
Anti-Combining for MapReduce

Alper Okcan
Northeastern University, Boston, USA

okcan@ccs.neu.edu

Mirek Riedewald
Northeastern University, Boston, USA

mirek@ccs.neu.edu

ABSTRACT
We propose Anti-Combining, a novel optimization for
MapReduce programs to decrease the amount of data trans-
ferred from mappers to reducers. In contrast to Combiners,
which decrease data transfer by performing reduce work on
the mappers, Anti-Combining shifts mapper work to the
reducers. It is also conceptually different from traditional
compression techniques. While the latter are applied “out-
side” the MapReduce framework by compressing map out-
put and then decompressing it before the data is fed into
the reducer, Anti-Combining is integrated into mapping and
reducing functionality itself. This enables lightweight algo-
rithms and data reduction even for cases where the Map
output data shows no redundancy that could be exploited
by traditional compression techniques. Anti-Combining can
be enabled automatically for any given MapReduce program
through purely syntactic transformations. In some cases, in
particular for certain non-deterministic Map and Partition
functions, only a weaker version can be applied. At run-
time the Anti-Combining enabled MapReduce program will
dynamically and adaptively decrease data transfer by mak-
ing fine-grained local decisions. Our experiments show that
Anti-Combining can achieve data transfer reduction similar
to or better than traditional compression techniques, while
also reducing CPU and local I/O cost. It can even be applied
in combination with them to greater effect.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

Keywords
MapReduce, Anti-Combining, throughput optimization

1. INTRODUCTION
MapReduce, especially its open-source Hadoop implemen-

tation, has become one of the leading approaches for parallel
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Big Data processing. Users can work with “plain” MapRe-
duce, where programs are expressed directly in terms of Map
and Reduce functions in a programming language such as
Java. Alternatively, they can choose from a variety of high-
level languages including PigLatin [20] and HiveQL [23],
which come with compilers for translating queries into plain
MapReduce code.

Often the shuffle-and-sort phase, when data is transferred
from mappers to reducers, represents the bottleneck of a
MapReduce job execution. There are several reasons for
this. (1) During the shuffle-and-sort phase, large amounts of
data are grouped, sorted, and moved across the network [8,
26, 29]. (2) This data transfer is inherent to enable paral-
lel execution. (3) While shared-nothing environments (on
which MapReduce tends to be executed) make it easy to
increase CPU, memory, and disk resources by adding more
machines, this is difficult for the network. Network links
and switches are in fact shared resources in the sense that
the same link or switch is on the path between many pairs
of machines. Hence reducing network load is essential for
increasing throughput in highly utilized environments.

Network load can be reduced through the use of a Com-
biner as proposed in the original MapReduce paper [6].
A Combiner attempts to decrease mapper-to-reducer data
transfer by applying some of the reducers’ work on the map-
pers, replacing individual records with more compact aggre-
gate data. Unfortunately, combining essentially is limited
to applications that compute distributive or algebraic [9]
aggregates. And even if combining is possible, it will only
be effective if many Map output records in the same map
task have the same key. The same applies to the in-mapper
combining design pattern [16].

Other than a Combiner, the programmer could choose
one of the compression techniques that usually come with
MapReduce implementations. While they differ in compu-
tational cost and compression rate, they all follow the same
pattern: Mapper output is compressed on the mapper ma-
chine. Then the compressed data chunks are sent to the
appropriate reducers, where they are decompressed before
merging and processing. While conceptually simple, this
use of general-purpose compression “outside” the mapping
and reducing functionality can add a significant overhead
for compression and decompression of large data sets.

Our approach is based on the following observation that
trivially holds for any MapReduce program: Consider an
input record i. For this input record the Map function might
produce zero or more output records o1, o2, . . . Some of these
output records will be assigned to the same reduce task,
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Figure 1: Anti-Combining Intuition

others will end up in different reduce tasks. Figure 1 shows
an example. Whenever multiple or large Map output records
are assigned to the same task, e.g., o1 and o2 to Reducer 1,
there is an opportunity for data reduction. Starting with
this observation, we chose the following two design goals:

Simple encoding/decoding functions. We want to
keep the overhead for data reduction low by only using en-
code and decode functions (see Figure 1) with low CPU cost.
Furthermore, to avoid the need for large buffer space, each
encode (and corresponding decode) function call will only
be applied to output records of the same Map call.

Fine-grained adaptive optimization. To achieve good
compression, the choice of encode (and corresponding de-
code) should be driven by the data. In the example in Fig-
ure 1, we might choose a different encoding for {o1, o2} than
for o3. In particular, for o3 it might be best to simply leave
the record alone and transmit it unaltered. Hence the en-
coding decision has to be made adaptively at runtime and
it might be different for the output of different Map calls.

To meet these design goals, we propose Anti-
Combining. As will become clear later, the encode/decode
functions we propose for Anti-Combining reduce the total
data transfer from mappers to reducers by shifting some of
the mapper-side processing to the reducers. In that sense it
does the opposite of a Combiner, which performs reducer-
side work on the mappers.

Anti-Combining can be enabled in any given “plain”
MapReduce program through purely syntactic program
transformations. This makes it possible to enable it au-
tomatically even in programs written in expressive, usually
Turing-complete, languages such as Java or C++. Hence it
can be also applied to compiler-generated MapReduce
code produced by systems such as Pig and Hive, or to other
statically optimized MapReduce programs, e.g., those pro-
duced by database-style scan-sharing and multi-query opti-
mization [23, 4, 8, 15, 18].

Even though it can be enabled for any MapReduce pro-
gram, Anti-Combining (like Combiners) will not always re-
sult in significant cost savings. Fortunately, in our experi-
ence there is a large and diverse spectrum of applications
that can significantly benefit from it. Join processing for
instance, relies on input replication in the map phase in
order to compute multi-way joins [3], complex join predi-
cates [19], similarity joins [2, 24], and k-nearest neighbor
joins [17, 28]. For many graph algorithms including
PageRank [21], Hyperlink-Induced Topic Search [14], and

social network analysis, the Map function processes a node
by emitting output records for each outgoing edge in the
node’s adjacency list. As graphs tend to be very skewed,
Anti-Combining’s adaptive approach can significantly re-
duce cost for nodes with high out-degree, while leaving those
with low out-degree alone. Furthermore, all previously pro-
posed multi-query optimization techniques such as scan-
sharing [4, 8, 18, 25] are a perfect target for Anti-Combining
because a single record produced by the shared operator
might have to be duplicated many times in order to forward
it to the downstream operators of the queries involved.

We make the following main contributions:
1. We identify opportunities for lightweight adaptive run-

time optimization of MapReduce programs based on the
input-output behavior of the Map function. These oppor-
tunities are general in nature and can enable significant re-
duction of the amount of data transferred between mappers
and reducers.

