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ABSTRACT
HTML tables and spreadsheets on the Internet or in enter-
prise intranets often contain valuable information, but are
created ad-hoc. As a result, they usually lack systematic
names for column headers and clear vocabulary for cell val-
ues. This limits the re-use of such tables and creates a huge
heterogeneity problem when comparing or aggregating mul-
tiple tables.

This paper aims to overcome this problem by automati-
cally canonicalizing header names and cell values onto con-
cepts, classes, entities and uniquely represented quantities
registered in a knowledge base. To this end, we devise a
probabilistic graphical model that captures coherence de-
pendencies between cells in tables and candidate items in
the space of concepts, entities and quantities. We give spe-
cific consideration to quantities which are mapped into a
<measure, value, unit> triple over a taxonomy of phys-
ical (e.g. power consumption), monetary (e.g. revenue),
temporal (e.g. date) and dimensionless (e.g. counts) mea-
sures. Our experiments with Web tables from diverse do-
mains demonstrate the viability of our method and its ben-
efits over baselines.
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1. INTRODUCTION
Motivation: The Web contains a wealth of structured but
schema-free data in the form of HTML tables. These are
manually created by knowledgeable users who want to share
information—about music, food, car companies, renewable
energy, traffic statistics etc. The advent of cloud-based edit-
ing and publishing tools (e.g., Google Sheets and Fusion Ta-
bles, Microsoft Excel Online) makes it even easier for users to
post such content on the Internet. Likewise, a huge amount
of tabular data exists within enterprise intranets, typically
created with spreadsheet software.
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There is a great opportunity in comparing and combining
multiple tables, towards analytic insight. However, these ta-
bles are typically created in an ad-hoc manner, to be shared
with human users. And the absence of schemas and, even
more, the diversity and potential inconsistency of terminolo-
gies among different tables (by different users) makes such
data fusion steps impossible—if desired to be automatic—or
extremely tedious—if carried out manually. The vocabulary
mismatch across tables has several dimensions:

• Names in table headers typically denote classes (e.g., car
model) or general concepts (e.g., CO2 emission), but are
chosen ad-hoc on a per-table basis.

• Names in cells of the table body often denote individ-
ual entities (e.g., Tesla—the car maker, Musk—its CEO,
Model S—one of Tesla’s models), but the entity names
are highly ambiguous.

• Other cells contain quantities such as financial measures
(e.g., revenue in USD), physical measures (e.g., power in
kW or energy consumption per 100 km in kWh), or plain
numbers denoting ratios, temporal changes, ratings, etc.
The encodings of values and their units can vary heavily
across tables (e.g., $1 bn vs. 1000m USD for revenue,
MPG vs. l/100 km for fuel consumption).

Example: Table 1 shows a typical example of a Web table,
about environment-friendly cars in the U.S. If we want to
compare this data to a table about these (and other) cars in
Europe, we face huge heterogeneity issues regarding headers
(Manufacturer vs. Company), entities in cells (Toyota Prius
Eco vs. Prius Model 2016) and quantities in cells (MPGe vs.
kWh/100km). This table is taken from a Wikipedia article;
tables “from the wild”, appearing in user’s homepages or
posted to social media, are an even greater challenge for
proper interpretation.
Problem: In order to make better sense and enable re-
use of ad-hoc tables, we want to canonicalize their headers
and cells: link classes and concepts to a taxonomic catalog
or simply to Wikipedia articles, disambiguate entity names
onto uniquely identified entities registered in a knowledge
base (KB), and map quantities into a complete and normal-
ized representation with easily interpretable value and unit.
This paper addresses this very problem, with emphasis on
making sense of entities and quantities.
Prior work and its limitations: While entity linking
(and so-called Wikification) from text to knowledge bases
has received wide attention (see [8, 29, 30] and references
given there), there is fairly little work on semantic annota-
tion and linkage of Web tables. The first work on lifting Web



Table 1: Example Table: Green Vehicles Comparison

Vehicle Manu- Class GHG Tailpipe emissions EPA Fuel Economy Annual
facturer emissions (1) (g/mi of CO2) combined (MPG) Fuel Cost

Toyota Prius phev Toyota Hybrid electric 61 lb CO2 133 95 MPGe ([29kWh +0.2
gal]/100 mi)

$600.00

Toyota Prius Eco
All years, gasoline fuel Toyota Hybrid electric 51 lb CO2 178 50 (21.25 km/li) $600.00
BMW i3
All years, all fuels BMW Electric car 54 lb CO2 0 124 MPGe (27

kWH/100mi)
<550$

Tesla Model S (60/85
kWh battery)
2013 Award Tesla Electric car 54 lb CO2 0 95 MPGe( 35

kWH/100mi)
$700.00

Chevrolet Volt
2011 Award GM Plug-in Hybrid 61 lb CO2 81 98 MPGe (35kWh/100

mi)
$800.00

Bolloré Bluecar Cecomp Electric car 15.2 kg/100km 0 NA 80 ¤/mo
(1) measured per 100 mile.

tables to“first-class citizens” for search engines, by Halevy et
al. [4], solely aimed at indexing for searchability and did not
pursue any form of canonicalization. The seminal work on
semantic linking for table cells by Sarawagi et al. [17] devised
a probabilistic graphical model to map classes, relations and
entities to a knowledge base. The resulting accuracy was in
the order of 80%, and the method has high computational
complexity. The recent work of Bhagavatula et al. [1] im-
proved accuracy above 95%. None of these prior works
considered quantities in tables.

Sarawagi et al. [27] addressed quantities, but focused on
the specific tasks of searching with numerical values and
extracting numerical relations from text [18]. Fully canon-
icalizing tables so that they can be compared and joined
has been out-of-scope. The work by Chakrabarti et al. [33]
developed table-to-table matching methods, based on entity
augmentation, for the purpose of searching Web tables. In
their follow-up work [34] the matching problem for a ta-
ble corpus is extended to consider also numeric attributes.
Although this work supports some form of comparing and
combining tables, full canonicalization where all cells are
mapped to semantic items in a knowledge base has not been
considered.

