
1

Merlin: Exploratory Analysis with Imprecise
Queries

Bahar Qarabaqi and Mirek Riedewald, Member, IEEE

Abstract—Merlin supports exploratory search in large databases. The user interacts with it by specifying probability distributions over
attributes, which express imprecise conditions about the entities of interest. Merlin helps the user home in on the right query conditions
by addressing three key challenges: (1) efficiently computing results for an imprecise query, (2) providing feedback about the sensitivity
of the result to changes of individual conditions, and (3) suggesting new conditions. We formally introduce the notion of sensitivity and
prove structural properties that enable efficient algorithms for quantifying the effect of uncertainty in user-specified conditions. To
support interactive responses, we also develop techniques that can deliver probability estimates within a given realtime limit and are
able to adapt automatically as interactive query refinement proceeds.

Index Terms—8.II.VIII.VIII. Interactive data exploration and discovery

F

1 INTRODUCTION

We propose Merlin, a new approach for exploratory search in
large databases. It is designed to accommodate uncertainty
and imprecision in user-provided query conditions through
two major technical contributions: (1) a novel notion of sen-
sitivity to quantify the impact of uncertainty on the query
result, and (2) fast algorithms for probability estimation that
can adapt to a user-specified realtime constraint on system
response time.

To illustrate Merlin’s functionality, consider the follow-
ing example motivated by a collaboration with the Cornell
Lab of Ornithology. Through hugely successful citizen sci-
ence projects such as eBird (http://ebird.org), the Lab has
collected more than 100 million reports of bird sightings,
adding tens of millions annually. It wants to leverage this
resource to help less experienced birders identify the species
of a bird they observed. Assume each observation in the
database specifies properties of the bird (e.g., species, size,
color) and the observation event (e.g., location, weather,
habitat features).1 After observing an individual of an un-
known species, the user can then search this database to
find species that matched her description.

The main problem with this idea is that the user often
is not certain about her query. Consider Amy, who just
observed a “small to medium size bird that was mostly
blue” in her garden. Through Web forms such as those
shown in Figures 1 and 2, Amy could express such imprecise
search conditions. For example, she might decide that the
bird was most likely the size of a robin, but is not sure
about it. The front-end turns the user input into a probability

• B. Qarabaqi and M. Riedewald are with the College of Computer and
Information Science, Northeastern University, Boston, MA, USA. Email:
{bahar, mirek}@ccs.neu.edu

1. eBird currently does not collect individual bird features such as
size and color. The Lab adds those features based on an expert-
designed model as discussed in Section 7. In the future, successful
bird identification could contribute additional records as users already
entered the relevant attribute values during the search process.

 What color is the wing?
Select 1-3 colors.

Fig. 1. Possible interface for speci-
fying multiple wing color values

Your responses

Fig. 2. Possible interface for speci-
fying the bird size

distribution over the different size values, so that Merlin
can work with it. The lower the confidence, the wider the
probability mass is distributed.2

After entering the initial search conditions, Merlin can
present three types of feedback as shown in Figure 3. The
table in the center shows the top-ranked species. Amy could
go through the list and explicitly eliminate some species
or positively identify a likely match. Note that Amy can
continue the search even after positive identification, in
order to find other likely matches. Alternatively, she can
use the other two tables to refine her query. The table on the
left tells her which other attributes would be most helpful
in narrowing the search. Since the system does not know
what species the user is looking for, an attribute’s potential
usefulness in improving result quality is measured based
on the intuition that the most useful attributes are those that
best separate “winners” from “losers”. For example, breast

2. Other interfaces could be used instead, e.g., allowing the user to
specify a “score” for each bird size option. The design of the interface
and the transformation into a probability distribution are beyond the
scope of this article. Merlin works with any probability distribution
provided.

2

User-specified conditions
for attributes X2,X4

Expected Result
Quality Improvement

Sensitivity Scores
Estimate of Pr(Y|A2,A4,D)

Attribute Score

X3:ShapeGroup 83.27

X14:BillLength 81.12

X11:MainColor 74.98

X1:Time 69.47

X2:Location 65.24

X5:BreastColor 64.02

X6:BreastPattern 63.18

X9:BackColor 57.79

X16:LegColor 49.35

X8:BellyPattern 48.81

Rank Species

1 Y245: Eastern Bluebird

2 Y211: Bluejay

3 Y223: Barn Swallow

4 Y212: Western Scrub-Jay

5 Y233: Red-breasted Nuthatch

6 Y242: Blue-grey Gnatcatcher

7 Y221: Tree Swallow

8 Y331: Indigo Bunting

9 Y246: Western Bluebird

10 Y210: Steller's Jay

Specified Attribute Sensitivity

X2: Size 206.88

X4: WingColor 18.01

Fig. 3. Feedback to the user after she specified conditions for attributes X2 and X4

Pr(A | conditions, D)

Data set D

− Probabilistic
− Precise

Conditions (user−specified)

− Probabilistic
− Precise

Sensitivity Analyzer

Alternative conditions
considered by user for a
specified attribute

Attribute model

− Tree
− Bayes net

− Tree

Entity model

− Bayes net

training training

Entity ranker

− Probability
− Effort−adjusted

probability

Attribute ranker

− Entropy
− Expected effort

Pr(Y | conditions, D)

Fig. 4. Merlin overview. Entity and attribute models are
trained from data set D. Any model type returning good
probabilities can be used, e.g., bagged trees or Bayes nets.
At query time, given user-specified conditions, the entity
and attribute rankers produce ranked lists like those shown
in the center and on the left in Fig. 3, respectively. Ranking
can be based on different criteria as indicated in the boxes.
Using the entity model, the sensitivity analyzer explores
how sensitive the current result ranking is to changes the
user considers for some attribute’s condition.

color would receive a high score if among blue-winged
species, some breast colors occur frequently on individuals
of some, but not other species. On the other hand, if blue-
winged species tend to have mostly the same breast color,
then breast color would receive a low score, because it does
not help distinguish the species.

The table on the right shows Merlin’s novel sensitivity
score, which is specifically designed to support exploratory
analysis involving imprecise conditions. Recall Amy’s un-
certainty about the bird’s size. Clearly, size is an important
feature for distinguishing species. Hence Amy would like
to enter it. However, what if she gets it slightly wrong and
the correct species is eliminated? Our proposed notion of
sensitivity helps Amy gauge the risk of entering a condition.
It quantifies how much the query result (center table in
Figure 3) could change if Amy were to modify the corre-
sponding condition. Here Merlin could either consider all
possible alternative inputs, or let the user specify a range of
alternative inputs she considers. (For bird size, Amy could
mark lower and upper end of the range of size options
she considers in an interface similar to Figure 2.) A high
sensitivity score might convince Amy to withdraw her input
for this attribute and first enter others, e.g., location. She
might then try size again at a later time. Since an attribute’s
sensitivity depends on the conditions on other attributes,
the uncertainty on bird size might have less impact then.

For the system to interact effectively with a user, it needs
to respond quickly after the user entered new information.
Since the meaning of “interactive” varies depending on
the user and application, Merlin lets the user choose her
preferred threshold. It will treat it as a realtime constraint,
producing a response within the time limit.

Exploratory search with imprecise conditions could ben-
efit many other applications, including product search and
online medical advice. For product search, suppose a user
wants to leverage the wisdom of the crowd for deciding
about a camera purchase. Crowd-sourced camera data will
contain a mix of “objective” properties (e.g., megapixels and
price) and subjective user evaluations (e.g., if the camera

is good for sport photography). In the medical domain,
a database of diseases, their symptoms, potential causes
(e.g., family history and lifestyle choices), and remedies
would similarly be consulted by people not feeling well.
As sites like WebMD’s symptom checker (http://symptoms.
webmd.com) show, there is great interest in this kind of
application. In general, Merlin’s techniques can be applied
to any relational database of interest, helping a database user
fine-tune imprecise conditions for exploratory analysis.

We make several contributions aimed at improving sup-
port for exploratory search in databases. First, exploratory
search usually involves uncertainty; not only in the data [1]
but also in the query. To deal with it, we propose a
probability-based framework in Section 2. Notice that for
imprecise queries, the result is probabilistic even if the data
is precise. Hence, ranking of result records based on their
probability is inherent in exploratory search. (Section 3)

Our second contribution helps the user judge the poten-
tial risk of specifying a condition she is not certain about. In
particular, if getting it just slightly wrong might significantly
change the result, then it might be safer to not enter it.
To provide this kind of risk-estimation functionality, we
introduce the novel notion of sensitivity of a condition
and prove structural properties that allow its efficient
computation in Section 4.

Third, while sensitivity quantifies the risk of a condition,
Section 5 discusses how to estimate the benefit by identi-
fying the best new conditions to be added in order to
improve result quality.

Fourth, as a user-driven process, query refinement
should be interactive. Since computation time tends to be
high when dealing with large data and imprecise queries,
in Section 6 we propose fast approximate estimation tech-
niques that deliver results within a given response time
threshold. Experiments, related work, and conclusions are
presented in Sections 7, 8, and 9, respectively.

3

TABLE 1
Important notation.

D: given relational table or view with schema {X1, X2, . . . , Xm, Y }
X : data attribute, e.g., hasWingColorRed with domain {Y,N}, for which the
user can specify a condition in the query
Y : data attribute identifying entities of interest, e.g., species of a bird
A: set of all possible probability distributions over the values in the domain of
attribute X , e.g., {(p1, p2) | p1, p2 ≥ 0, p1 + p2 = 1} for hasWingColorRed
a ∈ A: specific probability distribution over the values in the domain of
attribute X , e.g., (0.2, 0.8)
k: number of attributes for which the user has specified conditions
Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D): entity probability, given distribution
ai ∈ Ai for attribute Xi, i = 1, . . . , k, and explicit rejection of entity yj ,
j = 1, . . . , l
Pr(A = a |A1, . . . , Ak, ȳ1, . . . , ȳl, D): probability that the user will spec-
ify condition a for attribute X , given distribution ai ∈ Ai for attribute Xi,
i = 1, . . . , k, and explicit rejection of entity yj , j = 1, . . . , l
φj : effort required from the user to decide if entity yj ∈ Y is of interest; e.g.,
measured as user response time after the entity is presented
Lp: ranked list of entities based on user-specified condition p
ρp(y): rank of entity y in ranked list Lp

Ai ⊆ Ai: alternative conditions the user considers for attribute Xi

2 DATA MODEL AND FRAMEWORK

We introduce the data model and propose Merlin’s prob-
abilistic framework for exploratory search in databases.
Important notation is summarized in Table 1.