2. We propose Anti-Combining based on encoding and de-
coding techniques that exploit these sharing opportunities.
EagerSH is a “safe” optimization for Map output records
with the same value component. LazySH can be applied
even when Map output records have different keys and val-
ues, i.e., when traditional compression would not be effec-
tive. Both approaches can be used in combination with tra-
ditional compression. We also develop a framework that
allows the various encodings to co-exist, enabling very fine-
grained adaptive optimizations.

3. We propose a syntactic program transformation to en-
able Anti-Combining. It works for plain MapReduce pro-
grams (written in Turing-complete languages such as Java)
and does not need to understand program semantics. Fur-
thermore, our approach can be implemented without modi-
fying the MapReduce environment itself.

2. MAPREDUCE OVERVIEW AND
QUERY-SUGGESTION EXAMPLE

Consider a typical commercial search engine, which re-
turns the best matching Web pages for a given search query.
To aid users in composing a query, most search engines pro-
pose possible query completions as the user is typing. For
example, after entering “sig” the search engine might sug-
gest“sigmod”, “sigmod 2014”, and“sigmod acceptance rate”.
For realtime suggestions, these expansions of a given prefix
have to be pre-computed. While the algorithm for selecting
suggested expansions is more complex (and usually a trade
secret), one of its crucial inputs is the popularity of queries
starting with the prefix typed by the user so far. For il-
lustration purposes, we will therefore consider the following
version of the Query-Suggestion problem: We are given a
log of search queries. For any string P that occurred as a
prefix of some query in the log, pre-compute the five most
frequent queries in the log starting with prefix P .

This is a comparably simple query involving grouping,
aggregation, and top-k selection. Hence Query-Suggestion
is perfectly suitable for parallel computation using MapRe-
duce. A MapReduce program consists of two major primi-
tives, Map and Reduce. The Map function is executed for
each input record, emitting a set of intermediate key/value
pairs. The MapReduce environment automatically groups
Map output records by key. The Partition function assigns
intermediate keys to reduce tasks. When processing a reduce
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Figure 2: MapReduce Overview with Query Suggestion Example

task, the Reduce function is called for each intermediate key;
it works on the list of all values with this key.

The natural way of implementing Query-Suggestion in
MapReduce is illustrated in Figure 2. For a query Q, Map
emits intermediate key/value pairs (P,Q) for each prefix P
of Q. By using the prefix as the key, the MapReduce en-
vironment guarantees that the Reduce call for prefix P will
have all queries with prefix P in its input list. It can then
easily determine the most frequent queries for P .

As Figure 2 illustrates, a single query string will result
in multiple Map output records, so that this query will be
taken into account for each of its prefixes. The Map output
is collected in a buffer which is spilled to disk when it fills
up. Before writing them to disk, the intermediate key/value
pairs are assigned to partitions corresponding to different
reduce tasks by the Partition function. Records in each par-
tition are sorted by key. Before the map task is finalized, the
spill files are merged on disk, preserving the sort order for
each partition. Then each partition is transferred, usually
over the network, to the machine responsible for the corre-
sponding reduce task. In the example, keys “m”, “man” and
“mango” are assigned to reduce task 1. This task processes
the records in increasing key order, calling the reduce func-
tion once for each key and determining the top-5 queries for
it. Notice that in practice each query comes with additional
features, e.g., on which search result the user clicked. These
features can be included in the value component of a record,
but are omitted here for simplicity.

For a search query of length n, the Map function will gen-
erate n output records. Since each output record contains
the query itself, each Map function call’s output is quadratic
in its input size. This results in high cost of the shuffle-and-
sort phase. Query-Suggestion’s aggregate function admits
the use of a Combiner. In particular, the Combiner could
replace m occurrences of the same pair (key, value) in the
output of a map task by“aggregate”record (key, (value, m)).
Unfortunately, our experiments show that the Combiner ap-
proach is not very effective for Query-Suggestion due to the
large number of distinct query strings in each map task in-
put batch (see Section 7.3). For other problems, a Combiner
might not be applicable at all.

We next propose data encoding strategies that exploit
data sharing opportunities based on the output produced
by a single Map function call.

3. EAGER SHARING STRATEGY
Let (k1, v

′) and (k2, v
′), k1 6= k2, be two intermediate

records emitted by Map for some input record (k, v). As
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Figure 3: EagerSH Map Phase for Query-Suggestion

both output records have the same value field, they present a
data reduction opportunity since they can be encoded more
compactly as (k1, ({k2}, v′)). Unfortunately, sharing across
records with different keys is challenging, because intermedi-
ate key/value pairs with different keys are processed by dif-
ferent Reduce calls. Hence even if two Map output records
(k1, v

′) and (k2, v
′) share the same value v′, the reducer will

need these records separately: one for the input list for the
Reduce call for k1 and the other for the input list for the
Reduce call for k2.

We propose EagerSH , which enables data reduction based
on the shared value component as long as both keys are as-
signed to the same reduce task. (This key-to-task assignment
happens in the Partitioner.) Consider the following exam-
ple:

(k1, v1)r1 (k1, ({}, v1))r1

(k2, v1)r2 (k2, ({}, v1))r2

(kin, vin)
map−−−→ (k3, v2)r2

encode−−−−→
(k4, v2)r2 (k3, ({k4, k5}, v2))r2

(k5, v2)r2

For records (k1, v1) and (k2, v1), EagerSH cannot exploit the
common value v1, because they are sent to different reduce
tasks r1 and r2, respectively. Since the other three Map
output records have the same value v2 and keys k3, k4, and
k5 are assigned to the same reduce task r2, EagerSH would
transmit only a single encoded record for value v2 to reduce
task r2. We then have to ensure that the encoded record is
properly decoded in the reduce task so that the Reduce calls
for k4 and k5 see value v2.

3.1 EagerSH Map Phase
We present EagerSH using the query suggestion example.

Recall that for queries “mango” and “manga”, the original
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Algorithm 1 : EagerSH ’s Map Function

Input: input tuple I
1: MapOutput = O-map(I) /* Original map */
2: result = SELECT MIN(O.key) AS key,

(setOfOtherKeysInGroup(), O.value) AS value
FROM MapOutput O
GROUP BY getPartition(O.key), O.value

3: for all r ∈ result do
4: Emit(r.key, r.value)

Algorithm 2 : EagerSH ’s Reduce Function

Input: < keyk, KVAL = listOf(key set K, value)>
1: repeat
2: altKey = Shared.peekMinKey()
3: if altKey < keyk then
4: O-reduce(altKey, Shared.popMinKeyValues()) /*

Original reduce on values with smaller key altKey
*/

5: until altKey ≥ keyk

6: for all (K, value) in KVAL do
7: for all key in K do
8: Shared.add(key, value) /* Store for later reduce

calls */
9: Values = KVAL.getValues()

10: if altKey = keyk then
11: Values = Values ∪ Shared.popMinKeyValues() /* Ap-

pend values with same key in Shared */
12: O-reduce(keyk, Values) /* Original reduce */

map function generates five key/value pairs per query, each
with a different prefix as the key and the same input query as
the value. The Partition function assigns keys “m”, “man”,
and“mango”to reduce task 1 and“ma”,“mang”and“manga”
to reduce task 2.

