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Abstract—In this paper we demonstrate a practical approach
to interaction detection on real data describing the abundance
of different species of birds in the prairies east of the southern
Rocky Mountains. This data is very noisy—predictive models
built from it perform only slightly better than baseline. Previ-
ous approaches for interaction detection, including a recently
proposed algorithm based on Additive Groves, often do not
work well on such noisy data for a number of reasons. We
describe the issues that appear when working with such data
sets and suggest solutions to them. In the end, we discuss results
of our analysis for several bird species.

This is a short version of the paper. The full version is
located at www.cs.cmu.edu/˜daria/papers.htm

I. INTRODUCTION

Much research in machine learning and data mining
focuses on building prediction models with the best possible
performance. In most cases such models act as black boxes:
they make good predictions, but do not provide much
insight into the decision making process. However, domain
scientists often are more interested in performing descriptive
analysis and therefore need additional data mining tools.

In this paper we study the process of applying an interac-
tion detection algorithm, using a very challenging ecological
data set describing the abundance of a variety of bird species.
We could not train a high-performing predictive model for
this data, but we still were able to detect important biological
dependencies. Apart from presenting a detailed application
of a general technique to real life data, we also introduce
a number of necessary important additions to the earlier
procedure to make it useful for noisy data sets.

A. Interactions

Interactions are complex non-additive effects that groups
of variables exert on the response of the function. If a
variable is not involved in any interactions, its effect can
be studied alone and often described by a simple rule. To
understand a natural process, it is critical to know which
groups of variables are joined in complex effects and thus
must be examined together.

A variable interaction is formally defined as follows [1].
Function F (x), where x = (x1, x2, . . . , xn), shows no
interaction between variables xi and xj if it can be expressed
as the sum of two functions, f\j and f\i, where f\j does

not depend on xj and f\i does not depend on xi:

F (x) = f\j(x1, . . . , xj−1, xj+1, . . . , xn)

+f\i(x1, . . . , xi−1, xi+1, . . . , xn) (1)

Note that the term statistical interaction describes only
the effect of variable values on the response function and
should not be confused with any dependencies between the
variables themselves, e.g., correlation.

In this paper we extend an interaction detection approach
that was recently introduced in [2]. It is based on the com-
parison of the performance of two models: an unrestricted
one that is allowed to model a given interaction, and a
restricted one that is not allowed to model this interaction.
If the unrestricted model performs significantly better, then
we conclude that modeling the interaction was crucial for
good performance and hence there is an interaction between
the variables. But if eliminating a specific interaction does
not impact model performance then there is no evidence for
the presence of an interaction between the tested variables.

As a suitable prediction model for this framework, [2]
suggest Additive Groves — an additive-model based ensem-
ble of trees that is good at capturing the additive structure
of the function. Additive structure is crucial for modeling
absence of interactions and therefore for building a good
restricted model. At the same time, the ability to use large
trees allows Additive Groves to capture very complex in-
teractions and interactions of small magnitude. For detailed
discussions on why Additive Groves fit this framework better
than many other models, as well as why this interaction
detection approach is more efficient than earlier methods, we
refer the reader to the original paper, where this algorithm
was introduced [2].

The basic idea of comparing the performance of restricted
and unrestricted models appears deceptively simple. [2]
provides results on commonly used real and relatively simple
synthetic data sets. In this paper we describe problems
that emerged during interaction detection analysis on large
and noisy real data and suggest how to approach them. In
particular our contributions concern the following issues:

1) For a large class of regression data sets, including our
ecological data, it is more appropriate to analyze the
logarithm-transformed response. However, logarithm
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is a non-linear transformation which can introduce
additional interactions not present in the original data.
We solve this problem by mimicking the log transfor-
mation with a different loss function (Section III).

2) Interaction detection requires feature selection as a
preprocessing step, and backward elimination is the
most suitable type of feature selection for this purpose.
Unfortunately, it is also a computationally expensive
algorithm and hence infeasible for large numbers of
features. We therefore split the feature selection pro-
cess into two parts: a fast and less accurate first stage
(Section V-A) is followed by backward elimination
on the fewer remaining features (Section V-B). We
also refine the original algorithm by discarding the
assumption that removing a feature never improves
performance.