2.1 Data Model
We are given a relational table or view D with schema
{X1, X2, . . . , Xm, Y }. Attribute Y takes on a special role,
identifying entities of interest to the user. Depending on
the problem, any attribute of D could take on this role. For
instance, in the bird identification example, Y is the species
name. When looking for geographical regions, Y would be
the corresponding region identifier. Even though Y identi-
fies entities of interest to the user, it does not need to be a key
ofD. The tuples inD could represent precise or probabilistic
information, including crowd-sourced imprecise data.

In the bird example, the entities of interest are bird
species. The Xi describe various properties of a bird and ob-
servation event, e.g., hasWingColorRed and obsLongitude.
A species will be observed more than once, hence there
will be multiple records for it. Since not all individuals of
a species look alike or are seen at the same location, the
values of the Xi can differ even for records with the same
Y -value. (For this reason Y is not necessarily a key of D.)

2.2 Probabilistic Query
The user wants to find entities y ∈ Y of interest (we slightly
abuse notation and use Y to denote both the name of the
attribute and its domain) and expresses her preferences by
specifying conditions on some of the attributes Xi. In a
traditional relational database setting, the user would then
execute query

SELECT Y , COUNT(*) AS freq
FROM D
WHERE condition(X1) AND...AND condition(Xm)

AND Y <> y1 AND ... AND Y <> yl
GROUP BY Y
ORDER BY freq DESC

to determine which of the entities are most frequently
associated with attribute values satisfying the specified
conditions. The second part of the WHERE clause reflects

explicit rejection of entities y1, y2, . . . , yl. If we divide the
freq attribute of each result tuple by the total count of
tuples in D satisfying the WHERE clause, then we ob-
tain for each y ∈ Y the fraction it represents in the re-
sult. More generally, this query would approximate prob-
ability Pr(Y = y | condition(X1), . . . , condition(Xm), Y 6=
y1, . . . , Y 6= yl, D).

To accommodate uncertainty, the WHERE clause needs
to support probabilistic conditions. For some attribute Xi,
let Ai be the set of all possible probability distributions over
the values in the domain of Xi, e.g., {(p1, p2) | p1, p2 ≥
0, p1 + p2 = 1} for Boolean attribute hasWingColorRed
with domain {Y,N}. When interacting with Merlin, the
user specifies some probability distribution ai ∈ Ai, e.g.,
(0.2, 0.8) for hasWingColorRed.

Given user-specified conditions a1, . . . , ak for attributes
X1, . . . , Xk, the probability of entity y ∈ Y is defined as
Pr(Y = y |A1 = a1, . . . , Ak = ak, Y 6= y1, . . . , Y 6= yl, D),
written more compactly as

Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D).

Here ȳj indicates that entity yj was rejected by the user.
When looking for multiple results, the user would not only
reject entities, but could also accept some and then continue
the search process. The probabilities can be adjusted accord-
ingly by removing the accepted entities from consideration.

Probability distributions provide flexibility for express-
ing a mix of certain and uncertain conditions. Recall user
Amy who is not certain about the observed bird’s size.
She might know for sure that the bird was larger than a
sparrow and smaller than a crow, but cannot decide between
the three size options around the American Robin (see
Figure 2). She can express this by entering a distribution like
(0, 0, 0.2, 0.6, 0.2, 0, 0, 0, 0) for the nine possible values of
the size attribute. The six zeros indicate her certainty about
ruling out the overly small and overly large size options.
Sensitivity analysis (Section 4) helps Amy determine if a
small change of the non-zero values would have a major
impact on the species ranking.

It is conceptually easy to extend Merlin to support
inequality conditions such as (size ≥ 2 AND size ≤ 4).
Instead of concrete distribution (0, 0, 0.2, 0.6, 0.2, 0, 0, 0, 0),
the user could specify a set of distributions
(0, 0, q1, q2, q3, 0, 0, 0, 0), s.t. 0 ≤ q1, q2, q3 and
q1 + q2 + q3 = 1. Then the formula for the probability
of Y becomes an expectation over the different concrete
distributions in this set. This is similar to the way we deal
with possible future attribute conditions (Section 5) and not
discussed here due to space constraints.

2.3 Dealing With Continuous Attributes

In the remainder of this article, we assume that all attributes
of D have a discrete domain. In principle, Merlin could
be extended to also support continuous domains. However,
this additional complication does not provide any benefits
for exploratory search. Recall that the user provides the dis-
tributions as conditions for her query. From the user’s point
of view, it makes virtually no sense to try and distinguish
between distributions like (0.8, 0.2) and (0.801, 0.199). They
both express that the user was highly confident about one

4

of the attribute’s values. And as our analytical results for
sensitivity show (Section 4), entity probabilities are “well-
behaved” in the sense that a smaller change in distribution
results in a smaller change in entity probability. Similarly, if
an attribute has a very large domain, it can be compressed
by representing a distribution over this domain with an
appropriate histogram. In general, Merlin can approximate
a continuous distribution as closely as desired.

2.4 Exploration Framework

Figure 4 shows the Merlin system components and their
interactions. From the given data set D, two types of
models are trained at “setup time”, i.e., before the system
is available for user queries. The entity model predicts
Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D), i.e., in the bird example
the probability of each species. The attribute model predicts
the probability of a distribution the user might enter if
prompted by Merlin to provide a condition on another at-
tribute such as head color. The probabilities output by these
models are used at “query time” by the ranking functions to
produce the lists in the center and on the left, respectively,
in Figure 3. The sensitivity analyzer also relies on the entity
model in order to determine how much a modification of
one of the user-specified conditions would affect the entity
ranking. Details are discussed in the following sections.

3 RESULT RANKING

Given user-specified conditions on the attributes of D, Mer-
lin creates a ranked list of the entities y ∈ Y as shown
in the center of Figure 3. It could directly rank by entity
probability Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D).

We propose a measure that generalizes ranking by entity
probability by taking user effort into account. It is motivated
by the fact that the user has to invest some time to look
at the presented query result in order to decide which of
the top-ranked entities might be of interest. In the example
in Figure 3, the user scans the list of species in the center
from top to bottom. Let φj denote the user effort required
for deciding about the relevance of entity yj .3 Now consider
two entities y1 and y2 with probabilities 0.51 and 0.49 and
effort φ1 = 10 and φ2 = 1, respectively. If we rank y1 before
y2, the user would have to invest an expected effort of 0.51 ·
10 + 0.49 · (10 + 1) = 10.49 when examining the ranked
list top-down until the correct answer is found (assuming
either y1 or y2 is correct, but not both). If y2 was ranked first,
expected effort would drop to 0.49 ·1 + 0.51 · (1 + 10) = 6.1.

This example motivates ranking by effort-adjusted en-
tity probabilities. The effort-adjusted probability of entity yi ∈
Y is defined as Pr(Y = yi |A1, . . . , Ak, ȳ1, . . . , ȳl, D)/φi.
Effort-adjusted probability has the following useful prop-
erty (proof provided in the appendix):
Lemma 1. Assume the user is looking for a single entity

of interest by exploring the ranked list of entities one-
by-one from top to bottom, until this entity is found.
Expected user effort then is minimized if the entities

3. Effort can vary, e.g., some bird species is easily recognizable from
a picture while another requires reading a description. In practice effort
can be measured based on the user’s response time when interacting
with Merlin.

are ranked in decreasing order of their effort-adjusted
probability.

4 SENSITIVITY ANALYSIS

When dealing with imprecise queries, it is essential to give
the user feedback about the potential risk of a condition. We
propose a very direct and natural measure that quantifies
the sensitivity of the query result to changes in the condition.
Intuitively, user-specified condition a for attribute X has
high sensitivity if a “small” change of the condition would
result in a “large” change of the entity ranking.

To illustrate the usage of sensitivity, we return to the
bird identification example. Assume Amy entered condi-
tion (0.4, 0.2, 0.4) for billLength, which is a 3-valued at-
tribute with domain {1, 2, 3}. Since she is not really sure
about the exact probabilities, she asks Merlin how much
the current species ranking could possibly change if she
were to enter any other probability distribution (p1, p2, p3)
instead. If Merlin determines that the resulting change
could be “large”, she might decide to remove her input
for billLength. Alternatively, assume she is almost sure that
the billLength value should be 1 or 3, but cannot decide
how much probability mass exactly to assign. In particu-
lar, she considers all distributions (p1, p2, p3) that satisfy
p1 ≥ 0.4 ∧ p3 ≥ 0.4. If Merlin tells her that sensitivity
in that case is “low”, she knows that no matter if she
enters (0.4, 0.2, 0.4) or (0.5, 0.1, 0.4), (0.4, 0.15, 0.45) etc.,
the ranking would be similar. Notice that this does not mean
that the condition on billLength is irrelevant. The ranking
might change significantly if Amy chooses a condition that
does not satisfy p1 ≥ 0.4 ∧ p3 ≥ 0.4. Low sensitivity simply
gives her confidence that the exact choice of values does not
matter much in the range she considers.

As will become clearer soon, sensitivity of an attribute
depends on the conditions on other attributes. Hence an
attribute with high sensitivity might have much lower
sensitivity later on, after conditions on other attributes are
modified.

4.1 Definition and Computation of Sensitivity

Definition 1. Let L be the entity ranking based on user-
specified conditions a1, . . . , ak, ȳ1, . . . , ȳl, and let Ai
denote the set of all alternative conditions the user
considers for some attribute Xi, i ∈ {1, . . . , k}. The
sensitivity of the current ranking L to attribute Xi for a
set of possible conditions Ai is defined as the maximum
difference dst(L,L′) between L and any other ranking
L′ that could be obtained if the user were to change Xi’s
condition ai to any other distribution a′i ∈ Ai. Function
dst() is a distance measure between two entity rankings.

