorithm

never exceeded 100 loop executions.

Figure 4: Max load, average load, and estimated running
time for data set Zipf-5m-[1,0].

Algorithm analysis: In each iteration of the while-loop, Alg. 5

computes It and R in constant time. (It can be computed incremen-

tally by simply adding |Sa |σS or |Ta |σT , respectively.) For Im and

Om , let k =
∑
h∈H phqh denote the number of (sub) groups. Using

LLD load assignment, sorting of (sub) groups by induced load dom-

inates, resulting in O(k logk) complexity. Load assignment using

k ′ randomly selected hash functions incurs asymptotic cost O(k ′k).
The heavy hitter sub-group partitioning is found by a version of

SimpleGreedy (Alg. 2), which we refer to as SimpleGreedy-R. It
calls GreedyPartition-R, instead of GreedyPartition. Hence com-

plexity compared to the counterpart without R increases by a factor

k logk for LLD and k ′k when using k ′ hash functions.

6 DISCUSSION
This section explores the impact of our results from the practi-

tioner’s point of view.

Submodularity for foreign-key joins. Load variance mini-

mization is submodular for all foreign-key join problems (Theo-

rem 4.6). In fact, for foreign-key joins, Alg. 1 behaves in a very

intuitive way. W.l.o.g. letT be the relation where A is the key. Then

the cost of incrementing any ph is always 1, no matter which Sh

is partitioned. Since benefit is equal to
(γ+α )2 |Sh |2

ph (ph+1)
− γ 2 (see Eq. 19

in Appendix A.2), the Sh with the greatest value of
|Sh |2

ph (ph+1)
is par-

titioned next. Since
|Sh |2

ph (ph+1)
≈

|Sh |2

p2h
, this tends to be the heavy

hitter whose sub-groups are currently the largest.

Submodularity in general. For other equi-join problems, sub-

modularity depends on the ratio γ/α . Even if it does not hold, one

can still use the greedy partitioning algorithm, we simply lose the

near-optimality guarantee. Notice that even without submodularity,

the algorithm may still be near-optimal in practice, but we cannot

prove it any more. Fortunately, in our experience, submodularity

tends to hold as the following discussion shows.

As shown in Section 4.2, for objective functions f1 and f2, and
hence by construction −V[L], to be both monotone and submodular

in all cases, it is sufficient (though not necessary) that |Sh |/(ph+1) ≥√
2γ/α and, for rectangular partitioning, also |Th |/(qh+1) ≥

√
2γ/α .

Recall thatγ/α captures the ratio of per-input-tuple processing time

to per-output-tuple processing time. This ratio does not necessarily
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have to be near 1. For example, in MapReduce and Spark, due

to backup-copies in the distributed file system, reading might be

significantly cheaper per tuple than writing. (The default is to make

three copies of each file chunk in HDFS.) In that case, γ/α may be

significantly smaller than 1. On the other hand, if join output is

immediately consumed by an aggregate operator (instead of writing

the full result out), then it might be significantly greater than 1.

To understand when |Sh |/(ph + 1) ≥
√
2γ/α might not hold,

recall that ratio |Sh |/ph denotes the number of input tuples from

group Sh assigned to each partition (and analogously for |Th |/qh ).
We argue that a partitioning with fewer than 1000 input tuples per

sub-group does not need to be considered in practice. Even on a

low-end laptop, the straightforward nested-loop implementation—

load from disk 1000 tuples from Sh and 1000 tuples from Th , store
them in an array and then loop through all pairs—completed in less

than a second for realistic tuple sizes, e.g., from the TPC bench-

marks. When distributing pieces of work equivalent to 1 second of

processing time, uneven load distribution is of no concern in a dis-

tributed system where even starting up a job takes minutes. Hence

a more fine-grained partitioning can only achieve insignificant load

balance improvement.

This implies submodularity for a wide range of γ/α ratios. For

|Sh |/ph ≥ 1000, and using that ph ≥ 1 implies ph + 1 ≤ 2ph , we

obtain |Sh |/(ph+1) ≥ 500. Hence for |Sh |/(ph+1) ≥
√
2γ/α to hold,

it is sufficient that γ/α ≤ 353. In all our experiments (Section 7),

which include the most aggressive output-aggregation queries like

SELECT COUNT(*) FROM S, T WHERE S.A=T.A, and very large

input tuples with 1657 attributes, the ratio γ/α was always well

below 350. In summary, we generally expect both monotonicity

and submodularity to hold for all sub-group partitionings that will
be considered during the optimization process in practice.

Random load assignment. Consider a user with skewed data

who would like to use a distributed relational DBMS, Hive [35] or

Spark SQL. These systems all offer implementations of the classic

parallel hash join. Instead of forcing users to change the built-

in hash join implementations to make them skew-resistant, our

techniques can be applied to pre-process the input so that even

the built-in default hash join will not suffer from skew-related

processing delays. More precisely, after our technique identifies the

near-optimal partitioning, a simple one-pass parallel scan can add

sub-group keys to the join-attribute value of tuples in partitioned

groups. This algorithm is equivalent to the Map program in Alg. 3.

Then the classic hash join will work with the new keys, distributing

the sub-groups over the workers.
Deterministic load assignment. In our experience, LLD tends

to find better load assignments than random (hashing). Since the

default parallel join implementations we are aware of use hashing

and not LLD, the user would have to provide his/her own imple-

mentation. If s/he does, then, as discussed in Section 5, we can still

use the greedy partitioning that was developed for random load as-

signment. It loses the near-optimality guarantees, hence turns into

“yet another heuristic”. Interestingly, as our experiments show, this

heuristic beats the state of the art across different join types, clus-

ters, and diverse data sets. We intend to investigate this in depth in

future work. Note also that no existing algorithm provides practically
relevant near-optimality guarantees for running time. In particular,

even the asymptotically near-optimal BKS algorithm (see Section 7)

falls short in several ways. (1) It only considers asymptotic cost,

hence might be off by a large constant factor compared to optimal.

(2) It does not support triangular partitioning, thus introducing a

much higher data duplication cost for natural self-joins. And (3), it

only considers input-induced load.

7 EXPERIMENTAL EVALUATION
The previous sections proved analytically that we can efficiently

find near-optimal combinations of load expectation and variance.

Hence the main goal of the experiments is to show that optimizing

for this tradeoff results in competitive running times for the join

partitioning found. In all cases, computation time of Alg. 5 for

finding the sub-group partitioning was negligible (less than 1 sec

on a single machine) compared to running time of the join itself.