3) It is fairly safe to assume on simple data sets that more
complex Additive Grove models perform at least as
well as smaller ones, provided the algorithm performs
a sufficient number of bagging iterations. But this
assumption might not hold on noisy data. Because
of this, parameters resulting in the best predictive
performance will not necessarily result in the best
model for interaction detection. We provide several
heuristics that can aid in choosing a model of the right
size. (Section VI).

4) Detecting the presence of interactions is only a pre-
requisite step for studying effects of variables on
the response. We briefly describe existing methods
for visualizing joint effects of pairs of variables and
demonstrate on real examples from our data why they
should be used as a visualization aid only, not a tool
for detecting interactions by themselves. (Section VII).

In this paper we demonstrate the interaction detection
analysis on a specific application: extracting domain knowl-
edge from an ornithological data set and show that this
type of analysis can provide useful findings for the field
of ecology.

II. ROCKY MOUNTAIN BIRD OBSERVATORY

We selected data from one bird-monitoring program run
by the Rocky Mountain Bird Observatory (RMBO) [3] for
our analysis. Bird species specialized to grassland habi-
tats, including those living in the shortgrass prairies, are
some of the fastest and most consistently declining bird
species in North America [4]. The monitoring program,
called the Section Survey, is one effort to understand the
causes and identify management actions that would reverse
these declines. The goal is to identify associations between
bird abundance and local vegetation, and the objective of
identifying management actions that would make habitat
more suitable for grassland bird species.

When choosing where to live, birds consider not just local
habitat characteristics, but also habitat configuration over

larger regions. We therefore include the larger-scale habitat
configuration using interpreted satellite imagery from the
2001 U.S. National Land Cover Data [5], which classify
habitat across the United States into 21 classes. The resulting
data sets contain 700 features and 20000 observations for
each bird.

III. CHOICE OF LOSS FUNCTION

The first fundamental challenge is to select the appropriate
performance measure, or loss function. A common choice
for general regression problems is root mean squared error
(RMSE). However, this metric is less appropriate for bird
observation data, which are counts. Analysis of point counts
is often conducted using the logarithm of the original
response function. This is a standard way to treat such data
sets in ecology and similar areas.

Unfortunately, working with log-transformed response
values has an undesirable side-effect on the interaction
detection task. Instead of discovering additive structure in
the original function F (x), we would now search for additive
structure in function log(F (x)).

To overcome this problem, instead of changing the re-
sponse function, we change the loss that our models are
trying to minimize. In order to still obtain a simple additive
loss and at the same time achieve approximately the same
effect as log-transforming the counts, we use the first 3 terms
of the Taylor expansion of the squared error of log counts.
Since the first 2 terms of this particular expansion are equal
to 0, this is equivalent to only using the third term:

(log(y + 1)− log(F + 1))2 ≈ (
1

y + 1
(y − F ))2 (2)

Here y corresponds to the original response, F corresponds
to the predicted value. A constant value (usually 1) is added
to the counts before taking the logarithm in order to be able
to handle zero counts. To derive this approximation, we view
the loss function as a function of F with y fixed and take
the Taylor expansion at the point F = y.

We substitute squared error in RMSE with the obtained
weighted squared error (y−F

y+1
)2 and refer to the new loss

as weighted RMSE. To make the results comparable across
data sets, we use a standardized version of this metric: we
divide it by the similarly weighted standard deviation of the
response in the data set. The baseline performance for such
standardized metric is the performance of the model that
predicts the average response value for every data point. This
model has a loss of 1 on every data set. Smaller numbers
indicate performance better than baseline.

Predictive modeling of RMBO data is very challenging.
The improvement over baseline typically is only 2%-5%.
For example, for Horned Lark, the bird species about which
we could extract the most information, the best performance
we could achieve is 0.974 (measured by the loss discussed
above with baseline 1.0).

6565



0.5 0.05 0.005 0.0005 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Size of leaf

S
ca

le
d 

R
M

S
E

 

 

California Housing data
RMBO data

Figure 1. Performance of 100 bagged trees on the “standard” California
Housing data set vs. noisy RMBO data.

IV. TREE-BASED MODELS

Our models used for the interaction detection task are
ensembles of binary regression trees. Usually these regres-
sion trees optimize for RMSE, but we have modified the
algorithm for growing trees to use weighted RMSE for
selecting splits. We control the size of trees using parameter
α, the minimum proportion of train set cases that reach an
internal node.