For brevity, we will refer to the “sensitivity of the current
ranking L to attribute Xi for a set of possible conditionsAi”
simply as the sensitivity of attribute Xi. Note that the sensi-
tivity of Xi is affected by the other conditions specified, be-
cause all conditions together determine the entity probabili-
ties and hence the ranking. The choice ofAi also plays a cru-
cial role. Constraints on alternative conditions considered
can be specified by eliminating values from the domain of

5

1

2

p

p

Fig. 5. Ranking distance for
3-valued attribute billLength
when changing original condition
(0.4, 0.2) to another pair (p1, p2)

p1

Minkowski distance (d=2)

Fig. 6. Ranking distance for
Boolean attribute hasWingCol-
orBlue when changing original
condition (0.6) to another value

attribute Xi or by limiting the range of probabilities consid-
ered for each value. The above example illustrated this for
billLength. Similarly, distributions near the specified one can
be considered by setting Ai to include an ε-neighborhood.
For billLength with condition (0.4, 0.2, 0.4), this could be
defined as the set of probability distributions (p1, p2, p3) that
satisfy |p1 − 0.4| ≤ ε ∧ |p2 − 0.2| ≤ ε ∧ |p3 − 0.4| ≤ ε.

Figure 5 shows sensitivity for billLength measured in
a bird observation data set (discussed in Section 7). No-
tice that any probability distribution (p1, p2, p3) for a 3-
valued attribute is uniquely determined by (p1, p2), be-
cause p3 = 1 − p1 − p2. Hence we only need to consider
distributions over the first two values. Starting with the
original user-specified condition p = (0.4, 0.2), we sampled
1 million alternative conditions randomly and computed the
Minkowski distance (see Section 4.2) in ranking to L. As
the colors indicate, distances increase as one “moves away”
from (0.4, 0.2). In this example, the greatest distance is
obtained in the lower right corner, for distribution (1.0, 0.0).
However, near (0.4, 0.2), distance is comparably low, in-
dicating that if the user considers a small neighborhood
around the original condition, then the ranking is stable.
Figure 6 shows sensitivity for Boolean attribute hasWing-
ColorBlue and initial condition 0.6. (To put the numbers into
perspective, note that if each of the 367 species is 5 positions
off, total ranking difference would be about 100.)

One can compute the sensitivity of attributeXi using the
following naive algorithm: Let L denote the entity ranking
based on the user-specified conditions a1, . . . , ak, ȳ1, . . . , ȳl.
Repeat the following: Select a condition a′i fromAi and com-
pute the entity ranking L′ based on the modified condition
where ai is replaced by a′i. Keep track of the maximum
distance between rankings L and L′ and return it to the
user.

For billLength, the naive algorithm has to sample from
the entire colored triangular area shown in Figure 5. For-
tunately, as we prove below, this is not necessary. Ranking
distance increases monotonically as one conceptually moves
on a line away from the initial condition, i.e., (0.4, 0.2) in
the example. (There is some “color noise” in the graph,
which are artifacts of the drawing process when interpo-
lating between sample points.) Because of this monotonicity
property, it is guaranteed that the greatest distance will be
found on the edge of the space of possible conditions, i.e.,
the three sides of the triangle in Figure 5. Hence instead
of naively sampling from the entire triangle, we can use

a more efficient algorithm that samples only from its sides,
which dramatically reduces the search space. Similarly, if the
user constrains the space of distributions, e.g., by “cutting
off” the top corner of the triangle with constraint p2 ≤ 0.3,
Merlin only has to sample from the edges of the resulting
shape, not from its inner points. The implications are par-
ticularly powerful for Boolean attributes. Because ranking
distance increases monotonically toward the extremes of
the range (as Figure 6 shows for the bird data), to find
the condition that results in the greatest ranking difference,
one only needs to check the rankings for the lower and
upper extreme of the range of possible probability values
considered.

Next we will introduce ranking distance measures and
prove the monotonicity property that implies that it is suf-
ficient to sample from the edges. We also provide evidence
that it is unlikely that a more efficient general algorithm
exists by showing that the problem is not convex and that
the optimal solution does not necessarily lie in a vertex.

4.2 Ranking Distance Measures
Merlin’s sensitivity analyzer can work with any distance
measure dst() between entity rankings. We introduce three
important examples and show in Section 4.5 that they all
admit an optimization algorithm that is much more effi-
cient than the naive algorithm. The first two correspond to
(generalizations of) the two most commonly used ranking
correlation measures in information retrieval [2]. Let Lp
and Lq be two rankings of the n entities in Y . For each
entity y ∈ Y , let ρp(y) and ρq(y) denote y’s rank in the
corresponding ranking.

Minkowski distance: The distance of two rankings can
be measured based on the difference in rank for each
individual entity. For instance, the Spearman rank cor-
relation coefficient, which is widely used for evaluating
similarity between rankings in information retrieval, re-
lies on the squared rank differences and is defined as

1 − 6
∑

y∈Y (ρp(y)−ρq(y))2

n(n2−1) . We consider not only squared dif-
ferences, but the Minkowski distance in general. For some
constant d > 0 it is defined as

dst(Lp, Lq) =

∑
y∈Y
|ρp(y)− ρq(y)|d

1/d

. (1)

Kendall’s τ distance: Kendall’s τ is another commonly
used measure of correlation between two rankings. It is de-
fined as C−D

n(n−1)/2 , where C and D denote the total number
of entity pairs that are ranked in the same and opposite
order, respectively, in the two rankings. Finding the maxi-
mal ranking distance is equivalent to finding the minimal
correlation. Since n, the number of different entities, is a
constant for a given problem, and C + D = n(n + 1)/2,
Kendall’s τ increases linearly with −D. Hence we define a
ranking distance measure based on Kendall’s τ as

dstτ (Lp, Lq) = D. (2)

Intuitively, it measures the number of inversions between
the two rankings.

Average Precision distance: Minkowski distance and
Kendall’s τ weigh ranking differences equally, no matter

6

!", !$, !%

!", !%, !$!%, !", !$

original user response

!%, !$, !"

!$, !%, !"!$, !", !%

&'

&(

Fig. 7. For each point (p1, p2) the color indicates the Minkowski distance
(for d = 2) between original ranking for condition (0.5, 0.4) and the
ranking obtained by changing it to (p1, p2). Rankings for each region
are indicated.

if they occur near the top or near the bottom of the rank-
ing. Recent work in the information retrieval community
proposed the Average Precision (AP) correlation coefficient
τAP [2] as a measure that weighs differences near the top
higher, because those are the differences that more likely
affect a user during Web search. It is based onCp,q(k), which
measures for entity y at position k in ranking Lq , how many
entities among those above it in Lq are also ranked above y
in the other ranking Lp. Formally,

τAP(Lp, Lq) =
2

n− 1

n∑
k=2

Cp,q(k)

k − 1
− 1.

Finding the maximal ranking distance is equivalent to find-
ing the minimal correlation, hence we use the negative
AP correlation coefficient as a the corresponding distance
measure

dstAP(Lp, Lq) = −τAP(Lp, Lq). (3)

4.3 Problem Hardness
We show that sensitivity computation in general is not a
convex optimization problem and that the optimal solution
might not lie in a vertex.

Convexity: If the set of alternative probability distribu-
tions, Ai, is not convex, then the optimization problem is
not convex. Even for convexAi, the objective function is not
necessarily convex as shown by a simple counter-example.

Let X be an attribute with domain {x1, x2, x3} and
let a1 = (1, 0, 0), a2 = (0, 1, 0) and a3 = (0, 0, 1) be
probability distributions over this domain. Assume there
are three entities y1, y2 and y3 with the following entity
probabilities (data D is omitted in the formulas for brevity):
Pr(Y = y1|A = a1) = 0.5, Pr(Y = y1|A = a2) = 0.4,
Pr(Y = y1|A = a3) = 0.1, Pr(Y = y2|A = a1) = 0.4,
Pr(Y = y2|A = a2) = 0.1, Pr(Y = y2|A = a3) = 0.4,
Pr(Y = y3|A = a1) = 0.1, Pr(Y = y3|A = a2) = 0.5,
Pr(Y = y3|A = a3) = 0.5.

Let the original condition for X be a = (0.5, 0.4, 0.1),
and letA = {(p1, p2) | p1, p2 ≥ 0, p1 +p2 ≤ 1}. (This consid-
ers any probability distribution over the domain of X .) We
randomly sampled 1.5 million distributions a′ = (p1, p2)

2

1

Entity probabilities for Entity probabilities for

for q=p+0.2(r−p)

0.2

p L0 L1 L2 L4

L3

L5
L6

L7 L8 9 L rL = L =
sequence:
Ranking

1

y
y

y

y
y

4

5

3

1

2

y
y

y
y

2

3

4

5

0α =

distribution r=(r , r)1 2distribution p=(p , p)1

y

Fig. 8. Entity probabilities for collinear conditions p, q, r

from A and computed the Minkowski distance, using
squared rank differences, of the resulting entity ranking to
the ranking for the original distribution a. Figure 7 shows
the result for all combinations of p1 (x-axis) and p2 (y-axis).
(Recall that p3 = 1 − p1 − p2.) The ranked list for original
condition a is (y1, y3, y2). In the bright red region, the
distance is

√
6 and in the dark red region it is

√
8. Because

of the discontinuity at the boundary between regions, it is
easy to show that the objective function is neither convex
nor concave.

Optimum in a vertex: If the maximum ranking distance
could be shown to lie in one of the corners of the triangle,
only those three rankings would have to be explored when
computing sensitivity. Unfortunately, in the example the
distance between the original ranking and those obtained
in the three corners of the triangle are

√
2,
√

2 and
√

6,
respectively. For a′ = (0.4, 0) in the dark red region, the
ranked list is (y2, y3, y1), resulting in a distance of

√
8 to the

original ranking.
This counter-example can also be used to show the same

negative results for the other two ranking distance mea-
sures, Kendall’s τ distance and Average Precision distance.
Fortunately, as discussed next, we are able to prove the “next
best” structural property: that the optimum always lies on
the “edge” of the set of possible conditions A, i.e., the sides
of the triangle in the example.

4.4 Collinearity of Probabilities and Impossibility of Re-
peated Entity Order Swaps
The proof that the optimum lies on the “edge” of the set
of possible conditions A relies on two general properties,
stated in Lemmas 2 and 3, which hold independent of
the ranking distance measure. (Proofs are provided in the
appendix.)
Lemma 2. Let p, r, and q be probability distributions for

attribute X , and let the corresponding entity probabil-
ities be P = Pr(Y |A = p,A1, . . . , Ak, ȳ1, . . . , ȳl, D),
Q = Pr(Y |A = q, A1, . . . , Ak, ȳ1, . . . , ȳl, D), and R =
Pr(Y |A = r,A1, . . . , Ak, ȳ1, . . . , ȳl, D). If q = p + α ·
(r − p), 0 < α < 1, then Q = P + α · (R− P).