Figure 3 shows the encoding of the Map function out-
put for two different calls, one for input “mango” in map
task 1 and one for “manga” in another map task 2. Con-
sider the Map call for “mango”. Instead of sending (m,
mango), (man, mango), and (mango, mango) separately
to reduce task 1, EagerSH sends the more compact (m,
({man,mango},mango)), thus eliminating the value dupli-
cation. To generate the encoded record, EagerSH ’s map
function first executes the original Map on the given input
record. It then groups the original Map’s output by value
and partition number (as assigned by the Partitioner). For
each group, a single record is emitted. Its key is the small-
est key in the group; all other keys are added to the value
component.

Algorithm 1 shows the pseudo-code. Notice that Map pro-
duces key/value pairs, hence MapOutput has a key and a
value attribute. The Partition function used by the MapRe-
duce job, getPartition, returns the reduce task to which a
key is assigned. And setOfOtherKeysInGroup is a function
that returns the set of all keys except for the minimal one
in the group. The minimal key is chosen as the “representa-
tive” key for the encoded record, because all Reduce calls in
a reduce task happen in ascending key order [6]. This way
the other keys can be decoded before their Reduce calls are
executed.

3.2 EagerSH Reduce Phase
The encoded records generated by the mappers have to

be decoded on the reducers. In particular, for each of the
keys that were transmitted with the value component of an
encoded record, the corresponding key/value pair has to be
made available before the key’s Reduce call. To avoid mod-
ifications to the underlying MapReduce system, we rely on
a data structure called Shared. (It is discussed in more de-
tail in Section 5.) Structure Shared is defined at the level of
a reduce task, i.e., is visible to all Reduce function calls in
the same task. Hadoop provides a method called setup for
initializing such data structures before the first Reduce call
in a task, and a cleanup method that is executed after the
last Reduce call in that task completed.

Figure 4 illustrates the difference between the original Re-
duce and EagerSH ’s Reduce. In the original MapReduce ex-
ecution, reduce task 1 receives all the records with the keys
assigned to it by the Partitioner, in key order. It then calls
Reduce three times, first for key“m”, followed by“man”, and
finally “mango” in the example.

EagerSH ’s Reduce only receives three encoded records,
in this case all those with key “m”. Before executing the
original Reduce call for key “m”, EagerSH ’s Reduce scans
through all records with that key and inserts into Shared the
corresponding key/value combinations for all keys encoded
in the value component. In the example, records (man,
manga), (man, mango), and (mango, mango) are added to
Shared. Then the original Reduce is called for key “m”. The
other keys are processed the same way: first the input list is
scanned to decode and insert into Shared, then the original
Reduce function is executed. For correctness, EagerSH ’s
Reduce conceptually has to work with the merged list con-
sisting of both the “normal” reduce task input buffer and
Shared. We achieve this with a merge-sort style approach
that reads from normal input buffer and Shared in lockstep.

Algorithm 2 shows the pseudo-code. KVAL is a list of en-
coded records, each consisting of a list of keys and the value
shared by them. KVAL.getValues returns all values in list
KVAL; and Shared.getValues returns all values for a given
key. Assume the MapReduce environment just started exe-
cuting Reduce for keyk, i.e., keyk is the smallest key in the
reduce task’s input buffer for which Reduce has not yet been
executed. Since previous Reduce calls might have inserted
records with smaller keys into Shared, EagerSH ’s reduce has
to make sure that their Reduce calls are processed first. This
is done by the repeat-until loop.

The following for-all nested loop scans the list of encoded
records with key keyk in the reduce task input and inserts
the decoded key/value pairs into Shared. (Since encoding
used the smallest key as the representative, it is guaranteed
that all newly inserted records have keys greater than or
equal to keyk!) Finally the original Reduce function is ex-
ecuted on the union of all records with key keyk from both
KVAL (i.e., the “normal” reduce task input) and Shared.

Decoding has to deal with yet another subtle problem.
Consider again the example in Figure 4. With EagerSH , the
input buffer for reduce task 1 only contains records with key
“m”. Hence the MapReduce system will only call EagerSH ’s
Reduce function for key “m”. The other two keys—“man”
and“mango”—only appear in Shared. Hence EagerSH ’s Re-
duce would not be called for them by the MapReduce sys-
tem. To make sure the remaining records in Shared are pro-
cessed after the last “regular” Reduce call completed, the re-
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duce task’s clean-up function also has to use a similar repeat-
until loop to process all remaining records in Shared. (Recall
that cleanup is called automatically by the MapReduce sys-
tem after all Reduce calls of the task have completed.)

4. LAZY SHARING STRATEGY
To decrease mapper output size, a Combiner requires

records with the same key, EagerSH requires records with
the same value, and traditional compression techniques re-
quire some form of redundancy among the keys and values.
In contrast, our second strategy, LazySH , might achieve sig-
nificant data reduction even if all keys and values in
the output of a Map call are unique. It is able to do
this because instead of sending Map output from mappers to
reducers, LazySH simply transfers the Map input record to
all reduce tasks that would have received some of the Map
output for this record, e.g.:

(k1, v1)r1

(k2, v2)r1
(k1, (kin, vin))r1

(kin, vin)
map−−−→ (k3, v3)r2

encode−−−−→
(k3, (kin, vin))r2

(k4, v4)r2

(k5, v5)r2

Since reduce tasks r1 and r2 would have received Map out-
put records for input (kin, vin), those and exactly those two
reduce tasks will receive (kin, vin). Since Reduce ultimately
needs the Map output records, these have to be generated
lazily on the Reducer by re-executing Map there.

Algorithm 3 : LazySH ’s Map Function

Input: input tuple I
1: MapOutput = O-map(I) /* Original map */
2: result = SELECT MIN(O.key) AS key

FROM MapOutput O
GROUP BY getPartition(O.key)

3: for all r ∈ result do
4: Emit(r.key, I)

Depending on the application, LazySH could achieve
asymptotic data reduction. Consider again the Query-
Suggestion problem for a query string Q of length n. The
original map function would generate a pair (P,Q), for each
prefix P of Q. Hence it generates a total of (1 + n) + (2 +
n) + · · ·+ (n+n) = n(n+ 1)/2 +n2 data for Q. In the best
case for Anti-Combining all prefixes P are assigned to the
same reduce task. For this case, EagerSH would produce a
single output record containing all prefixes P and a single
copy of Q for a total data size of n(n + 1)/2 + n, which is
still quadratic in n. For that same scenario, LazySH would
simply send the input record Q of size n.

4.1 LazySH Map Phase
Figure 5 illustrates LazySH for our running example.

For input query “mango”, instead of sending (m, ({man,
mango},mango)) to reduce task 1, LazySH transfers only
(m, mango). Algorithm 3 shows the pseudo-code. It first
computes the output of the original Map call for input record
I, then finds the minimal key for each reduce task (i.e., parti-
tion) that would have received some of that output. Finally
record I is emitted for each of these minimal keys.