Each experiment was repeated multiple times; since running times

varied by less than 10%, we omit error bars and only report averages.

7.1 Basic Setup
Environments. We implemented all algorithms in Hadoop

MapReduce and conducted experiments on two different systems.

Cluster14 is an in-house cluster consisting of eight machines

(quad-core Xeon 2.4GHz processor, 8GB RAM, 500GB SATA disk,

Linux) running Hadoop 1.2, connected by a Gigabit network switch.

One machine is dedicated as the master, leaving 7 machines for

a total of 14 workers (2 cores are used on each machine). Emr50
consists of 51 virtual machines of type m1.medium (1 virtual CPU,

3.75GB RAM, 410GB disk, “moderate” network performance) on

Amazon’s Elastic MapReduce cloud. One machine is dedicated as

the master, while the other 50 serve as workers. This cluster runs

Hadoop 2.7.3 with the YARN scheduler in default configuration.

Jobs on both clusters read and write to HDFS.

Queries and data are selected to cover a wide variety of degrees

of skew, γ/α ratios (by having a join with and without aggregation

and by varying the number of attributes in the input relations), and

different bottlenecks (by varying the number of tuples and tuple

size, the size of the largest join group, and the number of small

groups).

Queries. JOIN computes the full equi-join, emitting all result

tuples. JOIN-AGG computes an equi-join whose results are aggre-

gated on-the-fly as they are generated, resulting in significantly

lower α . (We compute the sum over a non-join attribute.) Only

a single output tuple is emitted for each join group. SELF-JOIN
and SELF-JOIN-AGG are self-join versions of JOIN and JOIN-AGG,
respectively.

Data.We show representative results on a variety of synthetic

and real data, summarized in Table 2.

Zipf-n-z denotes a pair of synthetic data sets with Zipf-

distributed join attribute, with skew parameter z. If the two inputs

have different z, we include both, e.g., Zipf-5m-[1,0] indicates that

one data set has z = 1, the other z = 0. (As usual, z = 0 results

in uniform distribution; values between 0.25 and 1.0 represent de-

grees of skew often observed in practice.) Each data set contains

n tuples with join attribute values between 1 and 20. By default,

join attribute distribution is correlated in the sense that the most

frequent value in one input is also the most frequent in the other. In
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Data sets |I|
(×109)

|O|

(×109)

Number of
Columns

Zipf-100k-1.0-1g* 1.00 0.01 2

Zipf-500k-1.0-1g* 1.00 0.1 2

Zipf-90k-1.0-1g 1.00 1 2

Zipf-200k-1.0-50m 0.05 5 2

Zipf-285k-1.0-10m 0.01 10 2

Zipf-100k-1.0 0.0002 1.23 2

Zipf-500k-0.25 0.001 13.11 2

Zipf-500k-0.5 0.001 15.59 2

Zipf-500k-1.0 0.001 30 2

Zipf-5m-0 0.01 1250 200

Zipf-5m-[0.5,0] 0.01 1250 200

Zipf-5m-[1,0] 0.01 1250 200

Zipf-5m-0.5 0.01 1559 200

Zipf-5m-1.0 0.01 3083 200

ebird-basic 0.0038 600 953

ebird-all 0.0038 600 1657

cloud-200k 0.0004 6.52 4

cloud-5m 0.01 4077 100

cloud-10m 0.02 16353 100

tpc-h-cust-nation 0.2 0.2 8

Table 2: Data set properties

order to create various input-output size ratios, we selectively apply

two modifications: (1) Add to Zipf-n-z many small groups with join

attribute values randomly sampled from 100 to 2,000,000, which

significantly increases the input size while virtually not affecting

output. These data sets are named Zipf-n-z-s , where s denotes the
total number of tuples in each input. (2) Remove the correlation

between the Zipf distributions of the two inputs, i.e., the frequent

join attribute values in one input may be frequent or infrequent in

the other. These data set pairs have a “*” added to their name.

cloud-n denotes a pair of real data sets containing n tuples

randomly sampled from a set of cloud reports [14]. They are joined

on latitude, which was quantized into 10 equi-width bins to model

a climate-zone based correlation analysis.

ebird-all is another real data set containing 1.89 million bird

sightings, each with 1657 attributes describing properties of obser-

vation event, climate, landscape, etc [26]. ebird-basic is the same

set, but with only the 953 most important columns. For both eBird

data sets, we compute the self-join on three Boolean attributes, cap-

turing presence (yes or no) of the top-3 most frequently reported

bird species in North America. This was motivated by correlation

studies exploring habitat properties based on species appearance

patterns.

tpc-h-cust-nation is from TPC-H [36] and we run foreign-key

join between tables CUSTOMER and NATION on “NATIONKEY”.

This join shows up in Q7, Q8 and Q10. NATION has only 25 tuples

as there are 25 distinct NATIONKEY values according to the TPC-H

spec. To add realistic data skew, we make the foreign key CUS-

TOMER.NATIONKEY follow a Zipfian distribution with z = 1.0.

Algorithms.We compare end-to-end running time against state-

of-the-art competitors.

ExpVar: our proposed SimpleGreedy algorithm (Alg. 2). It calls

Alg. 5, using LLD assignment and considering all groups as heavy-

hitter candidates.

NoPar: the standard hash-based join algorithm that does not split

groups into sub-groups.

PaBr: the “partition and broadcast” algorithm. For each heavy

hitter h ∈ H , the larger of Sh and Th is partitioned into w equal

chunks (one assigned to eachworker), while the smaller is broadcast

to all workers. In previous work, heavy hitters are often defined

as those groups that have greater than average load. We ran three

different versions of the algorithm, each for a different definition of

load: considering only input, only output, or the sum of input and

output. The reported results are for the best of the three, which in

most cases were the latter two.

PaBr+: our improved version of PaBr that uses our running-time

model R (Section 5.2) to determine the best heavy-hitter threshold.

The algorithm sorts all groups by load, then tries each possible

threshold—from the load of the biggest group to that of the smallest—

and returns the partitioning with the shortest estimated running

time.

BKS: the improved hypercube-based algorithm that was shown

to be asymptotically near-optimal for binary equi-joins [2]. For

any heavy hitter h ∈ H , it assigns wh = ⌈w ·
|Sh |∑

i∈H |Si |
⌉ + ⌈w ·

|Th |∑
i∈H |Ti |

⌉ + ⌈w ·
|Sh | |Th |∑
i∈H |Si | |Ti |

⌉ workers to process join group h.