Intuitively, the lemma states the following: Assume en-
tity y has a probability P based on condition p for attribute
X . Assume we also know that this probability will be R
if the user changed the condition from p to a different
distribution r. Then each alternative condition q that is a

7

linear combination of p and r will result in a probability Q
that is proportionally between P and R. Figure 8 illustrates
this property for an example of five entities y1 to y5. For
distribution p of attribute X , y1 has the highest probability
and y5 the lowest. For a different distribution r those prob-
abilities are almost reversed. For any distribution q that is
a linear combination of p and r, each entity’s probability is
proportionally between the corresponding probabilities for
p and r.

Lemma 2 implies strong limitations on how entities can
change their relative rankings. As illustrated by entity pairs
(y1, y2) and (y4, y5) in Figure 8, if some entity y is ranked
below another entity y′ in both Lp (ranking on the left) and
Lr (ranking on the right), then the rank order will be same
for any Lq “in-between”.

Lemma 3. Let p, r, and q = p + α · (r − p), 0 < α < 1, be
collinear conditions for attribute X . And let the entities
be ranked by effort-adjusted probability. If entity y is
ranked below entity y′ in both Lp and Lr , then y is also
ranked below y′ in Lq .

4.5 Monotonicity of Ranking Distance

We can now prove the following result for sensitivity:

Theorem 1. Let p be the current query condition for attribute
X and let q, r ∈ A be two alternative conditions con-
sidered by the user, such that q = p + α · (r − p) for
some 0 < α < 1. Lp, Lq , and Lr , respectively, denote the
rankings obtained for these conditions, while keeping all
other conditions unchanged. Then, if entities are ranked
based on their probability or effort-adjusted probability
(Section 3), it holds that dst(Lp, Lq) ≤ dst(Lp, Lr). The
same property also holds for distance measures dstτ and
dstAP.

Proof: We first prove the theorem for Minkowski
distance dst. Consider Figure 8 for illustration. As α is
increased from 0 to 1, we obtain a series of different rankings
between the entities due to their changing probabilities. In
the example, for 0 < α < 0.2 the ranking of probabilities for
q is identical to the ranking for p. At α = 0.2, “adjacent”
(in their ranking) entities y2 and y3 swap places. Then
at α = 0.3, adjacent y2 and y4 swap places. Notice that
sometimes more than two entities might swap places “at the
same time” when multiple lines intersect, e.g., for α = 0.4
in the example. The result of this many-entity swap can
always be equivalently expressed as a series of binary swaps
between adjacent entities (using the Bubble-sort algorithm).
Consider again Figure 8. For α = 0.39, the entity ranking
is (y1, y3, y4, y2, y5); for α = 0.41 it is (y4, y3, y1, y5, y2).
The following sequence of binary swaps between adjacent
entities transforms one ranking to the other: y1 ↔ y3,
y1 ↔ y4, y2 ↔ y5, y3 ↔ y4.

Now consider the sequence of distinct rankings L0(=
Lp), L1, L2, . . . , Lk−1, Lk(= Lr) defined by gradually in-
creasing α from 0 to 1. Each ranking pair (Li, Li+1),
0 ≤ i < k, is identical except that two adjacent entities in
Li are swapped in Li+1. We show that this property implies
that the Minkowski distance from Lp to Li cannot be greater
than the distance from Lp to Li+1.

y’

y’

y

Case 1 Case 2

y

y’

Case 4Case 3

y y’

Ranking L Ranking Li i+1

y

y’

y’

y

1

h

h+1

rank

n

Ranking Lp

y

Fig. 9. Possible cases for the ranks of y and y′ in Lp, relative to their
position in Li and Li+1.

Let y and y′ be the adjacent entities that swapped
ranks between Li and Li+1. More precisely, both rankings
are identical, except that ρi(y) = ρi(y

′) − 1, ρi+1(y) =
ρi+1(y′)+1, and ρi+1(y′) = ρi(y). Now consider all possible
cases for their ranking in Lp (see Figure 9):

Case 1: ρp(y) > ρi(y) and ρp(y
′) < ρi(y

′). This case
is impossible, because it implies ρp(y) > ρp(y

′), which
together with ρi(y) < ρi(y

′) and ρi+1(y) > ρi+1(y′) violates
Lemma 3.

Case 2: ρp(y) ≤ ρi(y) and ρp(y
′) ≥ ρi(y

′). Since
all entities are at the same ranks in Li and Li+1, except
for y and y′, the only difference between dst(Lp, Li) and
dst(Lp, Li+1) are terms containing the ranks of y and y′.
These terms are |ρp(y) − ρi(y)|d + |ρp(y′) − ρi(y

′)|d for
dst(Lp, Li) versus |ρp(y) − ρi+1(y)|d + |ρp(y′) − ρi+1(y′)|d
for dst(Lp, Li+1). Because of the case constraint and the fact
that y and y′ have swapped ranks between Li and Li+1, it
follows that |ρp(y)−ρi+1(y)|d+ |ρp(y′)−ρi+1(y′)|d is equal
to (|ρp(y) − ρi(y)| + 1)d + (|ρp(y′) − ρi(y

′)| + 1)d, which
is greater than |ρp(y) − ρi(y)|d + |ρp(y′) − ρi(y′)|d. Hence
dst(Lp, Li) < dst(Lp, Li+1).

Case 3: ρp(y) ≤ ρi(y) and ρp(y
′) < ρi(y

′). Observe that
|ρp(y) − ρi(y)| ≥ |ρp(y′) − ρq(y′)|. This is due to the facts
that y′ cannot precede y in Lp (Lemma 3) and that both
are ranked higher in Lp than in Li. Therefore, similar to
the analysis in case 2, we obtain the following for the rank-
difference terms that are different between dst(Lp, Li) and
dst(Lp, Li+1):

|ρp(y)− ρi+1(y)|d + |ρp(y′)− ρi+1(y′)|d

= (ρi+1(y)− ρp(y))d + (ρi+1(y′)− ρp(y′))d

= (ρi(y) + 1− ρp(y))d + (ρi(y
′)− 1− ρp(y′))d

= (ρi(y)− ρp(y))d + d(ρi(y)− ρp(y))d−1 + · · ·+ 1

+ (ρi(y
′)− ρp(y′))d − d(ρi(y

′)− ρp(y′))d−1 + · · ·+ (−1)d

≥ (ρi(y)− ρp(y))d + (ρi(y
′)− ρp(y′))d

= |ρp(y)− ρi(y)|d + |ρp(y′)− ρi(y′)|d

⇒ dst(Lp, Li) ≤ dst(Lp, Li+1)

Case 4: ρp(y) > ρi(y) and ρp(y
′) ≥ ρi(y

′). The analysis
is symmetric to case 3.

These cases cover all possible rankings for Lp. We
can now inductively apply this argument, showing that

8

dst(Lp, L1) ≤ dst(Lp, L2) ≤ · · · ≤ dst(Lp, Lk) =
dst(Lp, Lr).

We now prove Theorem 1 for Kendall’s τ distance and
Average Precision distance.

Proof: Consider the same rankings Li and Li+1 as
used in the proof for the Minkowski distance. Since Li and
Li+1 are identical except for the adjacent entities y and y′,
which swap places, the number of inversions compared to
L0 is also identical, except for the pair (y, y′). Note that
y is ranked above y′ in Li, but below y′ in Li+1. Lemma 3
implies that in L0, y must have been ranked above y′. Hence
Li+1 has one additional inversion than Li compared to L0,
completing the proof for dstτ (Lp, Li) < dstτ (Lp, Li+1).

For Average Precision distance, consider
dstAP(L0, Li+1) − dstAP(L0, Li) = 2

n−1

∑n
k=2(C0,i(k) −

C0,i+1(k))/(k − 1). For simplicity, let h = ρi(y) = ρi+1(y′)
(and therefore h+ 1 = ρi(y

′) = ρi+1(y)). Since Li and Li+1

are identical except for the swap of adjacent entities y and
y′, C0,i(k) = C0,i+1(k) for all k 6= h, (h + 1). This implies
dstAP(L0, Li+1)− dstAP(L0, Li) = 2

n−1T , where

T =
C0,i(h)

h− 1
+
C0,i(h+ 1)

h
− C0,i+1(h)

h− 1
− C0,i+1(h+ 1)

h
.

To see that T is non-negative, note that C0,i(h) = C0,i+1(h+
1), because the entities ranked above y are the same in both
Li and Li+1, except for y′, which ranks above y only in
Li+1. However, we already showed that in L0, y has to be
ranked above y′, therefore y′ does not increase C0,i+1(h+1)
compared to C0,i(h). A similar analysis shows that C0,i(h+
1) = C0,i+1(h) + 1, because in Li+1, y′ is not ranked above
y any more, reducing the number of agreements with the
ranking in L0 by one.

Using these results, and the fact that by definition
C0,i+1(h + 1) ≤ h (there are only h entities total above
rank h + 1), it is easy to show that T ≥ 0, and therefore
dstAP(L0, Li+1)− dstAP(L0, Li) ≥ 0.

5 RECOMMENDING ADDITIONAL CONDITIONS

It is inherently difficult to determine how much any of
the remaining attributes, i.e., those for which the user has
not specified a condition yet, would improve result quality
(left table in Figure 3). The usefulness of an attribute X
depends on the condition a ∈ A the user will enter for it—
which is unknown. We address this problem by modeling
the unknown future condition as a random variable. Merlin
estimates the probability that the user will enter distribution
a ∈ A based on the information provided so far as

Pr(A = a |A1, . . . , Ak, ȳ1, . . . , ȳl, D).

Merlin then estimates the entity probabilities given the
predicted distribution a:

Pr(Y |A = a,A1, . . . , Ak, ȳ1, . . . , ȳl, D).

This leaves another challenge: Even knowing the likely
new entity probabilities is not helpful unless one can de-
termine which of them are the best. Doing so would be
trivial if Merlin knew which entities the user is looking for—
pick the ones where the entities of interest have the highest
probabilities. Without that information, we can only rely on
general quality measures that evaluate how well “winning”

entities are separated from “losing” ones. More precisely, it
is desirable to have a result where the probability is high
for a few entities and near-zero for all others: likely answers
and unlikely answers are well-separated and the few top-
ranked entities shown to the user have a comparably high
aggregate probability mass.