Our approach is inspired by this prior work, but goes be-
yond their settings in several ways:

• We completely canonicalize entities and quantities (as
well as classes and concepts).

• We exploit the textual context that usually surrounds a
table and jointly link names and values from both table
and text. For example, Table 1 appears in a page with
the text shown in Figure 1. This allows us to harness
semantic redundancy and richer features.

• We devise an efficient algorithm for fast processing of
input tables, with the goal of supporting analysts in a
responsive manner.

Our Approach: Probabilistic graphical models like Markov
Random Fields (MRF’s, aka. CRF’s when inference is fo-
cused on conditional probabilities) are a most natural can-
didate for capturing the interdependencies in the potential
linking targets of different entities, quantities, classes and
concepts. Therefore, we conceptually start with a judi-
ciously designed MRF model. To avoid the bottleneck of ex-
plicitly labeled training data, we employ distant supervision
by drawing semantic relatedness weights from a knowledge

base (with weights mined from Wikipedia links, unrelated
to tables). We merely need a small set of annotated tables
for tuning six hyper-parameters. To escape the high com-
plexity of MRF/CRF inference (typically via MCMC sam-
pling), we harness a theorem from [5] and construct a regu-
lar weighted graph from the MRF such that, under certain
conditions, random walk (RW) algorithms closely approx-
imate marginal probabilities for the MRF. Random walks
can be implemented very efficiently. Working out the de-
tails of this MRF-to-RW reduction is one of the paper’s key
contributions. Our end-to-end solution for the table canoni-
calization problem is implemented in a system called Equity
(Entity and quantity in tables).1

Contributions: Overall, this paper makes the following
contributions:

• a comprehensive, distantly supervised MRF model for
canonicalizing ad-hoc tables, handling classes, concepts,
entities and quantities in both table cells and surround-
ing text;

• an efficient algorithm, based on random walks, for com-
puting high-quality solutions;

• experimental results with a diverse set of Web tables that
demonstrate the high accuracy of our method.

The most efficient cars on the market are all electric cars. In
fact, every electric car on the market is more efficient than even
the most efficient conventional hybrid car (the Toyota Prius).
Some of them are more than twice as efficient. As you scroll
through the list below, note that the Prius has a MPG rating
of 50 while Model S has a MPGe of 95. If you are not familiar
with MPGe, it is a rating created by the EPA to determine
the relative efficiency of an electric car compared to a gasoline
car. MPGe is generally good for comparing electric cars to
conventional gasmobiles and hybrids.

Figure 1: Text Snippet from context of Table 1

2. MODEL AND SYSTEM OVERVIEW
This section presents the formal problem definition and in-
troduces important notation.

1More on this project, including experimental data, can be
found at www.mpi-inf.mpg.de/equity.



2.1 Problem Input
The input to the Equity system is:

• A table T with m+ 1 rows, numbered 0 . . .m, and n+ 1
columns, numbered 0 . . . n; where row 0 is the header
row. We use mij to refer to the mention in table cell
(i, j), i.e., in row i and column j. The set of all mentions
in table T is denoted as MT.

• A surrounding context with ν mentions mk (k =
1, . . . , ν). The context is extracted from the web doc-
ument’s title and the table’s surrounding text and cap-
tion. The set of all mentions in the context is denoted
as MX.

We use M = MT∪MX to refer to the set of all mentions in
both table and context. We distinguish between two types
of mentions. A numerical mention is a number, possibly
accompanied by a unit. It represents a quantitative measure
such as ’27 kWh/mi’. All other mentions are referred to as
string mentions. They are likely to refer to entities (e.g.,
GM or General Motors), classes (e.g., car manufacturers),
or concepts (e.g., GHG emission).
Equity currently focuses on tables with the following com-
mon structural properties: The table header contains string
mentions for classes and concepts. If the header is a class,
then the non-header cells in the same column contain in-
stances of the class, i.e., entities, as illustrated by the Man-
ufacturer column in Table 1. If the header is a concept,
then the non-header cells in the column contain quanti-
tative measures, e.g., the Annual Fuel Cost in the exam-
ple. As a result, Equity distinguishes between the following
six sorts of mentions based on mention type and location:
string/cell, string/header, string/context, numeric/cell, nu-
meric/header, numeric/context.
Note that Equity can easily handle “transposed” tables
where the header is not in row 0, but column 0, by working
with the transpose of T .

2.2 Knowledge Base
The space of semantic targets to which we aim to map men-
tions in a table and its context is given by one or more knowl-
edge bases (KB’s). For individual entities and for classes
(i.e., semantic types), we use Yago (yago-knowledge.org),
which is one-to-one interlinked with Wikipedia for enti-
ties, and also connects Wikipedia categories with Word-
Net synsets for its extensive class hierarchy. For general
concepts—abstractions that are neither classes nor entities
(e.g., love, universe, number theory)—Yago is less suitable.
In that case targets are Wikipedia articles (which do not
have counterparts in Yago).
For quantities—the most challenging kind of targets—we
constructed a new KB, called QKB, by importing informa-
tion from freebase.com and restructuring it into the following
organization. A quantity is a triple 〈measure, value, unit〉
where

• The measure is a name referring to a certain quantifiable
aspect of an object or process (e.g., height of a build-
ing, power of a car’s engine). We organize measures in
a light-weight taxonomy (e.g., Revenue is placed under
Monetary).

• The value is a numerical literal. Modifiers in mentions
such as “M” for Mega or “mil” for Million, are factored
into normalized values.

• The unit is a defined and widely used magnitude of a
quantity, such as meter, kg, Watt, kWh, USD, EURO,
etc.