Givenwh , a rectangular partitioning ofwh sub-groups is created.

Heavy hitters are defined as those groups whose load is above

average.

BKS+: our improved version of BKS that, like PaBr+, uses our cost
model to determine the best heavy hitter threshold.

ExpVarTri: our proposed algorithm, a version of SimpleGreedy

calling Alg. 5, using the triangular partitioning for self-joins.

CIK: a specialized sub-group partitioning algorithm for self-joins,

adapted from the state-of-the-art “Dis-Dedup” algorithm [6]. The

number of workers assigned to each heavy-hitter group is propor-

tional to its load. Details are described in Appendix B.1. The only

difference is that for i , j and si , sj ∈ Sh , Dis-Dedup only outputs

either (si , sj ) or (sj , si ), but not both. (Duplication checking is sym-

metric, i.e., only one of the two is needed.) For a self-join, both pairs

have to be emitted.

CIK+: our improved version of CIK that, like PaBr+, uses our cost
model to determine the best heavy hitter threshold.

Note that different algorithms may find the same sub-group

partitioning, which results in identical running time numbers in

the tables. We always use the best load assignment for a given

set of (sub) groups, even if the originally proposed version of the

algorithm used a worse one. This way all reported differences are

due to the quality of the sub-group partitioning found. The only

exception is the NoPar algorithm that does not create sub-groups

and by definition uses a simple hash-based load assignment.

Similarly, we use the same running-time cost model R for any

cost estimation done by any of the algorithms. The running-time

models for a cluster are trained using a total of only 50 training

points. They are selected such that a space of n3 possible (It , Im ,
Om ) combinations contains only O((log

10
n)3) training points—to

ensure a reasonable offline training investment even if input and

output of different joins processed on a given cluster differ by

several orders of magnitude.

Heavy hitter statistics.Wemade count statistics for all groups,

not just the heavy hitters, available to all algorithms. This was done
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Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+
Zipf-200k-1.0-50m 755 5005 1137 769 1181 913

Zipf-285k-1.0-10m 1352 7965 2160 1324 1507 1448

Zipf-100k-1.0 208 1270 299 201 240 217

Zipf-500k-0.25 1765 4599 1937 1756 3199 1808

Zipf-500k-0.5 2125 7676 3663 2048 3668 2535

Zipf-500k-1.0 4033 27455 5389 4114 5338 4310

Zipf-100k-1.0-1g* 1570 1837 1764 1660 1789 1789

Zipf-500k-1.0-1g* 1661 1961 1968 1728 1817 1817

Zipf-90k-1.0-1g 1789 3198 2059 1900 1873 1869

cloud-200k 1144 4448 1612 1204 1594 1215

tpc-h-cust-nation 433 1294 448 448 597 467

Table 3: Running times (sec) for JOIN on Cluster14

Data sets ExpVarTri CIK CIK+
sj-zipf-200k-1.0-50m 843 1434 1395

sj-zipf-500k-0.25 1923 2827 2827

sj-cloud-200k 1220 2263 2263

Table 4: Running times (sec) for SELF-JOIN on Cluster14

for several reasons. (1) Even if those statistics are not available or

are incomplete, it is cheap to collect them compared to the cost of

a join. (In our experiments, it took less than 1/10 of the time of the

fastest join implementation; for JOIN much less.) (2) There is no

universally accepted definition of a heavy hitter. ExpVar does not
need a pre-defined heavy-hitter threshold. Its variance/duplication-
ratio based optimization automatically determines which groups

to partition—generally the largest ones first. On the other hand,

previous work requires a given threshold. Proposed thresholds

turned out to be suboptimal in many cases, therefore we included

the corresponding “+” versions of the algorithms. They use the

same cost model as our approach in order to make a better selection

automatically.

7.2 Results for JOIN
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Figure 5: ExpVar partitioning for JOIN on cloud-200k

Table 3 shows the running times for computing JOIN on

Cluster14. ExpVar leads to the lowest running-time on all data

sets, no matter if join input is larger or smaller than output. Its par-

titioning, shown for an example in Figure 5, automatically identifies

Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+
cloud-5m 314 1291 473 446 329 325

ebird-all 1367 3000 3222 3000 1927 1871

ebird-basic 598 1051 1842 1051 939 907

Zipf-5m-0.5 353 591 693 498 494 454

Zipf-5m-1.0 562 1502 989 924 692 643

Zipf-5m-0 333 378 378 325 378 365

Zipf-5m-[0.5,0] 321 418 474 304 391 379

Zipf-5m-[1,0] 351 495 894 474 461 359

(a) Running times (sec) on Cluster14.

Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+
cloud-5m 440 3652 1088 1088 546 546

ebird-basic 380 3410 1022 684 464 425

BKS-bad-case 2072 3212 5419 2072 3574 2072

(b) Running times (sec) on Emr50.

Table 5: Performance for JOIN-AGG.

which groups to partition and howmuch. NoPar generally performs

the worst due to poor load balancing caused by under-partitioning.

ExpVar beats the mainstream algorithm PaBr by a large margin

in most cases. PaBr, and in some cases also BKS, under-partition
“medium” hitters whose size is just below the heavy-hitter thresh-

old, resulting in poor load balance. PaBr+ and BKS+ perform better,

because they select a lower threshold based on the running-time

model.

The last line in Table 3 shows the case of a foreign-key join be-

tween CUSTOMER and NATION. Since the join is on NATION’s pri-

mary key, only CUSTOMER gets partitioned. Hence any algorithm

that properly partitions and distributes CUSTOMER in a balanced

way should achieve a competitive running time. Only NoPar and
BKS suffer from poor load balance due to under-partitioning.

Overall, all algorithms that use a cost model to guide the par-

titioning process (ExpVar, PaBr+, BKS+) perform similarly well,

because they avoid under-partitioning of large join groups. It turns

out that moderate over-partitioning (and hence “unnecessary” in-

put duplicates) for large join groups has negligible effect on running

time due to the very high output-to-input size ratio. This will be

different for JOIN-AGG.

The running times for computing SELF-JOIN are reported in

Table 4. ExpVarTri beats the other two algorithms by a largemargin

of up to 80%. CIK suffers from under-partitioning on large groups

compared to our ExpVarTri algorithm. CIK+ sometimes improves

on CIK slightly, but still suffers from the same problem.

7.3 Results for JOIN-AGG
This set of experiments explores running time for the join that

immediately aggregates its output, i.e., emits only a small aggregate

result of a few dozen result tuples—a single tuple per join group.