Entropy directly captures this intuition. Using py as
shorthand for Pr(Y = y |A,A1, . . . , Ak, ȳ1, . . . , ȳl, D), en-
tropy for the set of entities is defined as −

∑
y∈Y py ·

log2(py). In general, entropy is low if there are few high-
probability entities and many low-probability ones. It is
high if many entities have similar probability. (For this
reason entropy is widely used for selection of split attributes
in decision trees [3].) The expected improvement in the
quality of the entity ranking is then measured as the ex-
pected entropy reduction for attributeX . Instead of entropy,
one could also use other common measures of “purity”
for classification problems, including Gini [3], or measures
based on expected user effort [4].

6 PROBABILITY ESTIMATION IN REALTIME

Given user-provided conditions A1, A2, . . . , Ak (which are
distributions over the possible values of the correspond-
ing attributes X1, . . . , Xk) and explicitly rejected entities
y1, . . . , yl, Merlin needs to estimate the probabilities of enti-
ties, Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D), and of new conditions
the user might specify, Pr(A |A1, . . . , Ak, ȳ1, . . . , ȳl, D).
Formulas of the type Pr(C |X1, X2, . . . , Xk, D) define the
posterior probability of a class C in Bayesian classification [5].
In addition to Bayesian classification techniques, it has been
shown that virtually all popular classification methods such
as SVMs, artificial neural networks, and decision tree en-
sembles can be modified to output such probabilities [6].
Based on this observation, we can in principle leverage
almost any classification technique using the following ap-
proach for estimating Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D):

• Using data set D, train a classification model
M(X1, X2, . . . , Xk) that predicts the probability of
each entity for a given input vector (x1, x2, . . . , xk) ∈
X1 × X2 × · · · × Xk. (If D contains probabilistic
data, then Merlin can use classification techniques for
uncertain data [7]. Alternatively, one can transform
a probabilistic data set D to a data set without
uncertainty by sampling multiple training records
from each uncertain data record.)

• At query time, given user-provided conditions a1 ∈
A1, . . . , ak ∈ Ak, sample value xi from distribution
ai for i = 1, . . . , k. Then compute M(x1, x2, . . . , xk),
i.e., the probability for each entity, by running
(x1, x2, . . . , xk) through model M . Scale the prob-
abilities of all entities y ∈ Y − {y1, . . . , yl} propor-
tionally so that they sum up to 1.

We can similarly train and use a model
MX(X1, X2, . . . , Xk) to predict the user’s input for
an attribute X for which she has not yet provided
a query condition. Given input (x1, x2, . . . , xk) (i.e.,
values of some of the other attributes), it returns
Pr(A |A1, . . . , Ak, ȳ1, . . . , ȳl, D), i.e., a probability
distribution over possible user inputs for attribute X .

9

6.1 Challenges

While conceptually straightforward, the problem lies in
guaranteeing interactive response time. Recall that user-
specified conditions are distributions over the values of
the corresponding attribute domain. Hence the proba-
bilities of interest are actually expectations, which in
practice are computed by sampling from the respec-
tive domains. Consider computing the entity probabilities
Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D) at query time as described
above. If s1 inputs (x1, x2, . . . , xk) are sampled to compute
the average probability of each entity, then total prediction
cost is s1·cM , where cM is the time it takes modelM to make
a single prediction. To recommend additional conditions
(Section 5), entity probabilities have to be computed many
more times: For each of the (m − k) attributes X without
user-specified condition, model MX returns a distribution
over possible user conditions a ∈ A; and for a random sam-
ple of s2 conditions from this output of MX , Merlin has to
compute Pr(Y |A,A1, . . . , Ak, ȳ1, . . . , ȳl, D) using a model
M ′(X,X1, X2, . . . , Xk) similar to M(X1, X2, . . . , Xk).
Hence the total prediction cost becomes

(m− k) · s1 · s2 · cM ′ . (4)

While s1 and s2 are easily tuneable, cM ′ is usually fixed or
even hard to predict, depending on the model type used.
We discuss in Section 6.3 how to make it tuneable.

In addition to prediction cost, one also has to consider
model training time and storage cost. It often is not feasible
to pre-compute and store models like M and MX for all
possible subsets of the set of attributes. On the other hand,
training models on-the-fly can significantly increase system
response time. (Note that for large data sets, state-of-the-
art data mining models usually cannot be trained in a few
seconds.) We discuss our solution next.

6.2 Solution: Bagged Tree Ensembles

We propose to use bagged decision tree ensembles [8] for
probability estimation. A decision tree recursively partitions
the data space, attempting to find partitions with high
purity, i.e., where one class clearly dominates over all others.
Each non-leaf node in the tree splits the data space on some
attribute. Tree traversal for making a prediction starts at
the root and proceeds like in a standard search tree. The
leaf nodes contain predictions based on the distribution of
the data records that fall into the corresponding region of
the data space. Details can be found in any data mining
textbook [3]. A bagged tree ensemble consists of many such
trees, each trained on an independent bootstrap sample of
the training data. To make a prediction for a given input,
all trees are traversed and their individual outputs are
averaged. We chose bagged trees for several reasons.

(1) Trees can handle any attribute type. Bagged trees are
robust against noise and overfitting and have been shown
to return excellent probabilities “out-of-the-box” [6]. Trees
also can naturally deal with missing values, therefore one
can use a model trained for input (X1, . . . , Xm) to make
predictions for any subset of these attributes. This eliminates
the problem of on-the-fly model training or pre-computing
a large number of models for different attribute subsets.

t trees used

. . . L levels

l levels used

T trees

Bagged tree ensemble

Fig. 10. Adaptive Tree restricted to t ≤ T models and l ≤ L levels

(2) Due to their structure of splitting on an at-
tribute at a time, trees can compute expectations like
Pr(Y |A1, . . . , Ak, ȳ1, . . . , ȳl, D) in a single pass. At a split
node whose attribute value is 100% certain, i.e., the user
specified a condition where a single value in the domain
has probability 1.0, the entire “weight” follows the corre-
sponding branch. For imprecise conditions, the “weight” is
partitioned according to user-specified probability distribu-
tion and each partial weight is sent down the corresponding
branch. If the user has not specified a condition for the split
attribute, partial weights are determined by the training
data distribution of the attribute in the corresponding region
of the data space (which is stored in the node). It is easy to
show that this is consistent with the desired computation of
the expected entity probabilities when taking the expecta-
tion over all uncertain input values. Hence there is no need
to sample from A1, . . . , Ak, i.e., s1 in Eq. 4 is effectively
equal to 1.

(3) The comparably simple index-like structure makes
tree cost predictable and tuneable, as we discuss next.

6.3 Controlling Tree Response Time
A major advantage of tree-based methods over other pop-
ular classification techniques is that their response time is
reasonably predictable and tuneable, because it is directly
determined by the number of nodes accessed. This is crucial
for guaranteeing interactive response time. Let Full Tree refer
to a bagged ensemble consisting of T individual trees, each
with at most L levels. By using only t ≤ T of these trees
and limiting access to the top l ≤ L levels, we can reduce
cost approximately proportionally with the total number
of nodes accessed. To be able to stop at a non-leaf level,
Merlin also stores the corresponding class distribution in
each inner node of the trees. Our goal is to set (t, l) so that
Merlin responds within a user-specified time. Notice that
as the user enters query conditions, t and l might need to
be changed adaptively. For instance, a condition assigning
zero probability to some values of an attribute’s domain
effectively prunes the corresponding sub-tree(s), reducing
the number of nodes accessed. When that happens, response
time drops and the initial limits for t and l can be increased.
Since this tree ensemble is capable of adapting to the time
threshold, we call it Adaptive Tree.

To determine if it is safe to increase l or t, Merlin needs
to estimate how many more tree nodes will be accessed if t
increases to t′ and l to l′. The former is fairly simple: since
all trees are trained on bootstrap samples of the same size
and similar data distribution, we can estimate the number
of nodes accessed in a newly added limited tree quite
accurately as the average of the already used t limited trees.
The effect of a level increase is more difficult to estimate,

10

because the sub-trees in the newly added levels are typically
not balanced. However, since we already accessed all nodes
up to level l, we know exactly how many children will be
accessed at level l + 1. Hence as long as Merlin increases
l by at most 1 level at a time, it can accurately predict the
number of nodes accessed after the level-limit increase.

The only difficult case occurs when the user modifies
or completely removes a previously specified condition,
say on attribute X . After this modification, a child c of a
node splitting on X that had zero probability mass before
might now have non-zero probability and hence would be
accessed. Since Merlin might not know how many nodes
will be accessed in the corresponding sub-tree, it takes a
conservative approach of adding one new level of the sub-
tree at a time. It does so by adding a “local” level limit
lc for c, setting it initially to the level of c. This way in
the next round, i.e., after the next user interaction, Merlin
only accesses root node c of this sub-tree. After accessing
c, Merlin knows the number of its children and hence can
increase the local level limit to lc+ 1. This process continues
until the local limit reaches global limit l, at which point it
is discarded.

Knowing the number of nodes accessed, Merlin can es-
timate system response time. The three major computations
performed by Merlin in response to user input are (see
also Figure 4) ranking of entities, ranking of attributes, and
computing sensitivity. Let ny denote the number of nodes
accessed in the Adaptive Tree used to predict the entity
probabilities, and let θ denote the average time for accessing
a single tree node. Then the time for entity ranking is

TeRank = nyθ + u.

This formula is obtained as follows. After the user enters
new information, Merlin first has to accesses the entity
prediction model to compute the probabilities of all entities
(time: nyθ). Then it sorts the entities (time: u), where u is a
constant independent of model size.

Let na denote the total number of nodes accessed in the
Adaptive Trees for predicting future input for unspecified
attributes. Then the time for attribute ranking is approxi-
mately

TaRank = naθ + (m− k)s2nyθ.

This formula is obtained as follows. First, all models for
unspecified attributes are accessed to obtain probability
distributions for possible conditions the user might input for
them (time: naθ). For each of thesem−k attributes, s2 condi-
tions are sampled (see Section 6.1), and for each of them the
corresponding new entity probabilities are computed (time:
(m − k)s2nyθ). The formula does not account for the cost
of entropy computation (which is negligible compared to
computation of the entity probabilities it needs as input) and
the cost for sorting of them−k unspecified attributes (which
is negligible compared to predicting the distribution and
resulting entity probabilities for each of these attributes).
In our current Merlin implementation, entity and attribute
ranker are both executed after each user input. Hence a
user-specified response-time threshold is applied to the total
computation time

T = TeRank + TaRank + z, (5)

where z accounts for the constant, i.e., independent of model
size, overhead for all other tasks related to reading the user’s
response and updating the UI.