The SQL statement in Algorithm 3 highlights the differ-
ence to EagerSH ’s Map in Algorithm 1. Since LazySH ’s
Map function groups the original Map output only by parti-
tion (and not also by value), there are more data reduction
opportunities. And by using Map input I as the value, it
does not need to transmit all the other keys. This is crucial
for asymptotic (in Map input size) data reduction for the
Query-Suggestion problem.

To make the differences between the original MapReduce
program, EagerSH , and LazySH more tangible, consider the
following example of the real query “watch how i met your
mother online”. If the Partitioner assigns all its prefixes to
the same reduce task, then EagerSH would transmit 34 ·
35/2 + 34 = 629 characters, significantly improving over
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Algorithm 4 : LazySH ’s Reduce Function

Input: < keyk, VAL = listOf(map input I)>
1: repeat
2: altKey = Shared.peekMinKey()
3: if altKey < keyk then
4: O-reduce(altKey, Shared.popMinKeyValues()) /*

Original reduce on values with smaller key altKey
*/

5: until altKey ≥ keyk

6: for all I in VAL do
7: MapOutput = O-map(I) /* Original map */
8: for all (key, value) in MapOutput do
9: if getPartition(key) = this.partitionNumber then

10: Shared.add(key, value)
11: O-reduce(keyk, Shared.popMinKeyValues()) /* Origi-

nal reduce */

the original program’s output of size 34 · 35/2 + 34 · 34 =
1751. However, LazySH would do even better, requiring
only 1 + 34 = 35 characters to be transmitted, using “w” as
the key and the complete query as the value component.

4.2 LazySH Reduce Phase
The reduce tasks of LazySH receive Map input, not out-

put, therefore decoding in the reducer requires re-execution
of the original Map function. Decoded records are stored
in a reduce-task level data structure Shared to allow data
transfer between individual Reduce calls, as discussed for
EagerSH ’s Reduce. Since not all outputs of a given Map
call might be assigned to the current reduce task, the Par-
tition function has to be used to determine those that are.
Algorithm 4 shows the pseudo-code for LazySH ’s Reduce. It
essentially is identical to EagerSH ’s Reduce, except for the
decoding process that calls the original Map and getParti-
tion functions.

For simplicity, we illustrate the algorithm with an exam-
ple in Figure 6. Similar to EagerSH ’s reduce, all values with
minimal key “m” are present in the input buffer of reduce
task 1. When the MapReduce system calls LazySH ’s Reduce
for prefix “m”, the original Map function is applied to gen-
erate all original Map output pairs. For each output record
the Partition function is applied to identify those records
that belong to reduce task 1. E.g., when input record (m,
manga) is processed in this Reduce call, only (m, manga)
and (man, manga) are inserted into Shared.

5. THE SHARED DATA STRUCTURE
The Shared data structure used in the reduce phase is

designed to efficiently manage decoded key-value pairs and
return all records that have the minimal key. It maintains
the minimal key using a min-heap, and an in-memory hash-
table that maps keys to their corresponding values. As the
memory reserved for Shared fills, the data is spilled to local
disk in sorted key order. This is done by repeatedly remov-
ing the minimal key from the min-hash and then removing
the list of values for it from the hash-table, writing it se-
quentially to disk. This mirrors what happens during the
Map phase of the original MapReduce program. For each
spill, the minimal key is recorded in Shared. If the number
of spill files exceed the merge threshold, they are merged,
again mirroring the standard map phase processing [26].

    map(K key, V val, context) {

Class Mapper { Class AntiMapper {

    map(K, V, context) {...}

    setup(...) {...}

    cleanup(...) {...}

}

// Original Mapper class // Adaptive Mapper for Anti−Combining

// Extended Context class

Class AntiContext {

    mapOutput

    write(K key, V val) {

        mapOutput.insert(key, val)

    }

    getOutput() {

        return mapOutput

    }

}

    Mapper o_mapper; AntiContext a_context

    setup(...) { call o_mapper.setup() }

    cleanup(...) { call o_mapper.cleanup() }

    }

                context.write(encoded partition P)

                    use LazySH to encode P

                else

                    use EagerSH to encode P

                if (size of EagerSH−encoded P < size of input record (key, val))

            for all partitions P in mapOutput

        else

            for all partitions P in mapOutput do context.write(EagerSH−encoded P)

        if ((cost of map +  cost of partition call) * number of partitions > T)

        mapOutput.partition(Partitioner)      //Call Partitioner, measure cost

        mapOutput = a_context.getOutput()

        o_mapper.map(key, val, a_context) //Call original map, measure cost

Figure 7: Syntactic rewrite of original mapper class to enable
Anti-Combining

As shown in Algorithms 2 and 4, Shared provides
three functions: peekMinKey(), popMinKeyValues(), and
add(key, value). As detailed in Section 3.2, Anti-Combining
only reads key-value pairs stored in Shared having mini-
mal key. The min-heap is used to find the minimal key at
constant cost when peekMinKey() is called. All values asso-
ciated with the minimal key are retrieved using popMinKey-
Values(). If the values are in the in-memory hash-table, they
are found through a lookup using the minimal key. If val-
ues with the minimal key are spilled to disk, since the spill
files are sorted by key, Shared performs a buffered sequen-
tial read on the relevant spill files, never needing random
accesses. Add(key, value) is performed on the in-memory
hash-table in constant amortized running time. Inserting
the key into the min-heap requires logarithmic time.

Using Combine in the Reduce Phase. For MapRe-
duce programs that admit the use of a Combiner during the
map phase, the provided Combine function can also be lever-
aged during the reduce phase of EagerSH and LazySH . The
Combine function summarizes a set of Map output records
that have the same key. Hence it can be applied to re-
duce the amount of data managed in Shared. Instead of
adding each decoded key-value pair separately, Shared can
immediately Combine values and maintain a single record
for each unique key. Our experiments show that Combine
reduces the size of Shared significantly, sometimes allowing
in-memory processing without spilling to disk. Combining
during the Reduce phase is highly effective, because records
with the same key end up in the same reduce task. Hence
even for applications where Combining is not effective in the
Map phase, leveraging the Combine function can be highly
effective for reducing the size of Shared in the reduce phase.

6. ENABLING ADAPTIVE RUNTIME OP-
TIMIZATION

We discuss how to enable Anti-Combining through syn-
tactic transformations of a given MapReduce program.