Note that the larger cluster takes longer on the same problem

instances, because of the slower network and slower individual

workers. The slower individual machines affected local running

time of the most loaded worker for NoPar, while the slower network
delayed shuffling for the large inputs for the other algorithms.

Tables 5a and 5b show representative results on the two clusters.

Our proposed ExpVar technique wins in all cases, sometimes by a
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wide margin, no matter how skewed the input. NoPar suffers from

the high load induced by the largest input group on the worker

assigned to it. PaBr and PaBr+ tend to over-partition large groups,

but under-partition slightly smaller ones, because of their simplistic

binary approach of either partitioning intow sub-groups (for heavy

hitter groups) or not partitioning at all (all other groups).

BKS, which also relies on a heavy-hitter threshold, performs well.

This is caused by a more intelligent partitioning of heavy hitters,

nearly eliminating the effect of over-partitioning. However, it still

suffers from under-partitioning when the number of groups is small

and those “medium” hitters are not split. To further explore this

aspect, we created BKS-bad-case as follows. The input consists of

49 groups of size 1.2 · 106 by 2 · 105 each, and a single group of

size 1.19 · 106 by 1.9 · 105. The former are above the average, the

latter is below, and hence will not be split by BKS. Even though it

finds a near-optimal partitioning for the 49 bigger groups (each is

partitioned into 6 sub-groups of size 200,000 by 200,000), the small

group is not partitioned at all. The worker receiving this group

ends up delaying job completion, even though all (sub) groups are

optimally distributed over the 50 workers. BKS+ finds the optimal

solution thanks to our proposed extension of leveraging a cost

model for identifying the heavy hitter threshold.

ExpVar and PaBr+ automatically find the optimal solution, i.e.,

do not split any group, assigning one per worker. NoPar also does

not split groups, but since it uses a hash function to assign groups

to workers (instead of LLD, which is a better choice here), a worker

might receive more than one, while another receives none.

The SELF-JOIN-AGG results are listed in Table 6. For all data sets,

ExpVarTri wins over the competitors. Similar to the SELF-JOIN
case, CIK+ in some cases improves the running time over CIK, but
not by a large margin.

7.4 A Look Under the Hood
Tables 7 and 8 show detailed statistics for some of the data sets.

In Table 7, the first data set has larger input (2 billion tuples) than

output, and very few large groups. The largest of them has only

about 25K tuples in each S andT . Despite being so small, that group

produces about 6.25E+8 output tuples, almost ten times the average

per-worker output of 10
9/14 = 7.1E+7. Hence the right strategy

for this data set is to carefully partition the few largest groups. All

but NoPar and PaBr do this to some degree, but ExpVar and PaBr+
stand out by coming close to the ideal output per worker of 7.1E+7,

while generating negligible input duplication.

For the second data set, output is four orders ofmagnitude greater

than input. Hence the right approach for running-time minimiza-

tion is to aggressively balance output load, even at the cost of high

input duplication. ExpVar automatically recognizes this, going fur-

ther than the competitors in partitioning medium-sized groups and

hence winning on running time (Table 3).

For JOIN-AGG, output size never exceeds a few dozen tuples (one

aggregate per join group), hence cost per input tuple is significantly

higher than per output tuple. Compared to JOIN, the winning par-

titioning strategy therefore should reduce input duplication, while

paying less attention to load balancing. However, there are some

large groups that produce very high computation cost as indicated
by the large number of joined pairs in the last column of Table 8.

On cloud-5m, ExpVar strikes the best balance by producing sig-

nificantly lower maximal input per worker than all competitors.

Only NoPar produces fewer input duplicates in total, but it suf-
fers from the high computation cost for the biggest join group.

On ebird-all, interestingly the BKS algorithms beat ExpVar on

both max input and output per worker , i.e., do better in terms of

minimizing max worker load. However, our approach recognizes

correctly that here the total input duplication matters more due to

high communication cost relative to computation cost. By generat-

ing less than half the total amount of input, ExpVar significantly
beats the BKS approaches.

8 RELATEDWORK
Hash partitioning has been used for equi-joins since the dawn

of parallel databases [9, 20]. In Hive, the optimizer may select a

join implementation where one input is partitioned into chunks

arbitrarily, while the other is copied to every worker [35].

The limiting effect of join attribute skew on speedup is well

known and was discussed by Walton et al. [39]. Some earlier

works [17, 19] propose methods to distribute groups more evenly.

While some techniques assign load statically, e.g., by using bin

packing or scheduling heuristics such as first-fit decreasing [17],

others attempt to dynamically remedy load imbalance at run-

time [8, 12, 15, 30]. Our work is orthogonal to the choice of static

or dynamic load balancing, i.e., the proposed partitioning could be

applied in either case as soon as (approximate) count statistics per

input are known.

In most of those earlier works, splitting of groups was not con-

sidered. Later techniques rely on a threshold to identify “heavy

hitter” groups and typically use partition-broadcast for them: the

larger input is partitioned over all workers, while the smaller is

broadcast [28, 41, 42]. As our experiments show, the resulting over-

partitioning of heavy hitters and under-partitioning of the other

groups can lead to poor performance. Granularity of group parti-

tioning was left as a user-defined parameter or driven by factors

such as number of workers or memory size [10, 23, 29]. Bruno et

al. [4] consider assigning a subset of workers to each heavy hitter,

but partition granularity is determined by a simplistic per-group

cost analysis that does not take other groups into account. The state

of the art algorithm determining how many workers to assign to

each heavy hitter group is the asymptotically near-optimal algo-

rithm by Beame et al. [2], which is included in our experimental

comparison (BKS).
Input partitioning was also considered for the more general prob-

lem of distributed theta-join computation. Vitorovic et al. [38] pro-

pose a new tiling algorithm to partition the join matrix in a balanced

way, improving over earlier work by Okcan and Riedewald [27].

However, the authors themselves point out that for equi-joins one

should instead rely on a specialized solution such as [2], because

general theta-join approaches do not exploit the strong structural

properties of key-equality based matching in equi-joins.

