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ABSTRACT
Event processing systems have wide applications ranging from
managing events from RFID readers to monitoring RSS feeds.
Consequently, there exists much work on them in the literature. The
prevalent use of these systems is on-line recognition of patterns that
are sequences of correlated events in event streams. Query seman-
tics and implementation efficiency are inherently determined by the
underlyingtemporal model: how events are sequenced (what is the
“next” event), and how the time stamp of an event is represented.
Many competing temporal models for event systems have been pro-
posed, with no consensus on which approach is best.

We take a foundational approach to this problem. We create a
formal framework and present event system design choices asax-
ioms. The axioms are grouped intostandard axiomsanddesirable
axioms. Standard axioms are common to the design of all event
systems. Desirable axioms are not always satisfied, but are useful
for achieving high performance.

Given these axioms, we prove several important results. First,
we show that there is a unique model up to isomorphism that satis-
fies the standard axioms and supports associativity, so our axioms
are a sound and complete axiomatization of associative timestamps
in event systems. This model requires time stamps with unbounded
representations. We present a slightly weakened version ofassocia-
tivity that permits a temporal model with bounded representations.
We show that adding the boundedness condition also results in a
unique model, so again our axiomatization is sound and complete.
We believe this model is ideally suited to be the standard temporal
model for complex event processing.
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1. INTRODUCTION
Complex event processing (CEP) systems are an important com-

ponent of today’s information system infrastructures. Examples
of the broad application space for CEP include supply chain man-
agement for RFID (Radio Frequency Identification) tagged prod-
ucts, real-time stock trading, monitoring of large computing sys-
tems to detect malfunctioning or attacks, and monitoring ofsensor
networks (e.g. for surveillance). A growing number of companies
are developing products in this space [1].

Starting with early work on monitoring of computing systems,
many designs have been proposed for event processing systems
[2, 6, 7, 9, 14, 15, 18]. The input to a CEP system is a stream
of events, generated by external processes. Users registerlong-
running queries — also called subscriptions — to detect interesting
event patterns, which are typically sequences of correlated events.
One particularly important class of query is asafety condition, a
query meant to detect when “something bad” happens between two
events. For example, the event system SASE [18] is motivatedby
the following safety condition for RFID tracking in a retailstore.

Query 1. Post a notification if an item, after being removed from
the shelf, exits the store before being checked out at the counter.

To process such queries, all event systems have, as part of their
pattern language, asequencing(or immediate concatenation) op-
erator. This operator is typically denotedE1;E2. It finds any
event matching the subpatternE1, and then finds thefirst match
afterwards to the subpatternE2. For example, assume our pattern
language has an “or” (|) operator. To process the above safety con-
dition, we can search for the pattern

LEAVE SHELF;(CHECKOUT|EXIT STORE) (1)

and then filter out all matches that do not go through the checkout.
This example is in some ways deceptively simple. It implicitly

relies on an assumption that events are instantaneous and totally
ordered, an assumption which may not be true. Many, if not most,
CEP systems arecompositional— the outputs of a query are them-
selves events, which can be posted to the event stream and used in
other queries. Such events are referred to ascomposite(or complex)
events, as they are composed of several smaller events that together
satisfy the query. For example, in a more realistic formulation of
Query 1, the CHECKOUT event might be a complex event involv-
ing several steps, such as scanning an item, reading the purchaser’s
credit card, and receiving validation from the credit card company.
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Figure 1: Possible Successors to Announcement A

Since it consists of multiple smaller events, a complex event has
duration; it does not exist at a single point in time, but rather oc-
cupies an interval with distinct start and end times. Therefore,
complex events can, and often do, overlap with each other. This
can cause some difficulty in processing the sequencing operator;
for events with duration the definition of “next” is not obviously
unique.

To illustrate this, we present a slightly more subtle example.
Consider an Internet retailer that uses an event system to toensure
that its website properly follows its business workflow processes.
The retailer holds periodic giveaways to its customers. Each give-
away is announced on the website, and then the first (or equiva-
lently nth) customer to make a purchase after the announcement
wins the prize. A purchase is itself a complex event comprising
two other events: adding a item to the shopping cart and paying for
the items in the cart. Therefore, the contest consists of thefollow-
ing event system query.

Query 2. After a giveaway is announced on the main website,
identify the first new purchase (i.e. adding an object to the shopping
cart and then paying for it).

Assuming that an announcement is an instantaneous event, pro-
cessing Query 2 involves determining which of a number of inter-
vals (the purchases) is the immediate successor of each announce-
ment. But it is not obvious what the correct definition of successor
should be in this case.