6.1 Program Transformation
The original mapper class is replaced by a new mapper

class called AntiMapper as shown in Figure 7. This is done
by modifying the class name in the statement that sets the
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Figure 6: LazySH ’s Reduce Phase for Query-Suggestion

                o_reducer.reduce(altKey, Shared.popMinKeyValues(), context)

// Adaptive Reducer for Anti−Combining

Class Reducer {

    setup(...) {...}

    cleanup(...) {...}

}

// Original Reducer class

Class AntiReducer {

    Shared

    Reducer o_reducer; Mapper o_mapper

    setup(...) {  initialize Shared; call o_reducer.setup() }

    cleanup(...) { cleanup Shared; call o_reducer.cleanup() }

    reduce(K key, iter<adaptiveV> values, context) {

        repeat {

            altKey = Shared.peekMinKey()

    reduce(K, iter<V>, context) {...}

            determine encoding used for val

        for all val in values {

        } until altKey >= key

            if (altKey < key)

            decode val and insert key−value pairs into Shared

            // Decoding for LazySH calls o_mapper.map and the

            // original Partitioner, which is available through the context

Class Shared<K, V> {

    minHeap<K>

    hashMap<K, V>

    keyComparator

    groupingComparator

    popMinKeyValues() {...}

    add(K, V) {...}

}

}

    }

        }

        o_reducer.reduce(key, Shared.popMinKeyValues(), context) }

Figure 8: Syntactic rewrite of original reducer class to enable
Anti-Combining

mapper class for the program. Notice that we do not need to
modify the original class. Instead, AntiMapper contains an
object of the original mapper class and an extended context
object. The former enables the use of the original Map func-
tionality. The latter extends Hadoop’s context class and is
needed because in Hadoop mappers emit their output to the
context object. The extended context intercepts the original
Map output and replaces it by the encoded version. Notice
that MapReduce implementations other than Hadoop would
have to rely on a similar mechanism for collecting Map out-
put, enabling a similar interception approach.

For each individual Map call, the AntiMapper has to
adaptively choose between EagerSH and LazySH to pick
the encoding strategy that decreases data transfer the most.
In fact, the encoding decision is made independently for each
partition (i.e., reduce task) the output records of the Map
call are assigned to. There are two reasons for this: First,
since different tasks cannot share data, the encoding decision
for one partition does not affect the choices for the others.
Second, the greater flexibility enables greater data reduction
compared to enforcing the same decision for all partitions.
Notice that the original program’s unencoded output is a
special case of EagerSH when the set of keys included in
the value component is empty. For proper decoding in the

reducers, a flag is added to the encoded record’s value com-
ponent to indicate which strategy was used.

As discussed for EagerSH and LazySH , AntiMapper’s
Map function first executes the original program’s Map func-
tion on input record (key, val) (through the o mapper ob-
ject) and then partitions the output, which was intercepted
by the extended context object, using the original program’s
Partitioner (accessed through the context, as usual). Af-
ter these steps, the exact execution cost of the origi-
nal map and getPartition for this input record (key,
val) are known. (We currently measure cost in terms of
CPU time, but one could similarly use measures that in-
clude I/O cost.) We also know to how many reduce tasks
(key, val)’s output records will be sent. From this we can
compute the total cost of re-executing o mapper.map and
getPartition if LazySH was used for encoding. To deal with
expensive map and getPartition cases, Anti-Combining uses
a cost threshold T that disables LazySH if total re-execution
cost exceeds the threshold (see Figure 7). The “ideal” set-
ting for T depends on user preference. Smaller T limits the
overhead from “duplicate” Map and getPartition executions,
but limits Anti-Combining’s encoding choices. Hence larger
T enables greater decrease of network transfer at the cost of
higher CPU load. In the extreme, if T is set to∞, then Anti-
Combining chooses freely between EagerSH and LazySH the
one that minimizes data transfer cost. Setting T = 0 forces
Anti-Combining to only use EagerSH , i.e., completely avoid
any duplicate Map and getPartition calls.

Like for the mapper class, we also replace the original re-
ducer class with our AntiReducer in the program statement
that sets the reducer class. AntiReducer, as shown in Fig-
ure 8, can be generated through syntactic rewrites from the
given original reducer class. It essentially performs the de-
coding work as introduced in Alg. 2 and 4. There are some
non-trivial technical challenges to enable reading from the
union of the regular reducer input and from Shared, which
contains decoded records. In particular, for the current min-
imal key, there could be EagerSH - and LazySH -encoded
records in the regular input buffer, in addition to already
decoded records (from previous Reduce calls) in Shared. To
correctly deal with such cases, AntiReducer’s Reduce func-
tion first iterates over all values in the reducer’s input in or-
der to decode them. For EagerSH -encoded records such as
(key1, (key2,. . . , val)), it also inserts (key1, val) into Shared.
Hence after the “for all val in values” loop, Shared contains
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all key-value pairs that the Reduce call in the original pro-
gram would have received for that key.

Shared.popMinKeyValues removes the key from Shared’s
min-heap and all its associated values from the hash-
table, passing an iterator for the removed values to the
o reducer.reduce call. The grouping comparator is used to
determine key equality, ensuring that Shared’s behavior is
consistent with the original MapReduce program when the
user provides a grouping comparator that is different from
the regular key comparator, e.g., for secondary sort [26].
(Since records are removed from Shared in key order, the
values passed to o reducer.reduce are in key order.)

Notice that a Combiner is defined as a reducer class.
Hence we apply the same syntactic transformation to it.
Like for mapper and reducer, in the given program, the
statement setting the Combiner class then can be changed to
select the Anti-Combining enabled version. Since the Com-
biner is optional, Anti-Combining has a second parameter
(in addition to T ), a flag C that lets the user disable the
Combiner in the map phase by setting C = 0.

6.2 Anti-Combining in Practice
Anti-Combining can be enabled for any MapReduce pro-

gram, because it treats the original units of functionality
(mapper, reducer, Combiner, Partitioner) as blackboxes.
However, there are cases that require more analysis:

Non-determinism. Non-determinism affects LazySH
because the re-executed Map and getPartition function
might return different results. Whenever non-determinism
in Map or getPartition can affect the Map output keys or
their assignment to reduce tasks, LazySH must be disabled.
The user disables it by setting threshold T = 0 when she sus-
pects such effects of non-determinism. In practice we have
not encountered examples for this type of application.

Programs without Combiner. If a program has
no Combiner, then Anti-Combining can be safely enabled.
EagerSH in the worst case, i.e., when there are no shar-
ing opportunities, would add an insignificant overhead due
to the additional bits needed to indicate the encoding of a
record. All critical steps—write Map output to local disk,
sort/merge it locally, transfer it to reducers, merge it on re-
ducer, read it in Reduce call—become less costly thanks to
the smaller encoded Map output. The additional cost on
the reducers for decoding and managing Shared is the same
or less compared to the reduction in cost on the mappers
for writing sorted Map output to local disk and merging it
there. Our experiments support this analysis. For LazySH
the analysis is similar, except that expensive Map and get-
Partition calls can result in significantly higher CPU cost.
As our experiments show, the user can effectively control the
tradeoff between data size reduction and CPU cost increase
through parameter T .