For each quantity, QKB also keeps a set of alias names for
the measure, and—when meaningful and possible—range
bounds for the value, a regular expression for feasible surface
forms of value and unit, and conversion rules for units. Our
light-weight taxonomy covers physical, monetary and tem-
poral measures and also unit-less numbers like ratios, rates,
counts and scores.

2.3 Algorithm Objective and Output
We are interested in a (potentially partial) mapping Ψ from
the set M of mentions to the set S of semantic items. Among
all possible mappings, we aim to find one where (i) each
mention is mapped to the “best” semantic target and (ii)
the mapping is “consistent” with constraints implied by the
table structure. These intuitive ideas will be formalized in
the next sections. Clearly, there can be tension between the
two goals that Equity has to address. For instance, given
only the string “Tesla”, the best match might be the KB
entry for the person Nikola Tesla. However, in the context
of Table 1, the location of this mention in a column of car
manufacturers suggests a reference to the car maker.
Similar to the mentions, Equity also distinguishes between
different sorts of semantic items: entities, classes, concepts
and quantities.
Equity should produce the following mappings for sample
mentions in Table 1:

• Mention m03=“GHG emission” is mapped to concept
Greenhouse_gas.

• Mention m11=“Toyota” is mapped to entity Toyota (the
company).

• Mention m25=“50” is mapped to the physical

measure EPA_Fuel_Economy with value 50 and unit
Miles_Per_Gallon.

If a mention has no proper item in the KB, Equity should
map it to Null.

2.4 System Architecture
Figure 2 depicts the major components of the Equity system.
We employ standard preprocessing for extracting a table and
its context from a web page, and for shallow NLP such as
part-of-speech tagging and coarse-grained typing of names—
both via the Stanford NLP tools based on trained CRF’s [9].
Note that the typing by the Stanford NER tagger merely
produces labels like Person, Location, Organization, Date,
Money and Misc, for text spans that likely denote entities
or values of these kinds.
Equity first detects mentions in both table cells and context.
This was partly done by the Stanford NER tagger already,
but we apply additional regular expressions over token types
to detect more mentions. Especially for quantities this is
often decisive to ensure high recall.
To identify semantic item candidates, we run a light-weight
form of Named Entity Disambiguation. This is a specifically
configured variant of AIDA [13] using a simple popularity-
based prior only and giving it only the mention itself (with-
out any context). As the mention boundaries from the pre-
vious stage are not necessarily correct, we re-run AIDA with
different choices of mention substrings as input. From the
output, Equity keeps the top candidate entities based on
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Figure 2: System Architecture of Equity

AIDA’s confidence. For classes and concepts, which are
not supported by AIDA, we perform simple string lookups
against Yago and Wikipedia to generate candidates. For
quantities, we match the input mentions against the alias
names and, when applicable, regular expressions, for the
measures in our QKB. The point of all this is to generate
sufficiently many reasonable candidates. Hence this step
does not have to be highly precise.
From the identified semantic items, we construct a candidate
graph. This graph is constructed so as to approximate a full-
fledged MRF with joint inference (see next section). Here we
harness the KB for distant supervision, by using its precom-
puted relatedness scores as input for setting edge weights.
These relatedness (aka. coherence) values are precomputed
from Wikipedia links. We also apply some heuristic pruning
when edge weights are negligibly small.
Finally, we perform random walks over the graph and iden-
tify, for each mention, the semantic item that has the highest
stationary probability.

3. PROBABILISTIC GRAPHICAL MODEL
We start with a very natural approach and cast the problem
of determining the semantic targets for the given table men-
tions into a probabilistic model with the following random
variables:

• Xi,j : the observed surface form of a mention in table cell
(i,j).

• Xk: the observed surface form of the k-th mention in the
context of the table.

• Yi,j : hidden variable for the semantic target correspond-
ing to the mention in cell (i,j).

• Yk: hidden variable for the semantic target correspond-
ing to the k-th mention in the table context.

The X-variables range over the set of all possible strings,
while the Y -variables range over the set of possible semantic
targets S in the KB.
The desired mapping Ψ from the set of mentions M to
the set of semantic items S is determined by inferring
the Y -variables from the given X-variables. We propose
to use Markov Random Fields (MRF), which have been
successfully employed for identifying entities and types in
tables [17] and for inference problems in image process-
ing [2] due to their ability to efficiently represent spatial
coherence relationships between pixels. Tables are similar
to images in the sense that table structure implies implicit
coherence relationships. For convenience, we introduce H =
〈X0,0, . . . , Xm,n, X1, . . . , Xν , Y0,0, . . . , Ym,n, Y1, . . . , Yν〉 to
refer to the vector of all random variables. Let Hi refer to
the i-th entry in H, i ∈ {0, 1, . . . , 2(m+ 1)(n+ 1) + 2ν)}.
In addition to H, the MRF is defined by a set of potential
functions Φ, which capture relationships between the ran-
dom variables. A pairwise relationship between Hu and Hv
is modeled by function Φu,v, which maps each pair of values
from the domains of Hu and Hv, respectively, to a real num-

Y2,1

X1 X2

X0,0 X0,1 X0,2

X1,0 X1,1 X1,2

Y1 Y2

Y0,0 Y0,1 Y0,2

Y1,0 Y1,1 Y1,2

Mentions

Semantic targets

X2,0 X2,1 X2,2

Y2,0 Y2,2

Figure 3: MRF model for a hypothetical table with 3 rows
and 3 columns, whose context contains 2 mentions. For the
Y -variables, not all edges of the fully connected subgraph
are shown to reduce clutter.

ber. For the sake of readability, we will also use Φ(Hu, Hv)
to refer to Φu,v. Similarly, the relationship between three
random variables Hu, Hv, and Hw would be modeled by
potential function Φu,v,w, mapping a 3-tuple of values from
the respective domains of the three random variables to a
real number, and so on. Let EΦ denote the set of sub-vectors
of H over which Φ is defined. Then the MRF represents joint
probability distribution

Pr(H) =
1

Z

∏
e∈EΦ

Φe,

where Z serves to scale the values so that they are true
probabilities. A crucial design decision for an MRF is to de-
termine EΦ, i.e., which random variables to connect through
a potential function.