Sensitivity analysis is only executed on demand, and it
has its own user-specified response time threshold. The time
for sensitivity analysis is

Tsens = ks3(v + nyθ + u+ w) + z.

It is obtained as follows. For a specified attribute, an alter-
native condition is sampled from A (time: v), followed by
the computation of the resulting entity probabilities (time:
nyθ). This is followed by sorting of the entities (time: u) and
computing the distance to the original ranking (time: w).
This computation is performed for each of the specified k
attributes and s3 samples of alternative conditions for each
of them. Both v and w, like u, are constant as they do not
depend on the model.

All variables in the above formulas can be measured
as Merlin interacts with the user. To estimate the response
time for a different model parameter combination (l′, t′),
Merlin simply plugs in the corresponding new node counts
ny and na, estimated as discussed above. It can choose any
combination (l′, t′) for which the estimated computation
time is below the corresponding response-time limit. Our
experiments show that we indeed can successfully guaran-
tee interactive response times.

7 EXPERIMENTS

The goal of the experiments is to provide a proof of con-
cept for three important properties of Merlin: (1) improved
efficiency of sensitivity analysis due to Theorem 1, (2) qual-
ity of the recommendations for additional conditions, and
(3) guarantee of interactive system response times. In all
experiments, the ranker for Y uses entity probabilities and
the ranker for A uses entropy (see Figure 4). All algorithms
were coded using Java. Our experiments were conducted on
a low-end dual-core 2.13GHz Intel PC running Linux with
4GB of RAM and a 500GB IDE HDD.

7.1 Data and Models

Merlin is evaluated on a data set provided by the Cornell
Lab of Ornithology. It reports sightings of 367 different bird
species in North America, each described by 164 categorical
attributes encoding multi-valued attributes such as beak
length, bird size and shape, and Boolean attributes describ-
ing color and color pattern for different body parts. Each
record reports an individual bird observation generated as
follows. First, an observation record is randomly selected
from the real eBird data set [9], containing actual obser-
vations reported by citizen scientists. While eBird lists the
species of the observed bird, it does not contain individual
bird properties such as color and size. Individual bird fea-
tures were added to the eBird record by sampling from a fea-
ture distribution that was carefully defined by the domain
experts for every single species. Notice that we removed
location and time information from the records. (Based
on location and time of observation, many bird species
can be eliminated from consideration. Merlin discovers this
automatically, recommending spatio-temporal attributes to

11

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

M
ax

im
u

m
 D

is
ta

n
ce

Number of Samples

Efficient Sensitivity Analyzer
Naive Sensitivity Analyzer

Fig. 11. Naive vs. efficient sensitivity estimation for a 9-valued attribute

the user first. While this is desired in practice and leads
to quicker identification, we wanted to make the problem
more challenging to show that Merlin works well even
when the most important attributes for bird identification
are removed.) We sampled 3 million records, using 2/3 of
them for model training and the other 1/3 for testing.

The models used in all experiments are bagged deci-
sion tree ensembles consisting of 100 individual trees, each
grown so that nodes with fewer than 500 records are not
split any further (i.e., they are leaves). Full Tree and Adaptive
Tree refer to the complete bagged model and the proposed
model with adaptive response time, respectively. Since there
is a tradeoff between response time threshold and result
quality for the Adaptive Tree, we study two cases: one with
a generous 5 sec for the system to respond (A5) and the
other with a tighter 1 sec system response time limit (A1).
Because of these thresholds, A5 starts out with 18 (out of
100) individual trees, each restricted to 5 levels. A1 starts
out with a smaller model, consisting of 12 trees and 3 levels.

In all experiments, user input is generated by selecting
a record from the test data. (Recall that these records are
generated from actual user-reported observations.) For a
precise condition, the user provides the corresponding value
from the test record with probability mass 1. For an imprecise
condition, only 75% of the probability mass goes to the
true value and the rest is divided between other values in
the attribute’s domain. The Imprecision parameter controls
how many attributes have an imprecise condition. Setting
Imprecision=p implies that with probability p the user pro-
vides an imprecise condition for an attribute. This decision
is made independently for each attribute.

7.2 Sensitivity Analysis

We compare our algorithm that exploits Theorem 1 to the
naive algorithm. The set of alternative conditions consid-
ered, A, is set to the entire space of possible probability
distributions for the attribute examined. Conditions on all
attributes are imprecise, except the original condition for
the attribute of interest is the uniform distribution to model
a user completely unsure about the true value. We sample
distributions randomly from A. The naive algorithm uses
the sampled values, while our proposed algorithm exploits
Theorem 1 and instead uses the corresponding point on
the edge, obtained where the ray connecting the original
point to the sampled point intersects with the edge of A.
For computing the distance between rankings, we used

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

M
ax

im
u

m
 D

is
ta

n
ce

Number of Samples

Efficient Sensitivity Analyzer
Naive Sensitivity Analyzer

Fig. 12. Naive vs. efficient sensitivity estimation for a Boolean attribute

Minkowski distance with d = 2. Figure 11 shows the
maximum distance between the original ranking and the
rankings obtained based on the sampled conditions for bird
size, which has 9 values. After sampling only 4 points,
the efficient algorithm discovered a distance within 5% of
the final maximum distance it finds, while the naive one
does not come close, even after 1000 samples. We observed
similar results for the other attributes.

Figure 12 shows the same experiment for a Boolean
attribute. Since the efficient algorithm reduces the infinite
sample space to the two extreme points, it guarantees to
find the maximum distance with two samples. The naive
algorithm might be lucky to quickly sample a good point
close to the boundary or might need to explore many points
to get close to that maximum value.

7.3 Additional Condition Recommendation

We explore if Merlin can recommend attributes that lead
to a quick result improvement (Section 5). The experiments
compare the proposed Adaptive Tree algorithm (versions
A5 and A1) against the Full Tree (F), which represents the
“gold standard” in terms of producing calibrated probabili-
ties without regard for computation cost. For each attribute,
we set the number of samples s2 to the attribute’s domain
size (see Section 6.1).

Table 2 shows a representative result for a random test
record, reporting the observation of a less common, and
hence difficult to identify, species initially ranked near posi-
tion 100. Each row shows the rank and estimated probability
of this species as a new condition is added for the k-th
attribute selected by the corresponding algorithm.

All three tables show that Merlin is effective in recom-
mending attributes that result in a quick improvement of
the species’ rank (without it knowing the correct result, of
course!). As expected, the tighter response time constraint
for A1 leads to lower-quality probability estimates, provid-
ing faster responses but slightly poorer results. Comparing
the tables from left to right, it is also obvious that a larger
fraction of imprecise conditions causes some result degrada-
tion. Still, even for Imprecision=1, the correct species quickly
approaches the top-10. Note that the low probability of the
target species for Imprecision=1 is not due to shortcomings
of Merlin, but inherent to the problem. There are only
few observations for the species, compared to those species
initially at the top of the list. Since an imprecise condition
gives 0.25 probability mass to the wrong attribute values,

12

TABLE 2
Comparison of Adaptive Tree (A5 and A1) and Full Tree (F). The first row shows the initial rank and probability of the species of interest. The next

rows show its state after the user added a condition for the attribute recommended by the corresponding method.

Imprecision = 0
k ρ(y) Pr(Y |A1, . . . , Ak, D)

F A5 A1 F A5 A1
0 100 100 102 0.002 0.002 0.002
1 20 20 20 0.013 0.013 0.013
2 9 9 9 0.032 0.032 0.013
3 5 5 9 0.053 0.053 0.032
4 3 3 5 0.095 0.095 0.053
5 2 2 3 0.151 0.151 0.096
6 2 2 2 0.209 0.206 0.153
7 2 2 2 0.258 0.259 0.152
8 1 1 2 0.931 0.933 0.211
9 1 1 2 0.931 0.930 0.259
10 1 1 1 0.931 0.931 0.920

Imprecision = 0.5
k ρ(y) Pr(Y |A1, . . . , Ak, D)

F A5 A1 F A5 A1
0 100 100 102 0.002 0.002 0.002
1 20 20 20 0.013 0.013 0.013
2 9 9 9 0.024 0.024 0.024
3 6 6 6 0.030 0.030 0.030
4 3 3 3 0.053 0.054 0.054
5 3 3 3 0.074 0.073 0.054
6 2 2 2 0.117 0.118 0.086
7 2 2 2 0.145 0.146 0.122
8 1 1 2 0.415 0.422 0.146
9 1 1 2 0.415 0.422 0.146
10 1 1 2 0.413 0.423 0.146

Imprecision = 1
k ρ(y) Pr(Y |A1, . . . , Ak, D)

F A5 A1 F A5 A1
0 100 100 102 0.002 0.002 0.002
1 23 23 24 0.010 0.010 0.010
2 12 12 12 0.019 0.019 0.018
3 6 6 12 0.023 0.024 0.018
4 3 7 12 0.032 0.024 0.018
5 3 7 12 0.038 0.025 0.018
6 3 7 11 0.038 0.025 0.018
7 3 7 11 0.037 0.025 0.018
8 3 7 11 0.037 0.025 0.018
9 3 7 11 0.044 0.025 0.018
10 3 7 11 0.045 0.025 0.018

this means that other species with those properties receive
a significant probability mass. To explore this further, we
ran another experiment where we specified all 164 attributes
with imprecise responses. The maximum probability that
the correct species ever reached using the Full tree was just
0.11.

We also compared to a fast Random approach, which
simply recommends a random attribute. Even after spec-
ifying precise conditions for 10 attributes, Random only
achieved rank and probability of 67 and 0.002, respectively.
For imprecise responses, Random showed no significant
improvement in rank and probabilities. This shows that
even a simple heuristic like entropy, which tries to select
attributes that separate “winning” from “losing” species, is
worth the extra computation time to help the user identify
attributes that narrow the search.

7.4 Interactive Response Time

We explore if Merlin can indeed guarantee interactive re-
sponse time. As before, the response time threshold for the
Adaptive Tree is set to 5 and 1 sec for Eq. 5. Figures 13,
14, and 15 show system response time as the user adds
more conditions. System response time is measured from
the time the user submitted the new condition until the
system responded.