Consider the intervals shown in Figure 1. HereA represents
an announcement, and the remaining intervals represent purchases
(starting when an object is added to the cart, ending at the time of
payment). If we choose successor only according to the end time
of the interval, then intervalB is the successor toA. However,
B properly containsA, and so it makes sense to disqualify it as a
possible successor toA (i.e. the retailer does not want customers
“jumping the gun”). We should instead choose intervalC or D as
the next event, but it is unclear which.

A plausible choice might be to define the successors ofA to in-
clude every interval that does not have another interval strictly be-
tween it andA, i.e., the natural definition of successor on the partial
order of intervals. However, as we show in Section 2, this results in
a nonassociative definition of sequencing. An associative sequenc-
ing operator is desirable for more than just aesthetic reasons: it
is important for query optimization as well. To see this, note that
Query 2 is naturally written as a right-associated query, ofthe form
E0;(E1;E2). To process this query, we first match the purchase
eventsE1;E2, and then match them to the giveaway announce-
mentE0. If giveaways are relatively infrequent, this approach can
be inefficient, as it can generate many purchase events that will
never be matched to giveaway announcements. If sequencing were
associative, we could rewrite the query as the left-associated ver-
sion (E0;E1);E2. In this case the system would first match an-
nouncement and shopping cart pairs, limiting the number of pur-
chases under consideration. This transformation is analogous to
constructing a join plan in relational algebra by considering the se-
lectivities of the joins. Hence associativity in the underlying tem-
poral model is an important enabler for query optimization in an
event system implementation.

A thorough survey of temporal models in the CEP literature
shows that there is no unique answer for choosing a successorto
A in Figure 1. Existing systems use many different kinds of time
stamp, with different semantics and different implications for im-
plementation efficiency. The purpose of this paper is to present a
formal framework for the study of sequencing in event processing
systems. From this framework we show how semantic and imple-
mentation concerns limit the possible definitions of “next”.

1.1 Outline of Contributions
In Section 2 we present several existing systems and show how

they differ in their definition of sequencing. From these exam-
ples we identify real-world implementation concerns that we use
to guide the development of our formal framework.

We present this formal framework in Section 3 with the defini-
tion of a temporal model. This definition is capable of describing
sequencing inall event systems we are aware of, and captures the
subtle distinctions between event systems that have the same (par-
tial) order on time stamps, but different successor definitions. This
gives us a uniform framework in which to discuss existing design
choices.

In order to chose the right temporal model, we take anaxiomatic
approach. In Section 4, we present event system design choices as
axioms, algebraic properties that the temporal model must have in
order to meet the associated system design goals. We distinguish
betweenstandard axiomsanddesirable axioms. The standard ax-
ioms are common to the design of all event systems, representing
system behavior that a user would intuitively expect. The desirable
axioms are useful for improving the performance.

Given these axioms, we prove in Section 5.1 that there is only
one model up to isomorphism that satisfies all of the standardax-
ioms and supports associativity. This resolves the debate illustrated
in Figure 1. It also demonstrates that our axioms are a sound and
complete axiomatization of associative time stamps in event sys-
tems.

The unique model in Section 5.1 requires time stamps with un-
bounded representation. In Section 5.2 we present a slightly weak-
ened version of associativity that permits a temporal modelwith a
bounded representation of time stamps. We show that, by adding
the boundedness condition, this temporal model is again unique to
isomorphism, so again our axioms are sound and complete. More
importantly, we give arguments for adopting this model as the stan-
dard temporal model for CEP.

We end the paper with a discussion of related work (Section 6),
concluding remarks and a discussion of future work (Section7).

2. SUCCESSOR IN EXISTING SYSTEMS
To illustrate the importance of an event system’s successordef-

inition, we examine the behavior of Query 2 in several representa-
tive event systems taken from the literature.

Consider the sequence of events represented in Figure 2. In the
figure,A represents the giveaway announcement. EachPi, Qi and
Ri represents a purchase step by a customer. Dashed horizontal
lines connect the shopping cart step with the payment. Intuitively,
only purchaseQ1Q2 satisfies the query. PurchaseP1P2 is disqual-
ified because the shopping cart was filled (eventP1) before the an-
nouncement (The retailer wants the contest to be fair, and does not
want customers ”lying in wait” for the next giveaway). Purchase
R1R2 is disqualified becauseQ1Q2 clearly finished before it, and
hence it cannot reasonably be considered “first”.