A. Bagged Trees

Bagging [6] is a well-known ensemble method that creates
a set of diverse models by sampling from the training set,
and then decreases variance by averaging the predictions
of these models. Large decision trees are low-bias, high
variance models that benefit significantly from bagging.
Because of this, often bagging works best with larger trees.
However, on noisy data, large trees perform much worse
than small trees, even after a large number of bagging
iterations. Fig. 1 shows the performance of 100 bagged
trees of different sizes on the commonly used California
Housing [7] data set, and for the Horned Lark, one of the
species in the RMBO data set. The difference in performance
patterns of bagging for large and small trees on the two data
sets is striking.

B. Additive Groves

Additive Groves, introduced in [8], is a regression en-
semble consisting of bagged additive models, where each
additive component is a tree. Its size is defined by 2
parameters: α—the minimum proportion of train set cases in
a leaf (controls size of a single tree) and N , the number of
trees in a single grove. As suggested in [2], for interaction
detection we use the “layered” style of training: the second
parameter, number of trees, is fixed during training, while
the size of trees is gradually changed from very small up to
the desired level of complexity.

Early experiments in [8] suggest that Additive Groves are
robust to overfitting as long as they are bagged sufficiently

many iterations. Unfortunately, similar to the observation
above about bagging individual trees, there are some ex-
tremely noisy data sets where this is not achieved. This
property of the data makes the interaction detection process
with the RMBO data more complicated.

V. FEATURE SELECTION

Correlations between variables pose a problem for any
interaction detection algorithm. For our approach based on
model comparison, they can “hide” existing interactions.
Suppose we want to test for an interaction between xi and
xj , and there is another variable xk that is almost identical
to xj . When we restrict a model on interactions between
xi and xj , it can use xk instead of xj and thus bypass the
restriction. Hence even if xi and xj interact, we can not
discover this unless we remove xk from the data.

For these reasons we have to eliminate all variables
(features) from the data until we are left only with a set of
variables such that removing any of them would significantly
decrease model performance. We discuss how to do this in
the remainder of this section.

A. Fast Feature Evaluation

For data sets with many features a thorough feature
selection based on generating different models for different
combinations of features is infeasible due to the large
number of models that need to be trained. We therefore
adopt a two-step approach. In the first step we perform fast
but rather crude elimination of the least important features.
In the second step we perform a more careful selection from
the remaining features.

To preselect a reasonable number of useful features, we
use one of the “white-box” feature evaluation techniques that
were recently proposed for bagged trees [9]. In particular,
we used the “multiple counts” method. This technique
ranks attributes based on how often trees in the ensemble
use them in their nodes. During the preselection stage we
generate several ensembles using trees of different sizes, test
their performance on the test set and then chose the best
performing one to use for determining feature importance.

Our version of the RMBO data with the NLCD land
cover information at different scales has 763 features. In
the first step we selected 50 useful features for each species
using ensembles of 100 bagged trees. In most cases the best
ensembles consisted of relatively small trees, up to ≈ 10 or
20 nodes.

B. Backwards Elimination

To make the first step of feature selection fast enough, we
used only bagged trees. During the more finegrained second
step, we want to evaluate the performance of the Additive
Groves method, as it will be used in the interaction detection
process. Hence in this step we build Additive Groves models
for the data set with its remaining preselected features for
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Algorithm 1 Backwards elimination
repeat

label A: (μ,Δ) = EstimatePerformance()
repeat

for f = 1 to #Features do
Remove(feature[f ])
newPerf = WRMSE(TrainModel())
if newPerf − μ > Δ then
Add(feature[f ])

if newPerf − μ < −Δ then
goto A (line 2)

until (No features removed with current μ and Δ)
until (No features removed on last cycle iteration)

function (μ,Δ) = EstimatePerformance()
for c = 1 to 10 do
perf [c] = WRMSE(trainModel())

μ = Mean(perf [1..10])
Δ = 3 ∗ StdDev(perf [1..10])

a variety of parameter combinations. Then we select values
for N and α that resulted in the best performance on a
validation set. These values are used for all models that are
built during the second stage of feature selection.

Recall that in order to be able to run effective interaction
detection, we need to be left with a small set of important
features. Important here means the following property: if we
remove this feature, the performance degrades by more than
Δ, where Δ is defined to indicate a significant difference.