Figure 13 shows results for a run where the user always
provides precise conditions. With the Full Tree, response
time initially is 544 sec, well above the threshold. (The plots
cut off at 15 sec for readability.) As more conditions are
added, response time decreases because more tree branches
are pruned. Also, the more conditions are specified, the
fewer attributes must be considered for recommending the
next one. The Adaptive Tree holds response time below the
threshold. As user input results in pruned tree branches,
it automatically adapts the number of trees and tree levels
used. In this experiment, the first attribute specified is bird
size with a domain size of 9. With a precise response, about
8/9 of the tree is pruned and therefore, the time drops
to about 1/9 of the threshold. In the next round, the tree
is grown to an appropriate new size, so that its response
time is just below the threshold again. The Adaptive Tree
ultimately converges to the Full Tree size.

The basic picture is the same in Figures 14 and 15, for
scenarios with Imprecision set to 0.5 and 1, respectively.
Comparing the different Full Tree curves, it is evident that

response time improves more slowly for imprecise condi-
tions. This is due to the fact that an imprecise condition
does not result in pruning of tree branches as each child
branch receives a non-zero weight. For Imprecision=1, no
branches in the tree can be pruned. Hence Full Tree response
time drops only due to the decreasing number of remaining
attributes considered for future conditions.

8 RELATED WORK

Interactive exploratory search requires an acceptable re-
sponse time which is not a universal constant, but depends
on the user’s inquiry, preferences, and environment [10]. To
the best of our knowledge, Merlin is the only system for
imprecise queries where the user can set system response
time according to her preferences, gracefully trading ac-
curacy of estimated probabilities for faster response time.
BlinkDB [11] takes a different approach toward interactive
query exploration in parallel systems. It trades off result
accuracy for faster response time by running a (precise)
query on an appropriate data sample.

Query steering [12] is a general framework for interac-
tive data exploration. Merlin proposes concrete solutions
for the interactive performance (Section 6) and navigation
help (Section 5) components of this framework. Previous
work on query steering and interactive query refinement
requires the user to provide positive or negative examples
of desired results. For example, in the AIDE data explo-
ration framework [13] the user marks objects as relevant
and irrelevant. The query refinement framework of Islam et
al. [14] requires the user to specify missing and undesirable
result tuples. And Abouzied et al. [15] propose techniques
for learning quantified Boolean queries by asking users to
label data objects as answers or non-answers. Given a set of
missing result tuples, ConQueR [16] automatically modifies
an SQL query so that it contains both the original result and
the missing tuples, minimizing addition of other tuples. The
crucial assumption underlying all these approaches is that
the user can explicitly state desired result tuples. Hence they
are not applicable to Merlin’s target applications where the
user cannot provide the results, but is searching for them by
specifying (possibly imprecise) conditions.

Relaxation was explored for queries that return an empty
result. Mottin et al. [17] propose an interactive approach
where the user is guided towards a desirable relaxation.

13

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100 120 140 160

T
im

e
(s

)

Number of Specified Attributes

Full Tree
Adaptive Tree: 5s
Adaptive Tree: 1s

Fig. 13. Response time: Imprecision = 0

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100 120 140 160

T
im

e
(s

)

Number of Specified Attributes

Full Tree
Adaptive Tree: 5s
Adaptive Tree: 1s

Fig. 14. Response time: Imprecision = 0.5

 0

 2

 4

 6

 8

 10

 12

 14

 20 40 60 80 100 120 140 160

T
im

e
(s

)

Number of Specified Attributes

Full Tree
Adaptive Tree: 5s
Adaptive Tree: 1s

Fig. 15. Response time: Imprecision = 1

Similarly, Junker [18] explores the space of possible relax-
ations for interactive applications based on user prefer-
ences. For Select-Project-Join queries, the Stretch’n’Shrink
technique [19] interactively finds relaxations and contrac-
tions based on user feedback in order for the query to
reach a target output cardinality. All these approaches are
concerned with navigating a huge space of possible query
relaxations or contractions based on user preferences about
which conditions are changeable. This is orthogonal to our
work, where the goal is not to automatically modify a
condition, but to efficiently process imprecise conditions
and analyze their impact on the result.

The general idea of selecting good questions to efficiently
extract information from a user has appeared in various
contexts. The 20Q game [20] uses a proprietary algorithm
to select good questions in order to guess an object the
user is thinking of. Visipedia [21] determines the category
of an image by posing questions to the user based on visual
properties. A similar problem of selecting questions and
their order was also explored in the context of questionnaire
design [22]. The notion of revealing information at a cost has
also been explored in active learning [23]. The most common
scenario is as follows: Given a set of input vectors and a
budget, choose some inputs to be labeled with their class
such that a model trained on the resulting labeled data set
has the highest accuracy. Work on active feature acquisition
and classification considers input attribute values to be
revealed at a cost and tries to balance this cost with the
benefit of correctly classifying a given input [24], [25]. These
approaches can in principle be incorporated into the Merlin
framework for ranking of unspecified attributes. However,
none of them considers tuneable response time. The general
idea of reducing user-effort in interactive systems also ap-
peared in other contexts, e.g., ontology matching [26] and
constraint-based query systems for pattern discovery [27].
For human-assisted graph search, Parameswaran et al. [28]
explore how to select an optimal set of graph nodes to
minimize the number of reachability questions a human
expert has to answer.

While also helpful for composing a query, query sugges-
tion and auto-completion are orthogonal to our problem.
They rely on repositories of historic queries to predict what
query a user might be interested in [29], [30], even in the
presence of typing errors [31].

Research on probabilistic databases [1] concentrated on
dealing with imprecise data, while Merlin’s design is cen-
tered around imprecise queries. The theory community ex-
plored search in the presence of errors, which considers

correct and incorrect, but not imprecise user input [32]. Pre-
vious work on imprecise queries focused on finding result
tuples “similar to” a desired one [33]. AIMQ [34] handles an
imprecise query by turning it into a set of precise (equality)
queries, then finds the most relevant tuples in a neighbor-
hood based on provided or inferred distance measures. This
notion of query imprecision is fundamentally different from
ours. Our goal is to find the precise result the user is looking
for. In the bird example, the user wants to identify the actual
species, not others “like it”. Furthermore, our framework
is designed to let the user express uncertainty of the type
“most likely the bird had blue on the wing, but there is
a small chance it did not.” These types of statements are
easy to express with probability distributions, but cannot be
captured by the notion of “similar” results, because it does
not make sense to consider having wing color blue to be
similar to not having wing color blue. However, it might be
interesting to combine the two approaches so that the user
can start with imprecise conditions (using Merlin), and then,
after finding a match, expand the search to similar entities
to double-check for possible mis-identification.

Agrawal et al. [35] are among the first to explore ranking
of results for database queries; recent work includes [36].
Since all these approaches deal with precise queries, a tuple
is either in the query result or not. Hence ranking is based
on additional properties, e.g., frequency of attribute values
or global importance of unspecified attributes. Uncertainty
arises not from the query, but for example when the im-
portance of an unspecified attribute is estimated based on
specified ones. In Merlin, imprecise queries lead to a natural
notion of ranking based on probability distributions of spec-
ified attributes. In addition to result ranking, for databases
with many attributes the notion of attribute ranking was
studied [37]. Attribute ranking could be added to Merlin for
result presentation.

9 CONCLUSIONS

To gain wider acceptance for big data analysis, databases
have to support a broad spectrum of users in finding the
information they are looking for. We proposed Merlin for
applications where the user is unsure about query con-
ditions, allowing her to explicitly express the uncertainty
through probabilities. Since dealing with probabilities and
expectations is computationally expensive, Merlin can trade
result accuracy for faster response time based on a user-
controlled real-time threshold. To help the user evaluate the
risk of specifying an imprecise condition, Merlin provides a

14

novel notion of sensitivity and a fast algorithm for estimat-
ing it.

As a next step, we plan to explore other approaches
for fast and accurate probability estimation. It would also
be interesting to explore suitable interfaces for users to
express their uncertainty, and how to turn this input into the
probability distributions Merlin is designed to work with.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under Grant Nos. IIS-1017793 and DRL-1010818. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors. We would
like to thank the Merlin and eBird teams at the Cornell
Lab of Ornithology, in particular Jessie Barry, Miyoko Chu,
Scott Haber, Tim Levatich, and Syed Rehman, for providing
the data and domain-related advice. We also thank the
anonymous reviewers for their feedback.

REFERENCES

[1] D. Suciu, D. Olteanu, C. Re, and C. Koch, Probabilistic Databases.
Morgan & Claypool, 2011.

[2] E. Yilmaz, J. A. Aslam, and S. Robertson, “A new rank correlation
coefficient for information retrieval,” in Proc. ACM SIGIR, 2008,
pp. 587–594.

[3] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. Morgan Kaufmann, 2011.

[4] B. Qarabaqi and M. Riedewald, “User-driven refinement of impre-
cise queries,” in Proc. ICDE, 2014, pp. 916–927.

[5] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[6] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities

with supervised learning,” in Proc. ICML, 2005, pp. 625–632.
[7] S. Tsang, B. Kao, K. Yip, W.-S. Hoy, and S. D. Lee, “Decision trees

for uncertain data,” IEEE TKDE, vol. 23, no. 1, pp. 64–78, 2011.
[8] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp.

123–140, 1996.
[9] Cornell Lab of Ornthology and Audubon, “eBird project,” ebird.

org.
[10] R. B. Miller, “Response time in man-computer conversational

transactions,” in Proc. Fall Joint Computer Conference, Part I, 1968,
pp. 267–277.

[11] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica, “BlinkDB: Queries with bounded errors and bounded
response times on very large data,” in ACM European Conference
on Computer Systems (EuroSys), 2013, pp. 29–42.

[12] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitri-
adou, A. Kalinin, O. Papaemmanouil, and S. B. Zdonik, “Query
steering for interactive data exploration,” in Proc. CIDR, 2013.

[13] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-
example: An automatic query steering framework for interactive
data exploration,” in Proc. ACM SIGMOD, 2014, pp. 517–528.

[14] M. S. Islam, C. Liu, and R. Zhou, “A framework for query
refinement with user feedback,” J. Syst. Softw., vol. 86, no. 6, pp.
1580–1595, 2013.

[15] A. Abouzied, D. Angluin, C. Papadimitriou, J. M. Hellerstein,
and A. Silberschatz, “Learning and verifying quantified boolean
queries by example,” in Proc. PODS, 2013, pp. 49–60.

[16] Q. T. Tran and C.-Y. Chan, “How to ConQueR why-not questions,”
in Proc. ACM SIGMOD, 2010, pp. 15–26.

[17] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and Y. Vele-
grakis, “A probabilistic optimization framework for the empty-
answer problem,” Proc. VLDB Endow., vol. 6, no. 14, pp. 1762–1773,
Sep. 2013.