Now consider the event stream of Figure 3. Intuitively, purchases
Q1Q2 andR1R2 both satisfy the query: each is a purchase after
the announcement and they start and finishsimultaneously. Thus,
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the query result should be a notification for both events. Therefore,
the event system must be able to support multiple successors– both
Q1Q2 andR1R2 must be successors ofA.

Given this query and these data streams, we now examine how
they would be processed in several existing event systems. Anum-
ber of systems such as Snoop [6] or EPL [14] usepoint time stamps
taken from a discrete, totally ordered domain. In these systems, the
composite eventP1P2 has only a single time stamp — that ofP2.
Hence the information that the item was added to the shoppingcart
before the announcementA is lost, andP1P2 incorrectly appears to
satisfy the query. A similar criticism applies to the weak successors
used in Active Office [15]. In order to express this query correctly,
the successor relation must prohibit overlap between timeintervals.

Event systems such as SnoopIB [2] and ODE [9] use interval
time stamps. These systems ordernon-overlappingintervals in the
natural way. They also use the standard definition of immediate
successor for partially ordered sets: interval time stampt1 is a suc-
cessor oft0 if t0 < t1 and there is not2 with t0 < t2 < t1. In this
model both theQ1Q2 andR1R2 purchases from Figure 2 qualify
as successors of theA event. In general, these systems allow an
event to have multiple successors — even an unbounded set — and
not all the successors are required to finish at the same time.Again,
this definition of successor does not accurately reflect the intuitive
meaning of the query.

The strong successor used in Active Office captures the correct
intuitive meaning of our example query on the event stream ofFig-
ure 2. But even this model fails on the stream of Figure 3, because
the strong successor rules of Active Office select only one ofthe
two simultaneous events. It uses a tie-breaking scheme based on
arbitrarily assigned, totally ordered unique identifiers.

The Cayuga system [7] uses interval time stamps like SnoopIB,
but has a different successor definition. Specifically,t = [t0, t1] is
a successor ofs = [s0, s1] if t0 > s1 and there is no event with
time stampp = [p0, p1] such thats1 < p0 < p1 < t1. In other
words,t is a successor ofs if t follows s without overlap, and no
p that followss without overlap finishes beforet. This definition
deals correctly with our motivating example query in all cases, and
also avoids unbounded successor sets with their associatedimple-
mentation difficulties.

As discussed in Section 1, associativity of sequencing can be
viewed as an important enabler for query optimization in an event
system implementation. Unfortunately, associativity hasserious
implications for the definition of successor. Consider the event
stream of Figure 4. HereP is an event matching some event expres-
sion EP , Q1 andQ2 are events matchingEQ, andR is an event
matchingER. Using any of the event systems discussed above,
the expressionEP;EQ yields a single composite eventPQ1, and
thus the left-associated expression(EP;EQ);ER yields only the
eventPQ1R. However, expressionEQ;ER producestwo com-
posite events,Q1R andQ2R. Therefore, the right-associated ex-
pressionEP;(EQ;ER) yields the eventsPQ1R andPQ2R using
any of systems above except Active Office (which eliminates one
of the composite events due to its tie-breaking rule). WhileAc-
tive Office handles this particular expression correctly, it fails to be
associative in general, as we show in Section 5.2.

We know of no existing system whose temporal model supports
associative sequencing. As we show in Section 5.1, there is a
good reason for this: up to isomorphism, theonly temporal model
that supports associative sequencing is thecomplete-historymodel.
This model, as its name suggests, requires a system to store the
time stamps of all the primitive events that make up a composite
event. Since it has no upper bound on the size of a time stamp
representation, complete-history can be prohibitively expensive.

3. THE FRAMEWORK
In Section 2, we saw how successor was defined differently in

three event systems: SnoopIB, Active Office, and Cayuga. Allthree
use intervals as time stamps, and they have the same partial order on
these intervals:[s0, s1] < [t0, t1] if and only if s1 < t0. However,
the three systems differ in how they choose a successor.

Because all of these systems have the same time stamps with
the same partial order, to study their differences, we have to ex-
tend previous work on temporal models [16] to include a successor
operation that exists explicitly in the model. To be as general as
possible, we define asuccessor functionSUCCto be a function that
takes as input a time stampt together with a set of time stampsF
and produces the setSUCC(t,F) of immediate successors oft in
F . The intuition for this model is thatcandidate setF represents
the set of time stamps from which the immediate successor is cho-
sen. Given an event expressionE1;E2, an event system matches
this expression by doing the following:

(a) Determine the set of candidate time stampsF for events
matchingE2.