3.1 Potential Functions
We limit all potential functions to be “pairwise”. In ad-
dition to tractability of inference, this simplifies specifying
the functions themselves. Intuitively, a pairwise potential
function couples two random variables from H based on a
relationship induced by table structure and content. The
first family of potential functions captures the generic prop-
erty that the surface form of the mention is closely related
to the underlying semantic meaning.
Mention-target coupling: This dependency is repre-
sented by the blue dashed line in Figure 3. The correspond-
ing family of potential functions is defined as φ1(Xi,j , Yi,j),
for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Note that the individ-
ual functions in this family will differ depending on the sort
of the mention and the semantic target (see Section 4.3).
Similarly, the relationship between surface form and corre-
sponding semantic target for the table context is captured
by potential functions φ2(Xk, Yk), for 1 ≤ k ≤ ν. The next
families of potential functions capture relationships induced
by the table structure.
Header-cell coupling: This dependency is represented by
the vertical black dotted line in Figure 3. It reflects that
the header determines the information stored in a column.
Equity captures this with a family of potential functions
between the random variable for a header mention and the
cell mentions in the same column: φ3(X0,j , Xi,j), for i > 0.
Same-row coupling: This dependency is represented by



the horizontal orange solid lines in Figure 3. It models that
the cells in a row contain data for a certain object repre-
sented by the row, hence are closely related. Formally this
is encoded with potential functions for each pair of random
variables for mentions in a row: φ4(Xi,j , Xi,k), for i > 0 and
j 6= k.
Same-column coupling: This dependency is represented
by the vertical green solid lines in Figure 3. Since all entries
refer to the same “type” of information determined by the
header, each cell’s mention is closely related to the others
in the same column. The corresponding family of potential
functions is φ5(Xi,j , Xk,j), for i > 0, k > 0, i 6= k.
The last potential function families model global coherence
properties.
Same-value coupling: This dependency is represented by
the yellow long-dashed line in Figure 3. It captures the
notion that given the specialized nature of a table and its
context, occurrences of the same surface form are likely to
refer to the same semantic target. This is modeled by po-
tential functions that connect the random variables for all
pairs of mentions that share the same surface form. One con-
nects context mentions to table mentions: φ6(Xi,j , Xk), for
all mij = mk. The other connects table mentions with each
other: φ7(Xi,j , Xa,b), for all mij = mab. This could easily be
relaxed to a coupling based on “similar”, instead of identical,
surface forms, e.g., to match ’MS Research’ with ’Microsoft
Research’ or numbers such as ’1.1 million’ and ’1,101,925’.
Candidate-candidate coupling: This dependency is rep-
resented by the blue solid line in Figure 3. It is motivated
by the fact that all semantic targets for mentions in table
and context should refer to a common topic, hence should
be coherent. The corresponding families of potential func-
tions are φ8(Yi,j , Ya,b), φ9(Yi,j , Yk), and φ10(Yc, Yk), for all
(i 6= a) ∨ (j 6= b), c 6= k.

4. MRF AND RANDOM WALKS
Cohen [5] proved that marginal probabilities in an acyclic
“pairwise”2 MRF can be computed (almost) exactly through
random walks followed by minimal post-processing. The
proof includes the construction of an ordinary-graph ana-
log of a given MRF, on which the random walks are per-
formed. Even though the MRF for a table will usually
contain cycles, Cohen’s construction can still be applied to
it. Cycles merely imply that equivalence between marginal
probabilities in the MRF and the result of the random walk
computation in the ordinary-graph analog might not hold
any more. However, we argue—and confirm empirically—
that the ordinary-graph analog still provides a good starting
point for a random-walk based approach.
We now provide a summary of Cohen’s approach, emphasiz-
ing intuition over detailed formalisms (for details, see [5]).
Given an MRF, its ordinary-graph analog is constructed as
follows:

• For each random variable V and each possible value v ∈
V , create a node nv.

• Two nodes nv and nw, v ∈ V , w ∈ W , V 6= W , are
connected by an undirected edge of weight φV,W (v, w),
if and only if V and W are connected by an edge in the
MRF.

2This is an MRF where all potential functions are defined
over pairs of random variables.

Y0,0

Y1,0 Y2,0

X0,0

X1,0 X2,0

m0,0

m1,0 m2,0

c0,0-0 c0,0-1 c0,0-2

q1,0-0

q1,0-1

q2,0-0

q2,0-1

Fragment of MRF

Ordinary-graph analog (anchor nodes omitted)

Figure 4: Ordinary-graph analog for a fragment of the MRF
in Figure 3. For each connection of two random variables in
the MRF, all values of the first are connected to all values
of the second in the ordinary-graph analog. In the example,
Y0,0 ranges over three values; Y1,0 and Y2,0 each range over
two possible values; and for the X-variables the only value
is the mention given in the table.

• For each leaf variable L, i.e., variable that is connected to
only one other variable in the MRF, there is an additional
anchor node aL. It is connected by an undirected edge
of weight 1 to each node nl, l ∈ L.

• There are no other nodes or edges.

Figure 4 illustrates this construction for a fragment of the
MRF in Figure 3. To simplify notation, we will simply say
“node v” to refer to “the node in the ordinary-graph analog
that corresponds to value v”.
In the case of an acyclic MRF, the marginal probability
Pr(V = v) for random variable V can then be computed (al-
most) exactly using Personalized PageRank [12, 14]. This is
a random walk algorithm with random restarts from a sin-
gle designated start node. Let {v1, v2, . . . , v|V |} be the set
of possible values for random variable V . Cohen’s proposed
approach is to execute Personalized PageRank |V | times,
each time for a different vi ∈ V as the start node. Let αs
be the product of the PageRank values of all anchor nodes
for the personalized PageRank execution with start node vs.
Then Pr(V = vs) is obtained as αs∑|V |

i=1 αi

.