For kNN and similarity joins in distributed systems, various

partitioning-based approaches have been proposed. Zhang et

al. [43] employ z-value based sorting of data and range-partition

accordingly, which allows the search of (approximately) top-k
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Data sets ExpVarTri CIK CIK+
cloud-5m 306 541 541

ebird-all 607 696 607

(a) Running times (sec) on Cluster14

Data sets ExpVarTri CIK CIK+
cloud-10m 808 1148 1148

(b) Running times (sec) on Emr50

Table 6: Performance for SELF-JOIN-AGG

Data sets Alg. #input
tuples

#shuffled
tuples

#input tuples
on most

loaded worker

#result tuples
on most

loaded worker

#result
tuples

Zipf-90k-1.0-1g ExpVar 2.00E+09 2000896412 71494429 72541536 9.99E+08

Zipf-90k-1.0-1g NoPar 2.00E+09 2000000000 71428572 625750225 9.99E+08

Zipf-90k-1.0-1g PaBr 2.00E+09 2000179976 71478602 625750225 9.99E+08

Zipf-90k-1.0-1g PaBr+ 2.00E+09 2001023078 71508779 73098595 9.99E+08

Zipf-90k-1.0-1g BKS 2.00E+09 2000428372 71461349 89873111 9.99E+08

Zipf-90k-1.0-1g BKS+ 2.00E+09 2000546846 71479838 87776981 9.99E+08

Zipf-500k-1.0 ExpVar 1.00E+06 8.43E+06 6.11E+05 2.21E+09 3.08E+10

Zipf-500k-1.0 NoPar 1.00E+06 1.00E+06 2.78E+05 1.93E+10 3.08E+10

Zipf-500k-1.0 PaBr 1.00E+06 4.31E+06 3.92E+05 3.24E+09 3.08E+10

Zipf-500k-1.0 PaBr+ 1.00E+06 5.68E+06 4.46E+05 2.26E+09 3.08E+10

Zipf-500k-1.0 BKS 1.00E+06 2.41E+06 2.25E+05 3.30E+09 3.08E+10

Zipf-500k-1.0 BKS+ 1.00E+06 2.51E+06 1.90E+05 2.39E+09 3.08E+10

Table 7: JOIN on Cluster14: detailed statistics

Data sets Alg. #input
tuples

#shuffled
tuples

#input tuples
on most

loaded worker

#joined pairs
on most

loaded worker
cloud-5m ExpVar 1E+07 1.53E+07 1.31E+06 3.81E+11

cloud-5m NoPar 1E+07 1.00E+07 2.28E+06 1.30E+12

cloud-5m PaBr 1E+07 6.97E+07 5.57E+06 3.87E+11

cloud-5m PaBr+ 1E+07 4.99E+07 4.42E+06 4.67E+11

cloud-5m BKS 1E+07 2.73E+07 2.40E+06 3.32E+11

cloud-5m BKS+ 1E+07 2.57E+07 2.24E+06 3.05E+11

ebird-all ExpVar 1.89E+06 4.44E+06 9.85E+05 2.16E+11

ebird-all NoPar 1.89E+06 1.89E+06 1.32E+06 4.34E+11

ebird-all PaBr 1.89E+06 2.68E+07 2.14E+06 6.09E+10

ebird-all PaBr+ 1.89E+06 6.64E+06 3.94E+06 4.31E+11

ebird-all BKS 1.89E+06 1.06E+07 8.57E+05 5.64E+10

ebird-all BKS+ 1.89E+06 1.06E+07 8.57E+05 5.64E+10

Table 8: JOIN-AGG on Cluster14: detailed statistics

neighbors for each record within a small range. Lu et al. [24] ex-

ploit Voronoi diagram-based partitioning so that kNN join can

be answered by checking data points within each partition. For

set-similarity joins, Vernica et a. [37] use prefix filters and hash-

partition input data onto different workers. For similarity joins

with edit distances, Jiang et al. [18] design parallel algorithms us-

ing multi-core processors. For similarity joins on general metric

distance, [33] and [40] propose algorithms that partition input data

sets into sufficiently small subsets in an ad-hoc manner. Sarma

et al. [7] design a dynamic partitioning scheme that can balance

load distribution. Tang et al. [34] focus on similarity joins of tree-

structured objects, and propose a novel partitioning approach that

can decompose tree objects into balanced subgraphs. For all these

approaches for kNN and similarity joins, the main contributions

are centered around pruning of non-joinable pairs, ways to map

kNN/similarity joins to equi-join like hash partitioning, and parti-

tioning methods for processing such joins in parallel. These works

are orthogonal to ours.

Several previous publications experimentally compare dis-

tributed join performance [3, 5, 9, 31, 32]. Afrati and Ullman propose

a cost analysis to minimize communication cost, assuming even

load distribution for running time estimation [1]. Kwon et al. [22]

uses dynamic scheduling to mitigate the impact of skewness in

MapReduce programs, but cannot automatically split groups as it

treats the map and reduce functions as black boxes. Recent work

on storage layout like AdaptDB [25] focuses on optimizing commu-

nication cost for workloads with various join queries on different

attributes. Duggan et al. [11] propose a skew-aware join optimiza-

tion framework for array databases.

9 CONCLUSIONS
This work presents an interesting and novel way to approach dis-

tributed join computation. Previous work either falls into the cate-

gory of heuristics without any optimality guarantees or optimality

guarantees for asymptotic cost. By quantifying the tradeoff between

load expectation and variance, we were able to design novel algo-

rithms that provide constant-factor approximation compared to

an optimal solution. More precisely, we identified algorithmically

verifiable conditions that are sufficient for ensuring that minimizing

load variance subject to a limit on load expectation is a monotone

submodular maximization problem with Knapsack constraints. Our

results apply to all equi-join problems, including self-joins and the

most general load definition as the weighted sum of input and out-

put. Monotonicity and submodularity hold for a wide variety of

practically relevant ratios of per-input-tuple to per-output-tuple

processing time.

For cases where submodularity does not hold or when using

deterministic load assignment, optimality cannot be proven any

more. Nevertheless, extensive experiments showed that sub-group

partitioning driven by the expectation-variance tradeoff for random

load assignment works very well for deterministic load assignment

in practice, beating the state of the art across a wide variety of

problems. In future work we will explore how to generalize the

approach to multi-way joins and how to include deterministic load

assignment in the analytical results.
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A RECTANGULAR PARTITIONING:
MONOTONICITY AND SUBMODULARITY

This section contains detailed proofs for the monotonicity and

submodularity of −V[L] when rectangular partitioning is used, i.e.,

the corresponding theorems mentioned in Sections 4.1 and 4.2.

A.1 General Case
A.1.1 Monotonicity (Theorem 4.1). To prove Theorem 4.1, we

first prove a stronger result as follows.