(b) For each event matchingE1 at timet, compose it with any
event matchingE2 at a time inSUCC(t,F).

These three event systems defineSUCC([s0, s1],F) as follows.

SnoopIB:
˘

[t0, t1]∈F
˛

˛ s1 <t0 and¬∃[r0, r1]∈F s.t.s1 <r0≤r1 <t0
¯

Cayuga:
˘

[t0, t1]∈F
˛

˛ s1 <t0 and¬∃[r0, r1]∈F s.t.s1 <r0≤r1 < t1
¯

Active Office (strong successor):
(

[t0, t1]∈F

˛

˛

˛

˛

˛

s1 < t0 ∧ ¬∃[r0, r1] ∈ F s.t.

s1 < r0 ∧ (r1 < t1 ∨ (r1 = t1 ∧ r0 < t0))

)

The successor operation is not the only way that event models
may differ. When we compute the result of a query like Query 2,
we need to assign the composite event (the output of the query) a
new time stamp. In SnoopIB, Cayuga, and Active Office, the com-
posite event is timestamped with the smallest interval containing
the intervals of all events that make up the query result. Forexam-
ple, Query 2 is made up of three events. If these events happenat
times 1 (giveaway announcement), 2 (product added to cart),and 4
(payment received), then all three systems assign[1, 4] as the result
time stamp. However, the event system ODE is different. It keeps
the history of all of the time stamps in the component events.In the
example, it would store[1, 2, 4] as the time stamp. Nevertheless,



ODE still only uses theboundariesof this history when determin-
ing the immediate successor, treating the history like an interval;
hence it is not appreciably different from SnoopIB.

For the remainder of the paper, our approach is more formal.
Traditionally atemporal modelis defined as(T,≺) where≺ is a
partial order on the set of time stampsT [16]. The elements of
T can be points, intervals, sets of points, sets of intervals,and
so on; there are no restrictions on the types of acceptable time
stamps. To study both immediate successor and event composi-
tion, we extend this definition of a temporal model to a quadru-
ple T = (T,≺, SUCC,⊗). In this model,T and≺ are the same
as in the traditional model. In addition, the successor function
SUCC : T × 2T → 2T takes a time stampt together with a set
of candidatesF and produces the set of immediate successors. Fi-
nally, thecomposition operation⊗ takes the time stampss andt of
two events and produces the time stamps ⊗ t for the correspond-
ing composite event. The time stampss ⊗ t are also inT , since
composite events may be added to the event stream for use in other
queries. For convenience, we will identifyT andT when the con-
text is clear (e.g. a time stampt ∈ T).

While ⊗ behaves like a monoid operation, we do not always
want it to be defined. For example, in an interval model like
SnoopIB, we never want to compose two overlapping events. To
avoid the use of partial operations, we introduce a special “un-
defined” time stamp⊥ to T such that for anyt, F , (a) ⊥ 6∈
SUCC(t,F), (b) SUCC(⊥,F) = ∅, and (c)t ⊗ ⊥ = ⊥ ⊗ t = ⊥.
We say thats ⊗ t is definedwhenevers ⊗ t 6= ⊥.

3.1 Some Concrete Examples
We have already outlined how to express SnoopIB, Active Of-

fice, and Cayuga in our framework. As an illustrative example, we
give a complete formalization of ODE. In ODE, all time stamps
are monotonically increasing finite sequences over the discrete lin-
ear orderZ. In other words, the time stamps are sequencesσ =
σ(0)σ(1) . . . σ(k−1) whereσ(i) < σ(i+1) for all i < ℓ(σ)−1,
with ℓ(σ) = k the lengthof the sequence. The partial order is de-
fined asσ ≺ τ exactly whenσ(ℓ(σ) − 1) < τ (0), (i.e. when the
largest element ofσ is less then the smallest element ofτ ). The
successor operation is defined as

SUCC(σ,F) = { τ ∈ F |σ ≺ τ and¬∃ρ ∈ F , σ ≺ ρ ≺ τ }

Finally, for two eventsσ < τ , the compositionσ⊗τ is the standard
sequence composition (concatenation of sequences).

An interesting variation of the ODE temporal model is the
complete-history model. In this model,T , ≺ and⊗ are exactly
the same as in ODE. However, the successor function is different.
We define a linear ordering on time stamp histories by letting⊑
be the lexicographical ordering from the end of the sequences. In
other words,σ ⊑ τ if either

• σ(ℓ(σ)− i) < τ (ℓ(τ )− i), andσ(ℓ(σ)− k) = τ (ℓ(σ)− k)
for k < i, or

• ℓ(σ) < ℓ(τ ) andσ(ℓ(σ)− i) = τ (ℓ(τ )− i) for all i < ℓ(σ).