4.1 Reduced Acyclic MRF
We create a reduced version of the MRF by removing edges
until the remaining graphical model is acyclic. For clar-
ity, we will refer to the MRF as defined in Section 3.1 as
full-MRF ; and to its acyclic version as reduced-MRF. More
formally, reduced-MRF is the maximum spanning tree of
the full-MRF, which Equity computes using Kruskal’s al-
gorithm. Ideally we would like to remove edges that have
little impact on the marginal probabilities of the Y -variables.
This impact is determined by the potential functions, which
are difficult to learn due to lack of labeled training data.
We therefore resort to a heuristic based on priorities of edge
types.
Edge types are defined as in Section 3.1. Since surface form
has a strong impact on the choice of semantic target, all
mention-target edges have highest priority and will never be
removed. For the other five edge types, Equity explores all
5! = 120 possible sort orders of their priorities. Edges of the



same type are prioritized based on the sum of the individual
weights of the corresponding edges in the ordinary-graph
analog (see Section 4.3). The winner is selected based on
performance on a small validation set of labeled tables.
This approach removes a large fraction of edges. We also
explore an alternative that does not remove edges from full-
MRF, but is computationally more expensive.

4.2 Modified Construction for Full-MRF
Depending on table structure and content, full-MRF might
not have any leaf variables. This in turn implies that the
corresponding ordinary-graph analog might have no anchor
nodes, and therefore the computation using PageRank val-
ues of anchor nodes would be undefined. (Cohen did not
encounter this problem as he only considered acyclic MRF,
which are guaranteed to have leaf variables.) Even if there
are leaf variables, as in the case of reduced-MRF, the mean-
ing of the product of the PageRank values of the anchor
nodes is not clear. Hence we have to re-think (1) the choice
of start nodes for personalized PageRank and (2) how to use
the PageRank values to select the best semantic target for
each Y -variable.
Due to their unclear role for MRF with cycles, Equity works
with a slightly modified ordinary-graph analog where all an-
chor nodes and their adjacent edges are removed. On the re-
sulting graph, the best semantic target for a random variable
Yi,j with candidate set {y1, y2, . . . , y|Yi,j |} is determined by
executing personalized PageRank with start node mij , i.e.,
the node for the mention in table cell (i, j). Let βk refer to
the PageRank value of node yk. Equity returns the candi-
date yw with the largest β-value and estimates its probabil-
ity of being the right answer as βw∑|Yi,j |

k=1
βk

. In general, the

semantic candidate for table cell (i, j) is determined by (1)
running personalized PageRank with starting node mij and
(2) selecting that node yi,j ∈ Yi,j with the highest PageRank
among all semantic target candidates for cell (i, j).
The approach is motivated by the following intuition. Since
mention nodemij is directly connected to all semantic candi-
dates for Yi,j , starting there corresponds to a prior : greater
edge weight results in correspondingly greater PageRank
mass. The remainder of the graph then accounts for the
effect of the table context. As closely related values of con-
nected random variables will have edges of greater weight,
the candidate that is well-connected to, and hence more co-
herent with, this context receives a greater PageRank value
from those other edges.

4.3 Edge Weights
So far we have only specified the graph structure for person-
alized PageRank computation. Now we turn our attention
to the edge weights. Instead of attempting to first learn the
potential functions and then convert them to edge weights,
we apply distant supervision using the KB and co-occurrence
patterns in Wikipedia to determine those weights directly.
Edge weights are defined by edge type. Each is the product
of a type-specific weight vector and a feature vector, i.e., for
an edge of type i connecting values u ∈ U and v ∈ V of
random variables U and V , it is defined as

wT
i fi(u, v).

Due to the small number of labeled training cases, the num-
ber of parameters learned from these data has to be small.
Hence for most edge types, the vectors are one-dimensional.

We constrain all multi-dimensional weight vectors to only
contain equal values. As a result, we only have a single
hyper-parameter for each edge type. The hyper-parameters,
each with a value between 0 and 1, are learned from a sep-
arately withheld and randomly selected validation set of la-
beled training tables. Equity performs a grid search to find
the parameter combination with the best performance on
the validation data. In the following, we introduce the edge
weight features.
Mention-target edges connect a surface form to a seman-
tic candidate item. For string mentions, we build on pre-
vious work and use features based on string similarity [17]
and popularity statistics from Wikipedia links [13]. How-
ever, no previous work considered the relationship between
surface form and semantic target for quantities. Depending
on the sort of mention and semantic candidate, we use the
following 1-dimensional feature vectors:

• mij is a string mention; Yi,j = c, where c is a concept
or class: Based on the intuition that surface form and
semantic target are often textually similar for concepts
and classes, we use the Jaro-Winkler distance between
mij and c.

• mij is a string mention; Yi,j = e, where e is an entity:
We use the popularity-based prior that was found most
effective for named entity disambiguation by Hoffart et
al. [13]. For string mention mij and candidate entity e, it
is defined as the number of Wikipedia links with anchor
text mij that refer to e, divided by the total number of
Wikipedia links with this anchor text.

• mij is a numerical mention; Yi,j = q, where q is a
quantity: We propose a new feature based on links in
Wikipedia tables that refer to Wikipedia articles about
units of measurement. Let m′

ij be the unit component
of mij , i.e., the leftover after removing the magnitude.
Then the feature is defined as the number of links in
Wikipedia tables that have anchor text m′

ij and refer
to a unit that is associated with quantity q, divided by
the total number of links in Wikipedia tables with this
anchor text and referring to any unit of measurement.