Combiner on or off. For programs with Combiner, the
user can turn it off by setting Anti-Combining flag C ac-
cordingly. (This will only turn it off in the map phase,
but still use it in the reduce phase.) If the Combiner re-
sults in small data reduction in the original program, e.g.,
less than 20%, then it should be turned off. The reason is
that it decodes the Anti-Combining encoded records, i.e.,
undoes Anti-Combining, without delivering significant data
reduction. Somewhat surprisingly, if a Combiner is highly
effective, e.g., reduces data transfer by a factor of 10, then
it will also benefit from Anti-Combining. Our experiments

show this for Word Count. Intuitively the reason is that
Map writes smaller encoded output (compared to the orig-
inal program) and the Combiner reads these smaller data.
The Shared data structure remains small because the effec-
tive Combiner reduces data size as it decodes. In general
the decision about turning the Combiner off can be made
by running the program with and without Combiner on a
sample of input file splits, choosing the winner based on this
sample run.

Partitioner. Careful design of a Partitioner can increase
the impact of Anti-Combining by assigning records with
commonalities to the same reduce task. Defining an appro-
priate Partitioner is the responsibility of the programmer
who needs to analyze the statistical properties of the Map
output. This is part of the MapReduce program design pro-
cess already, because the effectiveness and scalability of par-
allel programs in general depend on a good partitioner to
distribute records over reduce tasks. Automatically finding
a good partitioner is beyond the scope of this paper since
different data properties and applications lead to different
sophisticated partitioning techniques [29, 19, 10]. In our
experiments we demonstrate that even easy-to-design Par-
tition functions already lead to significant cost savings.

Total cost versus running time. Anti-Combining re-
duces network transfer to lower the stress on this crucial
shared resource. As a side-effect, writing and reading the
smaller encoded data locally on mappers and reducers of-
ten also decreases local I/O and CPU cost. Hence we often
see improvements not only in total cost, but also in running
time. The main exception are cases where Anti-Combining
introduces additional skew because of LazySH encoding. In
particular, a reducer dealing with many LazySH encoded
records might receive a large share of additional CPU and
local I/O cost (for spilling Shared to disk). This skew is
not a concern when the goal is to optimize for throughput.
While the overloaded machine delays job completion, other
machines finish early and can be used by other jobs in the
cluster. Also, by choosing a smaller threshold T , the user
can control how aggressively she wants to optimize for lower
cost (and hence higher throughput) at the cost of potentially
longer job completion time.

7. EXPERIMENTAL EVALUATION
All experiments were performed on a 12-machine cluster

running Hadoop 1.0.3 [1]. One machine served as the head
node, while the other 11 were worker nodes. Each machine
has a single quad-core Xeon 2.4GHz processor, 8MB cache,
8GB RAM, and two 250 GB 7.2K RPM SATA hard disks.
In total, the cluster therefore has 44 worker cores with 2GB
memory per core available for map and reduce tasks. Unless
stated otherwise, the number of reduce tasks is set to 44 to
finish the reduce phase in one wave. Distributed file system
block size is 64 MB and all machines participate as storage
nodes.

All machines are directly connected to the same Gigabit
network switch. Notice that this configuration of compa-
rably few machines connected to a fast network and sin-
gle switch is a challenging setup for Anti-Combining, which
focuses on reducing network cost. In larger data centers
with more machines and multi-hop communication between
them, Anti-Combining will deliver even more benefits.

We compare the performance of the original program writ-
ten by an experienced MapReduce programmer (Original)
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against the transformed version with Anti-Combining. For
Anti-Combining, we compare a version that only uses
EagerSH , another that only uses LazySH , and the adap-
tive version AdaptiveSH (Section 6). The following data
sets were used:
QLog contains 140 million real queries issued to a com-

mercial search engine between 03/01/2011 and 04/30/2011.
Each input record consists of an anonymous user identifier,
the search query, and two query features (total number of
occurrences of the query in search logs, total number of re-
sulting links users browsed). The average search query string
consists of 19.07 characters and the total data size is 4.3GB.
ClueWeb09 is a real data set containing the first English

segment of a web crawl by Carnegie Mellon University.
There are around 50 million documents and 1.4 billion links,
resulting in a total data size of 7GB.
Cloud is a real data set containing extended cloud reports

from ships and land stations [11]. There are 382 million
records, each with 28 attributes, resulting in a total data
size of 28.8GB.
RandomText is a synthetic data set containing randomly

generated text records with around 360GB total size.

7.1 Anti-Combining Overhead Analysis
We measure the overhead of Anti-Combining for work-

loads where it is ineffective. This is done for the Hadoop Sort
program on RandomText. Sorting emits a single Map output
record for each input record, therefore Anti-Combining is
not beneficial. In all cases our adaptive algorithm automat-
ically chooses EagerSH encoding without any shared keys,
which degenerates to the original record plus a few bits that
are needed to flag the type of encoding used.

AdaptiveSH results in only 0.2% more total disk read-
/write than the Original program due to the extra bits used
for the encoding type flag. This also results in 0.15% more
total data transfer cost. The total CPU time spent using
AdaptiveSH is 7.8% more than the original program which
is the overhead of looking for sharing opportunities among
Map output records. The total runtime increased by 1.7%
when AdaptiveSH is used. This supports our claim that
Anti-Combining incurs little overhead even when it is ap-
plied to a job that does not benefit from it.

7.2 Query-Suggestion
We study Anti-Combining for the Query-Suggestion prob-

lem on QLog and explore the effect of the choice of Partitioner
by comparing three alternatives. The first corresponds to an
inexperienced programmer who simply relies on the stan-
dard hash Partitioner (Hash). The second assumes a pro-
grammer who understands the behavior of Map and real-
izes that maximal sharing is possible when all keys with the
same first letter are sent to the same partition (Prefix -1 ).
(Figuring this out is actually not that difficult, because shar-
ing opportunities are determined by the Map and Partition
functions and do not require complex program analysis.) Fi-
nally, Partitioner Prefix -5 uses the first five characters. It
addresses the concern that Prefix -1 might generate only a
small number of reduce tasks, equal to the number of distinct
first characters of search queries in QLog. Note that none of
these functions are specially designed based on input data
statistics, which may be easily collected by a programmer.
More careful data analysis may even lead to better partition
functions that increase sharing opportunities.
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Figure 9: Total Map Output Size for Query-Suggestion
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Figure 10: Total Map Output Size for Query-Suggestion
using Combiner and Compression

Figure 9 shows the total Map output size for each strat-
egy and partition function. Note that Original produces
the same output size with all partition functions since it
does not exploit sharing opportunities. On the other hand,
EagerSH and LazySH effectively reduce the amount of data
transferred for all partition functions, achieving reduction
up to a factor of 27. Our adaptive strategy, AdaptiveSH ,
achieves the best result in all cases (except for Prefix -1 ) as
expected since it adaptively picks the most suitable encod-
ing type per record. For Prefix -1 , AdaptiveSH encodes all
map output records using LazySH encoding but produces
slightly larger output than pure LazySH due to the extra
bits used for identifying the encoding type used.