Lemma A.1. Worker load variance −V[L] is monotonically in-
creasing in the number of partitions ph of Sh and qh of Th , for

each join attribute value h ∈ H , if α ≥

(√
ph (ph+1)
|Sh |

−
qh
|Th |

)
γ and

α ≥

(√
qh (qh+1)
|Th |

−
ph
|Sh |

)
γ .

Proof. Define
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k ∈H

pkqk (γ
|Sk |

pk
+γ

|Tk |

qk
+α

|Sk | |Tk |

pkqk
)2.

Then the discrete derivative on ph is

д1(ph + 1,qh ) − д1(ph ,qh ) =

−

[
(ph + 1)qh

(
γ

|Sh |

ph + 1
+ γ

|Th |

qh
+

α |Sh | |Th |

(ph + 1)qh

)
2

+
∑
k ∈H
k,h

pkqk

(
γ
|Sk |

pk
+ γ

|Tk |

qk
+
α |Sk | |Tk |

pkqk

)
2

]

+
∑
k ∈H

pkqk (γ
|Sk |

pk
+ γ

|Tk |

qk
+ α

|Sk | |Tk |

pkqk
)2

=
γ 2(q2h |Sh |

2 − ph (ph + 1)|Th |
2) + α2 |Sh |

2 |Th |
2 + 2αγqh |Sh |

2 |Th |

ph (ph + 1)qh
.
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Since ph (ph + 1)qh > 0, д1 is monotonically increasing in ph when

γ 2(q2h |Sh |
2 − ph (ph + 1)|Th |

2) + α2 |Sh |
2 |Th |

2 + 2αγqh |Sh |
2 |Th | ≥ 0

⇔

(
α |Sh | |Th | + γ (qh |Sh | +

√
ph (ph + 1)|Th |)

)
·

(
α |Sh | |Th | + γ (qh |Sh | −

√
ph (ph + 1)|Th |)

)
≥ 0

⇔ α |Sh | |Th | + γ (qh |Sh | −
√
ph (ph + 1)|Th |) ≥ 0

⇔ α ≥

√
ph (ph + 1)|Th | − qh |Sh |

|Sh | |Th |
γ =

(√
ph (ph + 1)

|Sh |
−

qh
|Th |

)
γ

(12)

Similarly, the discrete derivative of д1 on qh is

д1(ph ,qh + 1) − д1(ph ,qh )

= −

[
ph (qh + 1)

(
γ
|Sh |

ph
+ γ

|Th |

qh + 1
+

α |Sh | |Th |

ph (qh + 1)

)
2

+
∑
k ∈H
k,h

pkqk

(
γ
|Sk |

pk
+ γ

|Tk |

qk
+
α |Sk | |Tk |

pkqk )

)
2

]

+
∑
k ∈H

pkqk

(
γ
|Sk |

pk
+ γ

|Tk |

qk
+
α |Sk | |Tk |

pkqk

)
2

=
γ 2(p2h |Th |

2 − qh (qh + 1)|Sh |
2) + α2 |Sh |

2 |Th |
2 + 2γαph |Sh | |Th |

2

phqh (qh + 1)
,

so д1 is monotonically increasing in qh when

γ 2(p2h |Th |
2 − qh (qh + 1)|Sh |

2) + α2 |Sh |
2 |Th |

2 + 2γαph |Sh | |Th |
2 ≥ 0

⇔ (γ (ph |Th | +
√
qh (qh + 1)|Sh |) + α |Sh | |Th |)

· (γ (ph |Th | −
√
qh (qh + 1)|Sh |) + α |Sh | |Th |) ≥ 0

⇔ γ (ph |Th | −
√
qh (qh + 1)|Sh |) + α |Sh | |Th | ≥ 0

⇔ α ≥

√
qh (qh + 1)|Sh | − ph |Th |

|Sh | |Th |
γ =

(√
qh (qh + 1)

|Th |
−

ph
|Sh |

)
γ .

(13)

Hence, when α and γ satisfy inequalities 12 and 13, −V[L] is mono-

tonically increasing. �

Since α ≥
ph+1
|Sh |

γ implies Inequality 12, and α ≥
qh+1
|Th |

γ implies

Inequality 13, Theorem 4.1 is proved.

A.1.2 Submodularity (Theorem 4.5). We consider a stronger re-

sult than Theorem 4.5, as follows.

Lemma A.2. The set function f1 is submodular iff for ∀h ∈ H ,

α ≥

√
qh (qh+1)

|Th |2
+

ph (ph+1)
|Sh |2

· γ .

Proof. To prove submodularity of f1, we need to compare the

discrete derivatives of f1 for sets X and Y ⊇ X , i.e., we want to
show the following inequality.

(f1(X ∪ {x}) − f1(X )) − (f1(Y ∪ {x}) − f1(Y )) ≥ 0 (14)

Note that x = (h, 0, i) or x = (h, 1, j) for some h ∈ H and 1 ≤

i ≤ |Sh | or 1 ≤ j ≤ |Th |. And x < Y , which means adding x to X
increases the number of partitions ph of Sh or qh of Th .

Considering x = (h, 0, i) first, we need to show Inequality 14 for

two cases: (1) Y − X = {(h, 0, i ′)}, 1 ≤ i ′ ≤ |Sh |; (2) Y − X = {(h, 1,
j ′)}, 1 ≤ j ′ ≤ |Th |. Then the desired result for any Y ⊇ X follows

from proof by induction.

For case (1), f1(X ∪ {x}) = f1(Y ), so

(f1(X ∪ {x}) − f1(X )) − (f1(Y ∪ {x}) − f1(Y ))

= phqh (
γ |Sh |

ph
+
γ |Th |

qh
+
α |Sh | |Th |

phqh
)2

− 2(ph + 1)qh (
γ |Sh |

ph + 1
+
γ |Th |

qh
+

α |Sh | |Th |

(ph + 1)qh
)2

+ (ph + 2)qh (
γ |Sh |

ph + 2
+
γ |Th |

qh
+

α |Sh | |Th |

(ph + 2)qh
)2

=
2γ 2q2h |Sh |

2 + 4γαqh |Sh |
2 |Th | + 2α

2 |Sh |
2 |Th |

2

ph (ph + 1)(ph + 2)qh
≥ 0.