Header-cell edges: Given header and cell mentions m0j

and mij , the 1-dimensional feature vector contains the num-
ber of Wikipedia tables where these surface forms co-occur
in header and non-header cell, respectively, of a column.
Same-row edges: Given same-row mentions mij and mik,
the 1-dimensional feature vector contains the number of
Wikipedia tables where these surface forms co-occur in any
row.
Same-column edges: Given same-column mentions mij

and mkj , the 1-dimensional feature vector contains the num-
ber of Wikipedia tables where these surface forms co-occur
in any column (excluding the header).
Same-value edges: We use a 1-dimensional feature vector
with value equal to the Jaro-Winkler distance between the
two surface forms.
Candidate-candidate edges: Equity uses a relatedness
feature based on Wikipedia link co-occurrences. The relat-
edness of two semantic items is computed as the number
of Wikipedia pages in which they co-occur, normalized so
that the maximum value is equal to 1. In case of edges
connecting a class and entity semantic targets in the same
column, the weight of the edge is updated by the relation
between the class and the entity’s classes. That is, the edge



is weighted using a mixture of the candidates’ relatedness
and the classes overlap measures.

5. IMPLEMENTATION

5.1 Mention Recognition
For detecting mentions in tables and their contexts, we use
the state-of-the-art Stanford NER tagger [9]. However, this
tool was designed for natural-language sentences as input
and shows low recall on tables. Hence we developed an ex-
tended mention recognition system as part of the Equity
system. Our tool is centered on a rule-based classifier that
uses regular expressions to detect occurrences of classes, con-
cepts, entities and quantities in tables and their surrounding
text. The major steps are as follows.
Classify columns: A column can be classified as numeri-
cal, textual or mixed. We run our regular expression classi-
fier on each cell of the column, and then use majority voting.
Detect concepts and classes: We annotate the headers of
numerical columns as mentions of concepts, and the head-
ers of textual columns as mentions of classes. For mixed
columns we base the decision on the majority of their cells.
Detect quantities: We use regular expressions to identify
mentions of quantities, and to decompose them into value
and unit.
Detect entities: We use the Stanford NLP parser to detect
all possible noun phrases in a textual cell and mark them as
entity mentions.
Enrich mentions: We further augment mentions in a cell
with all sub-strings of the detected noun phrases. We re-
peatedly call the text-based entity-linking tool AIDA [13]
with each sub-string as the sole input, to determine can-
didate entities. Then we filter the mention candidates, to
select the maximum-length non-overlapping mentions with
non-null candidates.

5.2 Candidate Search
Quantity Candidates: We start by finding candidates
from our QKB for the unit part of the quantity mention.
However, the unit is not always included in the cell. There-
fore, we perform an expansion search for quantity candi-
dates. We look for possible units, first in the cell, then in the
column header, and eventually in the table context. More-
over, for quantities that do not have units, such as votes or
scores, we use the column header to identify the measure.
Entity Candidates: We use the AIDA web service3, to
retrieve a set of candidate entities for each mention. The
input is a set of possible mentions, and the output is a set of
top-k candidate entities based on a simple popularity prior.
Class Candidates: We use Locality Sensitive Hashing
(LSH) to retrieve candidate classes for mentions; then we
filter them based on Jaro-Winkler distance between class
name and mention.
Concept Candidates: Similar to the previous case, we
use LSH followed by a filtering step using Jaro-Winkler dis-
tance. Furthermore, we add candidate measures from the
QKB as candidates, as some column headers have labels like
frequency, width or height. We ensure that the candidate
units for the column cells are compatible with the candidate
measure for the column header when we perform the final
inference over the graph.

3https://gate.d5.mpi-inf.mpg.de/aida/service/disambiguate

5.3 Random Walk Algorithm
As explained in section 4, we construct 2 types of graphs:
one for the full-MRF and one for the reduced-MRF. We re-
scale all edge weights by multiplying them with the hyper-
parameters for the respective edge type. We use the power-
iteration technique to compute the stationary vector of ran-
dom walks with restart on the graph as described in Section
4. We check convergence based on the relative ordering of
the semantic items, following [12].

6. EXPERIMENTAL RESULTS
We evaluated the effectiveness of the Equity system on a
systematically sampled and fully annotated collection of 69
Web tables (with context). Equity is also compared to previ-
ous work on three larger collections with up to 6,085 tables.

6.1 Setup
Dataset: We build a corpus of web tables from two different
sources: the Google Tables API4 and the Wikipedia tables
corpus from [1]5. Note that fully annotating a table with
the ground-truth for all mentions is a labor-intensive task
requiring specialist knowledge. Hence we opted for annota-
tors from our lab and aimed for a sampled and relatively
small, but fully annotated collection. We wanted to cover
a variety of domains: environment, finance, sport, health
and politics. To get this diversity, we used a handful of key-
words per domain to search for tables from the two sources
and then randomly sampled medium-sized tables from the
search results. In total, we obtained 69 tables this way:
63 from Wikipedia articles and 6 from various web sites.
Table 2 shows statistics about the test dataset. We will
make this annotated collection publicly available for other
researchers.

Table 2: Statistics for Test Data Collection

Average per Table Various Wikpedia
Websites

# rows 13.57 10.86
# columns 5.00 6.00
# numerical columns 1.57 3.02
# entity mentions 17.38 30.28
# quantity mentions 23.34 29.29
# class & concept mentions 2.28 4.29

Hyper-Parameter Tuning: We used a withheld set of 7
tables (disjoint from the test data) from a variety of domains
(health, finance, etc.), in order to tune the hyper-parameters
of Equity: six weights for different kinds of edges (see Sec-
tion 4.3). We performed a grid search over 1000 combina-
tions to obtain the best hyper-parameters for the full-MRF
model and, separately, for the reduced-MRF.

6.2 Results
We report and discuss the effectiveness of Equity for mention
detection and for mention linking. Our performance mea-
sure is precision, micro-averaged over all mentions of all 62
tables of the test collection. The total number of mentions
evaluated is 5,581.