To calculate Δ, we estimate the distribution of Addi-
tive Groves performances on the data by training several
models with different random seeds and evaluating their
performances on the validation set. After that the threshold
of statistical significance is defined following the common
practice in statistics as Δ = 3 ∗ σ, where σ is the standard
deviation of the estimated distribution. This estimates are
used in the backward elimination algorithm. In the beginning
all features are present. Then the algorithm tries to remove
features one-by-one. If the performance on the validation set
does not degrade by at least Δ, the feature is removed per-
manently. Otherwise the feature is considered important and
left in the data. Several passes through the set of remaining
features are done until no features can be removed.

As removing features can change the distribution of
performances, this distribution needs to be recalculated
occasionally. In the first version of the algorithm it happened
only when selection could not remove any more features
with the current estimates of the distribution.

Note that this algorithm implicitly assumes that remov-
ing a feature will either degrade performance or leave it
approximately the same. However, this is not always the
case for noisy data sets. Trees can mistakenly use “bad”
features and benefit when those features are removed. To

handle this case, we improved the algorithm as follows:
if performance is better than the original estimate by Δ,
the algorithm recalculates the estimates of the performance
distribution. The resulting feature selection procedure is
shown in Algorithm 1.

Given the weak predictive performance of models trained
on the RMBO data, we were not surprised that feature
selection left few important features for most bird species.
In the best case (Horned Lark) we had 8 features left, in the
worst cases, only 1 or 2.

VI. INTERACTION DETECTION

After we are left with only a few important features, we
need to choose the right type of Additive Groves model to be
used for interaction detection. Our model should represent
the function well and at the same time should have sufficient
additive structure to allow for restrictions.

In RMBO data the final parameters suitable for interaction
detection were very different for different species. Occasion-
ally the search for good parameters required multiple trials
with a human in the loop. Our experience can be summarized
as follows:

• In order to make the model “additive enough”, we need
to a large N . From our experience, N = 8 usually is
a safe value; N = 6 will work for most data sets,
but smaller values usually hurt the performance of the
restricted models.

• Since interaction detection uses the same basic model
for the restricted and unrestricted case, the process is
fairly robust with respect to choosing Additive Groves
parameters. In most cases we can lose ≈ 8Δ of
predictive performance without hurting final interaction
results.

• It is safer to choose a parameter combination for which
Additive Groves slightly underfit (simpler than the best
model), rather than overfit, because variance will be
higher with the overfit models making the results less
reliable.

• Even if there is no clearly optimal point with large N
on the grid, we can try points with small N and set
the threshold for interaction presence higher than usual
when estimating the performance difference.

If different parameters are selected than those used during
backward elimination, it is necessary to run another round
of backward elimination to make sure that each feature is
still important for the new Additive Groves configuration.

Similar to how we define if an attribute is important, an
interaction is considered significant if the difference between
performance of the unrestricted and restricted models is
more than Δ.

VII. VISUALIZATION

After we detect the presence of an interaction between
two variables xi and xj , we want to see how it influences
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Figure 2. Lark Bunting. Interaction between elevation and density of edges
of scrub/shrub vegetation patches

the response function. In other words, we need to represent
the response as a function of xi and xj only. After that
we can plot the joint effect of two variables as several one-
dimensional plots, each of which shows the dependence of
the response value on xi for a fixed value of xj . Different
lines on the plot correspond to different values of xj . For
example, Fig. 2 shows the joint effect of elevation and
edge density of shrub patches. Each line corresponds to
an effect of shrubs at some fixed level of elevation. Non-
parallel regions of the lines correspond to interactions and
can provide insight into its nature. In this example we can
see that the presence of shrubs shows a positive effect on
abundance of Lark Buntings at the lowest elevation, but at
higher elevations larger amounts of shrubs patches have the
opposite effect and discourage this species.

An efficient method for creating such two-dimensional
models, partial dependence plots, was introduced by Fried-
man [10] as a tool to visualize the effects of a fixed number
of variables averaged over the values of all other variables.