7.3 Query-Suggestion With Combiner
We repeated the same experiments on QLog, but now for

the case that the original program came with a Combiner.
The Combiner was not effective, reducing the total Map
output size of Original by only about 12% compared to
the no-Combiner result in Figure 9. Since the Combiner
was not effective, we set C = 0, i.e., turned it off for Anti-
Combining (see Section 6.2). Hence the Map output size did
not change for any of the Anti-Combining strategies com-
pared to Figure 9. The Combiner was, however, used in the
Anti-Combining reduce phase and turned out to be highly
effective in reducing the size of Shared so that virtually no
spilling of Shared to disk occurred (see Section 5).

7.4 Query-Suggestion With Compression
We provide results for the same set of experiments, but

now with both Combiner and Map output compression en-
abled. We tried all of Hadoop’s standard compression
algorithms and report the results for gzip, which achieved
lower total CPU time with top- or near-top compression rate
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Table 1: Total Cost Breakdown for Prefix-5, using different
Compression Techniques

Deflate Gzip Bzip2 Snappy AdaptiveSH
with Gzip

Total Disk Read(GB) 65 65 56 105 15
Total Disk Write(GB) 82 82 70 133 21

Total Map Output Size(GB) 18 18 15 30 6
Total CPU Time(1000 sec) 126.9 125.2 332.4 77.4 27.9

Table 2: Total Cost Breakdown of Query-Suggestion

Algorithm Total CPU Time Disk Read (GB) Disk Write (GB)
(1000 sec)

Original 168.8 566.1 741.5
Original -CB 172.9 510.4 664.6
Original -CP 125.2 64.5 82.3
AdaptiveSH 30.8 150.8 179.9

AdaptiveSH -CB 20.8 61.9 84.9
AdaptiveSH -CP 27.9 15 20.6

for Original . As Figure 10 shows, compression significantly
reduces the total amount of data transferred for all strate-
gies. Anti-Combining still performs better than Original
for all partition functions, showing that it works well in
combination with compression. As Table 1 highlights, com-
pared to traditional compression alone, Anti-Combining’s
lightweight but effective data encoding not only lowers data
transfer, but also local disk and CPU cost.

7.5 Effect on Disk I/O and CPU
The cost breakdown for total disk read/write and to-

tal CPU time of the Query Suggestion experiments using
Prefix -5 are shown in Table 2. Suffixes “-CB” and “-CP”
refer to the experiments when the algorithms are executed
using Combiner and compression, respectively.

AdaptiveSH effectively reduces the total amount of disk
I/O, achieving reduction up to a factor of 3.8 and 4.1 for to-
tal amount of reads and writes respectively. Although Anti-
Combining performs extra Map calls in the Reduce phase,
it also reduces the total CPU time by a factor of 5.5. We
believe that Original suffers from low CPU utilization be-
cause of the large amount of disk I/O and network transfer.
Note that total CPU time measured for Original -CP is also
lower than Original although CPU intensive compression is
performed on the Map output buffer.

The Shared data structure in AdaptiveSH spills the data
to disk 1575 times. On the other hand, AdaptiveSH -CB
effectively applies Combine on the Shared data structure
in the Reduce phase and manages to keep all unique keys
and aggregated values in-memory. This reduces the total
amount of disk reads and writes by a factor of 2.4 and 2.1,
respectively.

7.6 CPU Intensive Workloads
We analyze the performance of Anti-Combining for CPU

intensive workloads by adding extra CPU intensive calls to
the Map function. As explained in Section 6.1, AdaptiveSH
performs runtime cost-based optimization and switches to
EagerSH encoding in order to avoid re-executing expensive
Map calls in the reduce phase. We measure the perfor-
mance of Anti-Combining using two extreme runtime thresh-
olds: Adaptive-0 , with runtime threshold T = 0 that re-
sults in EagerSH encoding for all Map output records and
Adaptive-∞ with T =∞ that does not restrict the choice of
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Figure 11: Total CPU Time using Runtime Cost-Based Op-
timization

eager vs. lazy. We also provide results for Adaptive-α which
uses a 400 microseconds runtime threshold. We modified
the Map function of Query-Suggestion in order to add extra
CPU intensive work by computing Fibonacci numbers.

Figure 11 shows the effect of increasing Map function call
cost on the total CPU time for all algorithms. The x-axis
represents the amount of busy work added. When xi extra
work is added, each map call computes the first 25000× xi
Fibonacci numbers. For low Map call cost, Adaptive-∞
achieves lower total CPU time as expected by optimizing
for Map output size. As the Map call cost increases, exe-
cuting the Map function in the Reduce phase for LazySH
encoded records increases as well, resulting in higher total
CPU time increase for Adaptive-∞. The area between the
Adaptive-0 and Adaptive-∞ plots represents the space of
runtime thresholds that could be assigned by an optimizer.
As expected, Adaptive-α uses lazy encoding where beneficial
for low cost Map calls and converges to Adaptive-0 as the
Map function gets more expensive. The experiments show
that Anti-Combining can be optimized for the dominating
cost of a MapReduce job. In the next section, we also show
effectiveness of Anti-Combining on two different CPU inten-
sive applications.

7.7 Anti-Combining on Diverse Workloads
We evaluate Anti-Combining on a diverse set of workloads:

WordCount, PageRank, and Join Processing.

7.7.1 Word Count
We study Anti-Combining for WordCount on Random-

Text. Map emits (word, 1) for each word processed. Before
the data is sent over the network, Combine computes the
partial sum for each word in the map task. Reduce ag-
gregates the partial counts per word. Note that Combine
effectively reduces the total amount of data transferred to
92 MB (input size is 360 GB). Although it may seem that
Anti-Combining is not necessary, the WordCount workload
has high CPU utilization during the map stage [12]. There-
fore, we explore the effect of Anti-Combining on the total
CPU time spent, and total amount of disk read/write.

AdaptiveSH effectively reduces the total amount of disk
read/write, achieving reduction by a factor of 9.1 and 6.3
for total disk reads and writes, respectively. Moreover,
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AdaptiveSH encoding reduces the number of Map output
records (before Combine is called) by a factor of 7. There-
fore, the reduction in total disk I/O and number of records
to be sorted locally results in reduced total CPU time spent
by a factor of 1.7. AdaptiveSH also reduces the total run-
time by a factor of 1.44. The total amount of data shuffled
across the network is only 8MB larger than Original which is
due to the encoding type flags used. The results show that
Anti-Combining effectively reduces the dominating cost of
the workload even when the Combiner is highly effective.

7.7.2 Page Rank
We evaluated the effectiveness of Anti-Combining for

PageRank by computing 5 iterations on ClueWeb09. At
each iteration, the map phase processes each document, di-
viding up evenly each document’s page rank for outgoing
edges (links) and emitting each outgoing edge with its page
rank contribution. Reduce aggregates these contributions
along incoming edges for each document.