4https://research.google.com/tables
5http://websail-fe.cs.northwestern.edu/TabEL/



Table 3: Micro-averaged Precision of Mention Detection

# Mentions Micro-avg. Precision %
Type Table Cxt. All Table Cxt. All
class 109 0 109 62.4% - 62.4
concept 284 0 284 70.1 - 70.1
date 160 165 325 100.0 97.0 98.5
entity 1628 0 1628 49.7 - 49.7
loc 221 188 409 98.2 94.7 96.6
money 0 7 7 - 100.0 100.0
org 116 225 341 85.3 60.9 69.2
percent 19 35 54 100.0 100.0 100.0
person 86 55 141 89.5 56.4 76.6
quantity 2011 272 2283 82.7 58.1 79.8
Total 4634 947 5581 71.5 74.6 72.0

6.2.1 Mention Detection
Table 3 shows the precision of the mention recognition stage,
broken down into mentions in tables and mentions in the
contexts (Cxt.) and the total over both.
The Stanford NER Tagger alone was able to detect 1,277
mentions (out of which 1,120 are correct mentions) of the
following types: date, location, money, organization, per-
cent and person—mainly in the context. The Equity men-
tion detector additionally identified 4,304 mentions (out of
which 2,898 are correct mentions) of the following types:
class, concept, entity, and quantity. In total, our method
discovered 5,581 mentions in tables and their contexts. The
micro-averaged precision is about 72%. Table 3 breaks this
down onto the different kinds of mentions. The weak points
are mentions of classes and mentions of entities other than
location, organization and person (i.e., the row “entity” in
the table)—mostly products or other artifacts (e.g., movies).
On the other hand, we achieve almost 80% precision for
quantities, which is the main target of this paper.

6.2.2 Mention Linking
Table 4 gives the micro-averaged precision that Equity (in its
reduced-MRF configuration) achieves for mapping mentions
to semantic items in the KB. We consider only correctly rec-
ognized mentions here, as the errors from the previous stage
of mention detection would lead to trivial follow-up errors.
In total, we evaluated 4,018 mentions at this mention linking
stage. Overall, we obtain around 92% precision in linking
quantities, entities, classes and concepts. For entities alone
we achieved 88%, and for all kinds of quantities 93%. Ta-
ble 4 shows the break-down for the different kinds of input
mentions. Here, the row “quantity” refers to all numeric
mentions excluding those of type date and money. The lat-
ter two are mostly detected by the Stanford NER tagger,
whereas most of the remaining quantity mentions are only
detected by our method. The numbers show that the quan-
tities detected by the Equity-specific method exhibit even
higher precision for mention linking, around 94%. As deal-
ing with quantities has been the main target of this work,
we consider the observed performance as very good. For
linking entity mentions, the precision is well above 90% for
location, organization and person. Similar to the mention
detection stage, the remaining kinds of entities—for exam-
ple, products such as car models—are a somewhat weaker
point. Precision for these is around 81% (“entity” row in
Table 4).

Table 4: Micro-averaged Precision of Mention Linking, Con-
sidering all Mentions (Entities, Concepts, Classes, Quanti-
ties) in Table and Context

# Mentions Micro-avg. Precision %
Type Table Cxt. All Table Cxt. All
class 68 0 68 82.4 - 82.4
concept 199 0 199 84.9 - 84.9
date 160 160 320 100.0 100.0 100.0
entity 809 0 809 81.0 - 81.0
loc 217 178 395 94.9 96.6 95.7
money 0 7 7 - 100.0 100.0
org 99 137 236 89.9 95.6 93.2
percent 19 35 54 100.0 100.0 100.0
person 77 31 108 98.7 96.8 98.1
quantity 1664 158 1822 97.5 60.8 94.3
Total 3312 706 4018 92.2 89.4 91.7

Table 5: Entity Linking for Different Datasets, Considering
only Entity Mentions in Tables, but not in the Context.

Micro-avg. Precision %
Data Set Equity Equity Limaye TabEL

full-MRF red-MRF et al. [1]
[17]

web manual 86.11 85.11 81.37 89.41
wiki links 96.39 96.24 84.28 97.16
wiki random 83.04 82.98 – 96.17
Equity corpus 84.11 85.36 – –

6.2.3 Comparison with Other Systems
Although the specific focus of our work is on quantities in
tables, we also performed comparisons to prior work on en-
tity linking in tables, using various annotated datasets from
these works. We compare two configurations of our Eq-
uity system against the systems proposed in [17] and [1],
restricting all inputs to entity mentions in table cells (i.e.,
no context, no quantities).
Table 5 shows the results, for the following datasets, with
results for baselines as reported in the literature:

• web manual [17], a set of 371 web tables with a total of
9,239 mentions,

• wiki links [17] with 6,085 Wikipedia tables containing a
total of 131,807 mentions, and

• wiki random [1] with 3,000 randomly selected Wikipedia
tables and about 40,000 mentions.

Equity outperforms [17] on all datasets. In comparison to
TabEL [1], Equity performs nearly as well on the larger
wiki links collection, which has many tables from prominent
Wikipedia articles. On wiki random, on the other hand, Eq-
uity is substantially outperformed by TabEL.
The reason is that this dataset contains many tables from
the long tail of Wikipedia with lower curation quality. In
particular, these tables contain a substantial fraction of mis-
leading anchor texts. For example, the mention ‘Oslo’ ap-
pears with a link to ‘Bislett Stadium’, and ‘BMW’ is linked
to ‘BMW in Formula One’. A supervised learning method
like TabEL can handle such peculiar instances better. Re-
call that Equity is designed for coping with quantities and
entities together, as opposed to focusing on entities alone.