For case (2),

(f1(X ∪ {x}) − f1(X )) − (f1(Y ∪ {x}) − f1(Y ))

= −(ph + 1)qh (
γ |Sh |

ph + 1
+
γ |Th |

qh
+

α |Sh | |Th |

(ph + 1)qh
)2

+ phqh (
γ |Sh |

ph
+
γ |Th |

qh
+
α |Sh | |Th |

phqh
)2

+ (ph + 1)(qh + 1)(
γ |Sh |

ph + 1
+

γ |Th |

qh + 1
+

α |Sh | |Th |

(ph + 1)(qh + 1)
)2

− ph (qh + 1)(
γ |Sh |

ph
+

γ |Th |

qh + 1
+

α |Sh | |Th |

ph (qh + 1)
)2

=
−γ 2 |Sh |

2

ph (ph + 1)
+

−γ 2 |Th |
2

qh (qh + 1)
+ α2 ·

|Sh |
2 |Th |

2

ph (ph + 1)qh (qh + 1)
. (15)

Eq. 15 being non-negative is equivalent to

α ≥

√
qh (qh + 1)

|Th |
2
+
ph (ph + 1)

|Sh |
2

· γ . (16)

Symmetrically, for the case of x = (h, 0, j), we also obtain the

same condition as Inequality 16, completing the proof of LemmaA.2.

�

For Inequality 16 to hold, it is sufficient that the following in-

equalities hold.

α ≥

√
2(qh + 1)

|Th |
γ , (17)

α ≥

√
2(ph + 1)

|Sh |
γ . (18)

This completes the proof of Theorem 4.5.

A.2 Special Case: Foreign Key Joins
Now we take a look at a subclass of equi-join problems that fre-

quently happen in practice. W.l.o.g., assumeT is the relation where

join attributeA is the key. Then |Th | = 1 for all h ∈ H . Therefore we

cannot partition on Th any further, leaving qh = 1. In this case, the

monotonicity and submodularity of V[L] holds for any α ∈ [0,∞)

and γ ∈ [0,∞), as described in Theorems 4.2 and 4.6.
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A.2.1 Monotonicity (Theorem 4.2).

Proof. Define

д2(ph ,qh ) = −
w2

w − 1

V[L] = −
∑
i ∈H

pi (
γ |Si |

pi
+ γ +

α |Si |

pi
)2

= −
∑
i ∈H

(
(γ + α)2 |Si |

2

pi
+ 2γ (γ + α)|Si | + piγ

2

)
Then

д2(ph + 1,qh ) − д2(ph ,qh )

=

(
(γ + α)2 |Sh |

2

ph
+ 2γ (γ + α)|Sh | + phγ

2

)
−

(
(γ + α)2 |Sh |

2

ph + 1
+ 2γ (γ + α)|Sh | + (ph + 1)γ

2

)
=

(γ + α)2 |Sh |
2

ph (ph + 1)
− γ 2 (19)

Sinceph < ph+1 ≤ |Sh |,
(γ+α )2 |Si |2

pi (pi+1)
≥ (γ+α)2. Hence, Eq. 19 is non-

negative, which means that −V[L] is monotonically increasing. �

A.2.2 Submodularity (Theorem 4.6).

Proof. Since qh = 1, we only need to prove that Inequality 14

holds when Y − X = {(h, 0, i)}, 1 ≤ i ≤ |Sh |. From the proof of

Lemma A.2, and let |Th | = 1,qh = 1, we have

(f1(X ∪ {x}) − f1(X )) − (f1(Y ∪ {x}) − f1(Y ))

=
2(γ + α)2 |Sh |

2

ph (ph + 1)(ph + 2)
≥ 0.

Therefore, f1 is submodular in both cases, proving Theorem 4.6. �

B SELF-JOINS: TRIANGULAR PARTITIONING
B.1 Worker Assignment
For self-joins, the partitioning algorithm proceeds in twomain steps:

(1) determine how many workers to assign to each heavy hitter

join group; (2) if a group takes more than one worker, partition it

using triangular partitioning, as described in Section 2.

For Step (1), there are multiple assignment strategies. Chu et

al [6] proposed assigning workers to each group proportional to

its load. Specifically, groups are categorized into two types by a

thresholdW
th
. Say Group 1 has loadW1, and ifW1 ≥W

th
, then it

is a “multi-worker group”, otherwise it is a “single-worker group”.

For the former, ⌊w ·
W1

W
total

⌋ workers will be assigned to process

Group 1, whereW
total

is the sum of the loads of all multi-worker

groups. For the latter, Group 1 will not be partitioned, i.e., all tuples

from this group will be sent to the same worker. The workers are

assigned to single-worker groups in a round-robin fashion; and

multiple single-worker groups can be processed on the sameworker.

In [6], the average load of all groups is used as the threshold, which

corresponds to the CIK algorithm in Section 7. We also design

an improved version which uses our cost model to determine the

optimal threshold, as described in Section 7 (algorithm CIK+).
Another way of determining the number of workers assigned

to each group is using our greedy algorithm (Section 7, algorithm

ExpVarTri), because of the monotone submodularity of load vari-

ance. Corresponding proofs are in the following subsections.

B.2 Monotonicity (Theorem 4.3)
Proof. Recall that the monotonicity of −V[L] is equivalent to

that of f2 (Eq. 10). Let x = (h, 0, j) for some h ∈ H and 1 ≤ j ≤ |Sh |,
then the discrete derivative of f2 is

f2(X ∪ {x}) − f2(X )

=

(
α2 |Sh |

4
2ph − 1

p3h
+ γα |Sh |

3
4ph − 2

p2h
+ γ 2 |Sh |

2
2ph − 1

ph

)
−

(
α2 |Sh |

4
2ph + 1

(ph + 1)
3
+ γα |Sh |

3
4ph + 2

(ph + 1)
2
+ γ 2 |Sh |

2
2ph + 1

ph + 1

)
=

4p3h + 3p
2

h − ph − 1

p3h (ph + 1)
3

α2 |Sh |
4 +

(4p2h − 2)γα |Sh |
3

p2h (ph + 1)
2

+
−γ 2 |Sh |

2

ph (ph + 1)
.