AdaptiveSH reduces the total amount of data shuffled
across the network by a factor of 2.7. The total amount
of disk read/write is also reduced by a factor of 3.5 and 3.2
for total disk reads and writes, respectively. As expected,
these reductions also result in reduced total CPU time by a
factor 2.8. AdaptiveSH also reduces the total runtime by a
factor of 2.4.

7.7.3 Join Processing
Finally, we study the performance of Anti-Combining for

join processing using the following query on the Cloud data:

SELECT S.date, S.longitude, S.latitude, T.latitude

FROM Cloud AS S, Cloud AS T

WHERE S.date = T.date

AND S.longitude = T.longitude

AND ABS(S.latitude - T.latitude) <= 10

For our experiments, we use the memory-aware version of
the 1-Bucket-Theta algorithm [19]. This algorithm ensures
that data chunks are just small enough so that each local join
task on a reducer can be executed in-memory. Optimization
opportunities arise because each input record might be as-
signed to multiple chunks to enable parallel processing.

Figure 12 compares the total Map output size produced
by each algorithm. Results for LazySH are not reported,
because AdaptiveSH ended up choosing LazySH encoding
for all map output records. Similar to the results in the
theta-join paper [19], the creation of data chunks for par-
allel join processing causes an average data replication by
a factor of 67 when comparing total map phase output to
input. Since the join does not admit the use of a Com-
biner, this huge amount of data replication directly affects
Original , producing 926 GB of Map output. The adaptive
Anti-Combining technique reduces Map output by a factor
of 9.5.

Since a Combiner was not an option for the join, we re-
peated the same experiments using compression on Map out-
put data (denoted by suffix “-CP”). All techniques result in
similar compression rates. Note that Map output size of
Original with compression is still significantly larger than
for Anti-Combining without compression.

Figure 12 also compares the runtime for each technique,
showing that Anti-Combining improved over Original by a
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Figure 12: Total Map Output Size and Runtime for Theta-
Join Query

factor of 9.6 and 6 for the no-compression and compres-
sion scenarios, respectively. Notice that the 1-Bucket-Theta
algorithm achieves almost perfect load balancing between
the different worker nodes. Hence the runtime improvement
tracks closely the reduction in Map output size.

8. RELATED WORK
Multi-query optimization [22] aims at reducing query cost

by sharing data and computation. Data sharing was demon-
strated to be beneficial also for MapReduce workloads. Mul-
tiple jobs that share the same input are merged into a single
job in Pig to avoid redundant I/O [8]. Hive [23] follows a sim-
ilar approach to share input among multiple jobs. Agrawal
et al. [4] study how to schedule scans of large data files
when there are many simultaneous requests to a common
set of files. CoScan [25] is another scheduling framework
to merge multiple jobs working on the same datasets while
trying to meet individual job deadlines. Wolf et al. [27] pro-
pose a scheduler where jobs are decomposed into sub-jobs
and cyclic piggybacking is performed instead of batching for
sharing scans. Prior work also focused on improving MapRe-
duce by sharing data and computation for iterative tasks.
Haloop [5] provides a MapReduce based framework that im-
proves execution of iterative jobs by supporting data re-use.
Restore [7] also supports data re-use among MapReduce jobs
in a workflow to speed up future workflows executed in the
system. Our work is complementary to these data sharing
approaches. In fact, they create additional opportunities for
Anti-Combining when shared data has to be transmitted
to multiple queries.

MRshare [18] proposes cost-based optimization for data
sharing in MapReduce. In addition to input sharing, Map
output sharing is also studied. However, intermediate data
sharing is limited to overlapping parts of the map output
generated from shared input of multiple jobs. Therefore,
cases where the Map function produces multiple key/value
pairs for a single job cannot be addressed. In addition, our
techniques enable sharing of non-overlapping parts of the
Map output by pushing the Map operator to the reduce
phase. YSmart [15] translates SQL queries into MapReduce
jobs and exploits correlations among the operators in the
query plan. In addition to input sharing, intermediate data
sharing is also studied. However, intermediate data is shared
only among operators having the same key. Therefore, this
approach also does not solve the problem introduced in our
work. Jahani et al. [13] propose a static analysis mechanism
for automatic detection of selection, projection, and data
compression optimizations in MapReduce programs. Pro-
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posed data compression optimization aims to work directly
on compressed data where applicable. Delta-compression is
also used which is only applicable to numeric datasets where
sequential data values change slightly.

9. CONCLUSIONS
We proposed Anti-Combining, a novel approach for reduc-

ing the amount of data transferred between mappers and
reducers. It can be enabled in any MapReduce program by
applying the appropriate (purely syntactic) transformations,
but will be most effective for problems where the shuffle-
and-sort phase dominates the overall cost. Anti-Combining
shifts mapper-side processing to the reducers and is much
more lightweight than general compression techniques.

Anti-Combining can be used together with existing
database-style optimizations such as sharing of scans and
intermediate results. Since it does not need to understand
the semantics of a given MapReduce program, it is perfectly
suited for adding dynamic optimizations to statically op-
timized MapReduce programs generated by compilers for
high-level languages such as PigLatin and HiveQL.

In our future work, we plan to explore extensions that
allow optimization not only for the input of a single Map
call, but also across all Map calls in the same map task.

10. ACKNOWLEDGMENTS
This work was supported by the National Science Founda-

tion under Grant No. IIS-1017793. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

11. REFERENCES
[1] Apache hadoop. http://hadoop.apache.org.

[2] F. N. Afrati, A. D. Sarma, D. Menestrina,
A. Parameswaran, and J. D. Ullman. Fuzzy joins
using mapreduce. In ICDE, pages 498–509, 2012.

[3] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In EDBT, pages 99–110,
2010.

[4] P. Agrawal, D. Kifer, and C. Olston. Scheduling
shared scans of large data files. PVLDB, 1(1):958–969,
2008.

[5] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
Haloop: efficient iterative data processing on large
clusters. PVLDB, 3(1-2):285–296, 2010.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In OSDI, 2004.

[7] I. Elghandour and A. Aboulnaga. Restore: reusing
results of mapreduce jobs. PVLDB, 5(6):586–597,
2012.

[8] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. M. Narayanamurthy, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava. Building a high-level
dataflow system on top of map-reduce: the pig
experience. PVLDB, 2(2):1414–1425, 2009.

[9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data Min. Knowl. Discov., 1(1):29–53,
1997.

[10] B. Gufler, N. Augsten, A. Reiser, and A. Kemper.
Load balancing in mapreduce based on scalable
cardinality estimates. In ICDE, pages 522–533, 2012.

[11] C. Hahn and S. Warren. Extended edited synoptic
cloud reports from ships and land stations over the
globe, 1952-1996.

[12] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The hibench benchmark suite: Characterization of the
mapreduce-based data analysis. In ICDEW, pages
41–51, 2010.

[13] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
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