Table 6: Ablation Study on Mention Linking, Considering
only Entity Mentions in Table and Context

Micro-avg. Precision %
web wiki Equity
manual links corpus

full-MRF 86.11 96.39 86.69
red-MRF 85.11 96.24 87.79
full-MRF w/o cand-cand 84.81 96.17 86.63
red-MRF w/o cand-cand 84.81 96.17 87.92
full-MRF w/o table-struct. 84.92 96.22 86.37
red-MRF w/o table-struct. 85.09 96.25 87.86
full-MRF w/o same-value 86.11 96.39 86.69
red-MRF w/o same-value 85.11 96.24 87.79

6.3 Ablation Study
To study the importance of the different edge types in the
graph models, we performed an ablation study where we
selectively disabled some of them in both full-MRF and
reduced-MRF. Table 6 shows the results on mention linking,
limited to entities because quantities are only annotated in
the Equity corpus.
We observe that the reduced-MRF and the full-MRF have
almost the same precision in all configurations. However, the
reduced-MRF variant of Equity is much faster (see below).
The results on leaving out specific types of edges show that
our methods are robust. Missing certain cues affects the
output quality only slightly. On the other hand, this also
shows that the wiki links corpus, the by far largest of the
datasets, is a fairly easy test case. The other two corpora
are rather small; hence there is no final conclusion yet on
the importance of edge types.

6.4 Error Analysis
Many of the linking errors we observed are due to the ab-
sence of specific measures or units in our QKB, or caused by
very ambiguous column headers. Examples for the latter are
“η(Observed)” for measuring the thermal efficiency of a heat
engine and “Nat.” referring to nationalities with abbrevia-
tions of countries such as “GRE” (for Greece, presumably).
We also observed cases where the column header gives mis-
leading information such as “Density (area/km2)” while
the values in that column indicate population densities in
people/km2. Also, Equity sometimes misclassifies a column
as numeric; an example is the column “Pollutant” with val-
ues like “CO2”, “PM10” etc. Conversely, we occasionally
miss out on a numeric column; an example is “Govt.” with
numbers referring to a country’s governments at different
periods.

6.5 Run-Time Analysis
We implemented the Equity system in Java using a Postgres
database as a KB repository, and measured its run-time on
a server with 4×4 Intel Xeon CPU E5-2667 v3 @ 3.20GHz
cores, setting the maximum memory allocation pool for Eq-
uity to 40GB. The run-times for the reduced-MRF variant of
Equity are 15 times faster than those for the full-MRF. Fur-
ther analyzing the time spent in different components shows
that the dominant factors are (i) SQL calls to fetch can-
didates and associated statistics from the KB and (ii) web
service calls to obtain auxiliary information from AIDA. Dis-
counting these components, which could be re-implemented

in a much more light-weight manner, the time to process
one table is about 2 seconds on average for the reduced-
MRF variant of Equity. With some code tuning, this could
be further optimized.

7. RELATED WORK
Entity Linking: There is ample work on detecting and
disambiguating entities that appear in text documents; [29]
is a recent survey on this topic. Some of the prominent ap-
proaches map to Wikipedia (e.g., [21, 24]), thus covering
also classes and concepts, whereas others strictly focus on
individual entities with DBpedia, Yago or Freebase as their
point of reference (e.g., [13, 20]). The best-performing meth-
ods typically combine a variety of signals and techniques like
pair-wise relatedness of entities [6, 23], refined context mod-
els [16], graph algorithms [13], and random walks [11]. The
Equity system adopts some of these techniques, embedding
them into its generalized framework for linking mentions in
tables to both entities and quantities.
Quantity Extraction: Numeric attribute values and nu-
meric expressions in natural-language text have been con-
sidered by work on information extraction and knowledge
fusion [7, 18, 26, 28]. This line of research is related to our
stage of quantity mention detection, but does not address
the issue of canonicalizing quantities.
Table Search and Matching: Starting with the semi-
nal work of [3, 4, 19], there is growing research on Web
tables and spreadsheets, with the goal of searching table
contents, matching tables against each other and inferring
table header semantics [27, 31, 33, 34]. Linking table cells
to a KB is of no or minor concern in these works. [27]
and [34] deal with quantities in tables, using computational
expensive techniques like MCMC inference for probabilistic
graphical models.
Table Canonicalization: Closest to our work is the prior
research of [17, 27, 22, 1]. [17], [22] and [1] pursued the
same goal as our work, but did not consider quantities at all.
Also, these methods use expensive inference algorithms and
partly rely on extensive training data; our work avoids both
of these potential bottlenecks. [25] addresses the linking of
table headers and rows to concepts and entities in DBpedia,
but focuses on small and narrow HTML tables.
[27] specifically addressed quantities in tables. It devel-
oped a grammar-based technique for column annotation and
a supervised classifier for inferring units of columns with
numeric values. However, this was driven by the task of
searching a heterogeneous table corpus, without resolving
the heterogeneity—thus leaving out the task of linkage to a
comprehensive KB.
MRF/CRF and Random Walks: Our approach builds
on insights from the work of W. Cohen [5] about the connec-
tions between MRF inference and random walk algorithms.
Cohen has developed this further into a general framework
for reasoning with random walks [32].

8. CONCLUSION AND FUTURE WORK
This paper addressed the task of fully canonicalizing men-
tions in ad-hoc tables and their surrounding contexts, by
linking mentions of entities, classes, concepts and quanti-
ties to a knowledge base. To this end, we devised an MRF
model, distantly supervised by relatedness measures from a
KB, then derived a reduced acyclic MRF, and finally cast the



inference over this light-weight model into an efficient algo-
rithm based on random walks over normal weighted graphs.
Our experiments with a collection of Web and Wikipedia
tables demonstrate that particularly the detection and link-
ing of quantities—our main target—works very well. The
reduced-MRF method achieves an overall linking precision
of about 92%, and even 93% for quantity mentions. The Eq-
uity system developed in this paper is a first building block
in our longer-term research towards making sense of Web ta-
bles and spreadsheets in enterprises. Future work includes
joining, comparing and aggregating data over multiple ta-
bles, harnessing their canonicalization by Equity.
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