(20)

When α ≥
ph
|Sh |

γ , from Eq. 20 follows

f2(X ∪ {x}) − f2(X )

≥
4p3h + 3p

2

h − ph − 1

p3h (ph + 1)
3

(
ph
|Sh |

)2γ 2 |Sh |
4 +

4p2h − 2

p2h (ph + 1)
2

ph
|Sh |

γ 2 |Sh |
3

+
−1

ph (ph + 1)
γ 2 |Sh |

2

=

(
4p3h + 3p

2

h − ph − 1

ph (ph + 1)
3

+
4p2h − 2

ph (ph + 1)
2
+

−1

ph (ph + 1)

)
γ 2 |Sh |

2

=

(
4p3h + 3p

2

h − ph − 1

ph (ph + 1)
3

+
4p2h − ph − 3

ph (ph + 1)
2

)
γ 2 |Sh |

2. (21)

Sinceph ≥ 1, it is easy to see fromEq. 21 that f2(X∪{x})−f2(X ) ≥ 0,

i.e., f2 increases monotonically. Hence, −V[L] is monotonically

increasing in the number of partitions ph ,∀h ∈ H . �

B.3 Submodularity (Theorem 4.7)
Proof. Similar to the proof of Lemma A.2, we prove by induc-

tion, and only need to show that for Y = X ∪ {y}, where y < X , and

x = (h, 0, j) < X the following inequality holds.

(f2(X ∪ {x}) − f2(X )) − (f2(Y ∪ {x}) − f2(Y )) ≥ 0. (22)

Let y = (b, 0, i) where 1 ≤ i ≤ |Sb |, then there are two cases.

Case 1: b , h. So (f2(X ∪{x})− f2(X ))−(f2(Y ∪{x})− f2(Y )) = 0.
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Case 2: b = h. Then

(f2(X ∪ {x}) − f2(X )) − (f2(Y ∪ {x}) − f2(Y ))

= (f2(X ∪ {x}) − f2(X )) − (f2(X ∪ {x ,y}) − f2(X ∪ {x}))

=2 · f2(X ∪ {x} − f2(X ) − f2(X ∪ {x ,y}

=2

(
2 −

1

ph + 1

) (
γ |Sh | +

α |Sh |
2

ph + 1

)2
−

(
2 −

1

ph

) (
γ |Sh | + α

|Sh |
2

ph

)
2

−

(
2 −

1

ph + 2

) (
γ |Sh | + α

|Sh |
2

ph + 2

)2
=
12p5h + 48p

4

h + 56p
3

h + 6p
2

h − 20ph − 8

p3h (ph + 1)
3(ph + 2)

3

α2 |Sh |
4

+
8p3h + 12p

2

h − 8ph − 8

p2h (ph + 1)
2(ph + 2)

2

γα |Sh |
3 +

−2

ph (ph + 1)(ph + 2)
γ 2 |Sh |

2.

(23)

When α ≥
ph
|Sh |

γ , from Eq. 23 follows

(f2(X ∪ {x}) − f2(X )) − (f2(Y ∪ {x}) − f2(Y ))

≥
12p5h + 48p

4

h + 56p
3

h + 6p
2

h − 20ph − 8

ph (ph + 1)
3(ph + 2)

3
γ 2 |Sh |

2

+
8p3h + 12p

2

h − 8ph − 8

ph (ph + 1)
2(ph + 2)

2
γ 2 |Sh |

2

+
−2

ph (ph + 1)(ph + 2)
γ 2 |Sh |

2

=
12p5h + 48p

4

h + 56p
3

h + 6p
2

h − 20ph − 8

ph (ph + 1)
3(ph + 2)

3
γ 2 |Sh |

2

+
8p3h + 10p

2

h − 14ph − 12

ph (ph + 1)
2(ph + 2)

2
γ 2 |Sh |

2

=
20p5h + 82p

4

h + 88p
3

h − 28p2h − 84ph − 32

ph (ph + 1)
3(ph + 2)

3
γ 2 |Sh |

2. (24)

Clearly, for ∀ph ≥ 1, Eq. 24 > 0. Hence, the inequality (22) is

satisfied, proving that f2 is submodular when α ≥
ph
|Sh |

γ . �

C SCALING RESOURCES
In this set of experiments, we join the same data sets on clusters

with various sizes. Specifically, we use Amazon’s Elastic MapReduce

(EMR) to set up clusters with 10, 20, 30, 40 and 50 workers of type

m1.medium. As Fig. 6 shows, ExpVar beats the strongest competitor

BKS+ on all cluster sizes. This shows that cluster size is not affecting

the relative performance advantage of our partitioning method. We

also observed that as the resources (number of workers) are scaled

up, the running time improvement diminishes for all algorithms.

The reason is that the increased communication cost in bigger

clusters cannot be sufficiently compensated by the performance

gain brought by parallelization. Eventually, the running times will

not decrease as more workers are added, and might even start to

increase at a certain point.

Note that choosing the right cluster size for a given data set is

orthogonal to our approach. Some earlier work [16] has presented

scale results

data set algorithm 10 20 30 40 50

cloud-5m ExpVar 2107 858 714 476 440

cloud-5m BKS+ 2176 1098 726 710 546

ebird-basic ExpVar 1092 615 441 394 380

ebird-basic BKS+ 1317 683 589 464 425

M
ak

es
pa
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ec
)

0

550

1100

1650

2200

#workers in the cluster
10 20 30 40 50

cloud-5m ExpVar cloud-5m BKS+
ebird-basic ExpVar ebird-basic BKS+

Figure 6: Running times of JOIN-AGG for cloud-5m and
ebird-basic in clusters of different sizes. ExpVar and BKS+
are compared.

Data sets ExpVar NoPar PaBr PaBr+ BKS BKS+
Zipf-90k-1.0-1g 1858 3529 3560 1950 2019 1933

Zipf-500k-1.0 3983 14509 7246 4057 7196 4136

cloud-200k 1965 7014 2871 1981 3401 2158

Table 9: Running times (sec) of JOIN-Fibo on Cluster14.

insights on how to achieve this. In this paper, we propose an al-

gorithm that can decide a near-optimal partitioning solution for a

given data set and a given number of workers.

D RESULTS FOR JOIN-FIBONACCI
This set of experiments explores running time for JOIN-Fibo,
which performs extra computation for each pair of joined tuples.

In practice, this extra computation could be an algorithm comput-

ing a similarity score for two objects. Here, we use the Fibonacci

computation as a tuneable stand-in for this post-processing cost.

JOIN-Fibo executes the SQL query

SELECT S.*,T.*, Fibonacci(1000)
FROM S JOIN T

ON S.ID=T.ID

Due to the extra computation, the output-related cost increases even

more compared to JOIN. This reduces the negative performance

impact of over-partitioning (which affects only input cost), allowing

more aggressive partitioning to improve load balancing. Table 9

lists the running times on Cluster14. As for JOIN, ExpVar, PaBr+
and BKS+ are comparable because they all avoid under-partitioning

of large groups. In comparison, NoPar, PaBr and BKS suffer from

under-partitioning and the resulting load imbalance.
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