It is very important to notice that partial dependence
plots by themselves are unreliable for interaction detection,
because they depict interactions in the model instead of
the data. Hooker [11] demonstrated that potential spurious
interactions of arbitrary strength can appear in a partial
dependence plot. This happens when some parts of predic-
tion model are unsupported by the data and only emerge
because of a presence of a few outliers. A stark example
of this emerged during our analysis of RMBO data: Fig. 3
pictures a partial dependence plot for the joint effect of
presence of roads and cultivated crop areas on Western
Meadowlark abundance generated by an unrestricted model.
The plot clearly shows a strong interaction similar to the
one we have just seen in Fig. 2. However, there is no such
interaction in the data! The restricted model that does not
have this interaction has the same predictive performance:
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Figure 3. Western Meadowlark. Partial dependence plot, unrestricted
model

our performance comparison method estimated the size of
interaction as −0.00009 and the significance threshold as
0.0005, which clearly indicates absence of interaction. 1

VIII. RESULTS

In this section we present and explain selected results
of the application of this interaction detection procedure to
the RMBO data. This analysis provided findings about col-
lected data and biological relationships that were previously
unknown, and yet are consistent with the general body of
ecological knowledge.

The most complex, albeit small, interaction that we identi-
fied was for Lark Buntings (Calamospiza melanocorys), with
elevation and density of scrub/shrub edges simultaneously
affecting bunting abundance (Fig. 2). The strength of the
interaction is estimated as 0.00037, significance threshold
as 0.00032. At the lowest elevation sites, farthest from
the base of the Rocky Mountains, Lark Buntings were
more abundant in areas with a higher amount of patchily-
distributed scrub/shrub vegetation. However, closer to the
Rocky Mountains, the presence of scrub/shrub habitat in-
hibited Lark Buntings from settling. We believe that this
result indicates that the habitat classified as “scrub/shrub”
represents very different things in different parts of the study
region, and that at higher elevations “scrub/shrub” contains
plant species or habitat configurations that are unsuitable for
Lark Buntings.

The Horned Lark (Eremophila alpestris; known as the
Shore Lark in Europe) is a species widely distributed across
the Northern Hemisphere. It preferentially lives in barren
habitat with short and patchy vegetation. The most unex-
pected interaction we found was related to this preference

1When estimating a size of a non-existing interaction, negative numbers
insignificantly different from 0 can happen as often as positive numbers.
Negative numbers significantly different from 0 would indicate some
problem, most probably a poor choice of Additive Groves parameters.
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Figure 4. Horned Lark. Interaction between wooded wetlands and density
of roads

for barren habitat: abundance of Horned Larks differed
across our study area as a function of both the density
of roads and the variation in sizes of patches of wooded
wetland. Interaction strength is estimated as 0.00163, sig-
nificance threshold as 0.00085. In the shortgrass prairie
region, “wooded wetland” effectively means wooded areas
along rivers and these are essentially the only large areas
of taller vegetation in the entire region. Fig. 4 shows that
there is a sharp drop in abundance of Horned Larks as
soon as there is any substantial amount of wooded wetland
habitat. Horned Larks do not like wooded habitat. However,
the effect of woodland was ameliorated by the presence of
roads, with more Horned Larks present, even in areas with
higher amounts of forest, when these regions had a higher
density of roads: not only the curves corresponding to higher
level of road density are above the curves of lower levels,
they are also showing slower decrease in birds abundance in
dense wetlands. Effectively, the roads create open areas of
habitat preferred by Horned Larks. Detecting this interaction
has helped us to identify an unexpected impact of human
modification of landscape which can be important when
assessing implications for Horned Lark from human activity
in the future.

Although the original interaction detection technique al-
lows detection of higher-order interactions, we did not have
an opportunity to conduct these tests for RMBO data sets.
K-way interactions are possible only between those groups
of variables that are involved in all possible K(K − 1)/2
2-way interactions between each other [12]. Such cliques of
pairwise interactions never appeared during our analysis.

IX. DISCUSSION

All interactions detected in the RMBO data were rela-
tively small and could not be reliably detected from partial
dependence plots alone. For comparison, most interactions

in data sets described in [2] are larger by an order of
magnitude or more. This is expected when the data is noisy
and difficult to model. The noise obscures interactions that
might have been more striking otherwise, because it is
impossible to improve performance much over the restricted
models. However, as long as these small improvements
are significant, they clearly indicate a presence of a real
interaction in the data and in the domain.

Techniques introduced here can be easily adapted to other
domains and we believe that the experience described in
this paper is of direct practical use to any researcher who
is interested in applying the general interaction detection
method from [2] to a real-world noisy data set.
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