[18] U. Junker, “QUICKXPLAIN: Preferred explanations and relax-
ations for over-constrained problems,” in Proc. AAAI, 2004, pp.
167–172.

[19] C. Mishra and N. Koudas, “Interactive query refinement,” in Proc.
EDBT, 2009, pp. 862–873.

[20] R. Burgener, “Artificial neural network guessing method and
game,” US Patent Application US 2006/0230008 A1, 2006, online
game at www.20q.net.

[21] S. Branson et al., “Visual recognition with humans in the loop,” in
Proc. Eur. Conf. on Computer Vision (ECCV), 2010.

[22] K. Chen, H. Chen, N. Conway, J. M. Hellerstein, and T. S. Parikh,
“Usher: Improving data quality with dynamic forms,” IEEE TKDE,
vol. 23, no. 8, pp. 1138–1153, 2011.

[23] B. Settles, “Active learning literature survey,” Univ. of Wisconsin–
Madison, Tech. Rep. 1648, 2009.

[24] R. Greiner, A. J. Grove, and D. Roth, “Learning cost-sensitive
active classifiers,” Artif. Intell., vol. 139, no. 2, pp. 137–174, 2002.

[25] S. Ji and L. Carin, “Cost-sensitive feature acquisition and classifi-
cation,” Pattern Recognition, vol. 40, no. 5, pp. 1474–1485, 2007.

[26] I. F. Cruz, C. Stroe, and M. Palmonari, “Interactive user feedback in
ontology matching using signature vectors,” in Proc. ICDE, 2012,
pp. 1321–1324.

[27] F. Bonchi, F. Giannotti, C. Lucchese, S. Orlando, R. Perego,
and R. Trasarti, “On interactive pattern mining from relational
databases,” in Proc. Int. Conf. on Knowledge Discovery in Inductive
Databases (KDID), 2007, pp. 42–62.

[28] A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis,
and J. Widom, “Human-assisted graph search: It’s okay to ask
questions,” Proc. VLDB Endowment, vol. 4, no. 5, pp. 267–278, 2011.

[29] Z. Bar-Yossef and N. Kraus, “Context-sensitive query auto-
completion,” in Proc. WWW, 2011, pp. 107–116.

[30] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li,
“Context-aware query suggestion by mining click-through and
session data,” in Proc. SIGKDD, 2008, pp. 875–883.

[31] S. Chaudhuri and R. Kaushik, “Extending autocompletion to
tolerate errors,” in Proc. ACM SIGMOD, 2009, pp. 707–718.

[32] J. A. Aslam and A. Dhagat, “Searching in the presence of linearly
bounded errors,” in Proc. STOC, 1991, pp. 486–493.

[33] A. Motro, “VAGUE: A user interface to relational databases that
permits vague queries,” ACM Trans. Inf. Syst., vol. 6, no. 3, pp.
187–214, 1988.

[34] U. Nambiar and S. Kambhampati, “Answering imprecise queries
over autonomous web databases,” in Proc. ICDE, 2006, pp. 45–54.

[35] S. Agrawal and S. Chaudhuri, “Automated ranking of database
query results,” in Proc. CIDR, 2003, pp. 888–899.

[36] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum, “Probabilistic
information retrieval approach for ranking of database query
results,” ACM Transactions on Database Systems (TODS, vol. 31,
no. 3, pp. 1134–1168, 2006.

[37] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan, “Ordering the
attributes of query results,” in Proc. ACM SIGMOD, 2006, pp. 395–
406.

Bahar Qarabaqi received the PhD in Computer
Science from the College of Computer and In-
formation Science at Northeastern University in
Boston, MA, USA. Her research interests include
exploratory search in large databases and effi-
cient analysis of massive observational data.

Mirek Riedewald received the PhD in Computer
Science from the University of California, Santa
Barbara. He is an Associate Professor in the
College of Computer and Information Science at
Northeastern University in Boston, MA, USA. His
research interests include databases and data
mining, with an emphasis on designing scalable
parallel techniques for data-driven science. He
has authored more than 35 articles published in
peer-reviewed conferences and journals. He is a
member of IEEE and ACM.

15

APPENDIX

PROOF OF LEMMA 1
Lemma. Assume the user is looking for a single entity of

interest by exploring the ranked list of entities one-
by-one from top to bottom, until this entity is found.
Expected user effort then is minimized if the entities
are ranked in decreasing order of their effort-adjusted
probability.

Proof: Without loss of generality, assume the entities
are ranked in order y1, y2, . . . , yn. If yc is the correct result,
the user would have to go through entities y1 to yc−1, which
are all ranked higher, until finding yc. The corresponding
total effort is

∑c
j=1 φj . Hence, we obtain the expected user

effort as
n∑
i=1

Pr(Y = yi |A1, . . . , Ak, ȳ1, . . . , ȳl, D) ·
i∑

j=1

φj . (6)

Assume for contradiction that ranking y1, y2, . . . , yn
minimizes expected user effort, but entities are not ranked
in decreasing order of their effort-adjusted probabili-
ties. Then there exists a pair of adjacent (in the rank-
ing) entities (yk, yk+1) that is not correctly ranked by
effort-adjusted probability, i.e., Pk/φk < Pk+1/φk+1. (To
avoid clutter, we use Pi as a shorthand for Pr(Y =
yi |A1, . . . , Ak, ȳ1, . . . , ȳl, D).) We show that swapping their
positions will decrease expected effort, contradicting the
assumption of minimality.

It is easy to see that swapping yk and yk+1 in Eq. 6
changes expected user effort by Pkφk+1 − Pk+1φk. This
difference is negative because of Pk/φk < Pk+1/φk+1.
Hence the initial ranking y1, y2, . . . , yn did not minimize
expected user effort, completing the proof of Lemma 1 by
contradiction.

PROOF OF LEMMA 2
Lemma. Let p, r, and q be conditions for at-

tribute X , and let the corresponding entity prob-
abilities obtained based on these conditions be
P = Pr(Y |A = p,A1, . . . , Ak, ȳ1, . . . , ȳl, D), Q =
Pr(Y |A = q, A1, . . . , Ak, ȳ1, . . . , ȳl, D), and R =
Pr(Y |A = r,A1, . . . , Ak, ȳ1, . . . , ȳl, D). If q = p + α ·
(r − p), 0 < α < 1, then Q = P + α · (R− P).

Proof: For simplicity and without loss of generality,
collinearity will be shown for an attribute X with three
possible values x1, x2, and x3. Hence a condition on X
is a probability distribution p ∈ {(p1, p2, p3) | p1, p2, p3 ≥
0, p1+p2+p3 = 1}. Since the third probability is determined
by the other two (all have to add up to 1), we only need to
consider a probability vector (p1, p2).

Consider three different conditions for attribute X , ex-
pressed as probability vectors p = (p1, p2), q = (q1, q2), and
r = (r1, r2). Let the three vectors satisfy q = p+ α · (r − p)
for some 0 < α < 1, i.e., p, q, and r are collinear conditions
for attribute X . (Intuitively, q lies on the line connecting p
and r.) We show that the corresponding entity probabilities

P = Pr(Y |A = p,A1, . . . , Ak, ȳ1, . . . , ȳl, D)

Q = Pr(Y |A = q,A1, . . . , Ak, ȳ1, . . . , ȳl, D)

R = Pr(Y |A = r,A1, . . . , Ak, ȳ1, . . . , ȳl, D)

have to be collinear as well, i.e., satisfy Q = P +α · (R−P).
To see this, recall that each condition ai ∈ Ai is a dis-

tribution over the values of the corresponding attribute Xi.
Hence the above probabilities are actually expectations over
these combinations of X-values. Formally, P (and similarly
Q and R) is defined as

EX,X1,...,Xk
[Pr(Y |X,X1, . . . , Xk, ȳ1, . . . , ȳl, D)].

Since expectations can be decomposed, we can equivalently
write

EX
[
EX1,...,Xk

[Pr(Y |X,X1, . . . , Xk, ȳ1, . . . , ȳl, D)]
]
.

Based on the definition of the expectation, we then obtain
P =

∑
x∈X Pr(x)·g(x), where g(x) = EX1,...,Xk

[Pr(Y |X =
x,X1, . . . , Xk, ȳ1, . . . , ȳl, D)]; similar for Q and R. For our
3-valued example attribute X we therefore have

P = p1 · g(x1) + p2 · g(x2) + (1− p1 − p2) · g(x3) (7)
Q = q1 · g(x1) + q2 · g(x2) + (1− q1 − q2) · g(x3) (8)
R = r1 · g(x1) + r2 · g(x2) + (1− r1 − r2) · g(x3) (9)

Since q = p+ α · (r − p), we can derive from Equation 8

Q =(p1 + α(r1 − p1))g(x1) + (p2 + α(r2 − p2))g(x2)

+ (1− (p1 + α(r1 − p1))− (p2 + α(r2 − p2)))g(x3)

=(p1g(x1) + p2g(x2) + (1− p1 − p2)g(x3))

+ α((r1g(x1) + r2g(x2) + (1− r1 − r2)g(x3))

− (p1g(x1) + p2g(x2) + (1− p1 − p2)g(x3))).

Together with Equations 7 and 9, we then obtain the
desired result that Q = P + α · (R− P).

PROOF OF LEMMA 3
Lemma. Let p, r, and q = p + α · (r − p), 0 < α < 1, be

collinear conditions for attribute X . And let the entities
be ranked by effort-adjusted probability. If entity y is
ranked below entity y′ in both Lp and Lr , then y is also
ranked below y′ in Lq .

Proof: We use φ and φ′ to denote the user effort for
y and y′, respectively (see Section 3). As before, let P , Q,
and R denote the probability of entity y in Lp, Lq , and Lr ,
respectively. We similarly define P ′, Q′, and R′ for y′.

As shown above, the collinearity of p, q, and r implies
collinearity of P , Q, and R (similarly for P ′, Q′, and R′).
More precisely, Q = P + α · (R− P) = (1− α)P + αR and
similarly Q′ = (1−α)P ′+αR′. This implies Q/φ−Q′/φ′ =
(1− α)(P/φ− P ′/φ′) + α(R/φ−R′/φ′). This difference is
negative, because y′ is ranked above y in both Lp and Lr
and therefore P/φ < P ′/φ′ and R/φ < R′/φ′. This in turn
implies that y′ is ranked above y in Lq as well.