We use this linear order to break ties, and thus define

SUCC(σ,F) = { τ ∈ F |σ ≺ τ and¬∃ρ ∈ F , σ ≺ ρ ⊑ τ }

Notice that this model is a generalization of the definition of succes-
sor in Active Office from intervals to complete histories. However,
it does not use data elements (identifiers) to break ties; it only uses
time stamp ordering.

4. AXIOMATIZING TEMPORAL MODELS
Our framework puts no restrictions on the definitions ofSUCC

and⊗ yet. As a result, there can be aberrant behavior (e.g. a model

in which two time stamps are successors of each other, such as
t0 ∈ SUCC(t1,F), t1 ∈ SUCC(t0,F)). As in any algebraic model,
we prevent such aberrant behavior by adding axioms that express
properties of “reasonable” temporal models. Since adding axioms
restricts the class of valid models, we want to be sure that our ax-
ioms are all properly motivated.

We distinguish betweenstandard axiomsanddesirable axioms.
The standard axioms are non-controversial; they are satisfied by
the temporal models in all of the major event systems. The desir-
able axioms, on the other hand, are each violated by at least one
major event system. However, as we shall demonstrate, thereare
compelling reasons for wanting our temporal models to satisfy the
desirable axioms.

4.1 Standard Axioms
Many of the accepted axioms have already been implicitly men-

tioned in our discussion of temporal models. For the sake of com-
pleteness, in this section we will make all of these assumptions
explicit. As we have several axioms, we organize them according
to their defining feature:≺, SUCC, or⊗.

4.1.1 The≺ Axioms
As in traditional temporal models,≺ should be a partial order.

The following two axioms capture this property.

AXIOM 1 (TRANSITIVITY ). If t0 ≺ t1, t1 ≺ t2, thent0 ≺ t2.

AXIOM 2 (IRREFLEXIVITY). For anyt ∈ T, t 6≺ t.

4.1.2 TheSUCCAxioms
Another implicit assumption of our discussion has been thatwe

always chose the successor time stamp from the candidate setF .
This assumption is expressed by the following axiom.

AXIOM 3 (CANDIDATE PRESENCE). For all t ∈ T andF ⊆
T, SUCC(t,F) ⊆ F

Additionally, the idea of successor is tightly-coupled with the
partial order≺. For example, ifb is a successor ofa, we generally
assume thata “happens before”b. We capture this idea with the
following axiom.

AXIOM 4 (RESPECTINGORDER). For any t, s ∈ T, t ≺ s if
and only if there is someF such thats ∈ SUCC(t,F)

In all the major event systems, the elements ofSUCC(t,F) are
natural ≺-successorsof t. That is,SUCC(t,F) contains only el-
ements ofF that follow t and have no≺-intermediate elements.
In fact, the existing event systems differ only in how they choose
from these≺-successors; SnoopIB and ODE take them all, while
Cayuga and Active Office are more selective and “break ties”.To
ensure this type of behavior, we need two axioms on the usage of
candidate sets. The first axiom ensures the following intuitive be-
havior: removing any time stamps other than a successor fromthe
candidate set should have no effect on the current successor.

AXIOM 5 (THINNING). Supposet1 ∈ SUCC(t0,F). Then for
anyT ⊆ F with t1 ∈ T , t1 ∈ SUCC(t0, T ).

This axiom also addresses another important issue. We know
from Axiom 4 (RESPECTINGORDER) thatt0 ≺ t1 whenever there
is someF ⊆ T such thatt1 ∈ SUCC(t0,F). But this means we
could have a temporal model that permits only singleton candidate
sets (i.e.SUCC(t,F) = ∅ if |F| > 1). This would correspond to
an event system that shuts down if it ever receives more than one
future event. Clearly this is undesirable behavior. To prevent RES-
PECTINGORDER from degenerating as such, we need to be able to
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Figure 5: Adding Elements to a Candidate Set

add and remove elements from the candidate sets in limited ways.
THINNING addresses this problem of removal.

To relateSUCC to ≺-successors, we need an axiom for adding
to a candidate set; this is much more subtle. Consider the intervals
illustrated in Figure 5. Suppose we are trying to pick the successors
of t, and start with the candidate setF = { s } (so trivially, s is
the unique successor). If we extendF to the candidate setF ′ =
{ r1, s }, then the successor depends on our choice of event system.
In early event systems such as EPL and the original Snoop, thetime
of an event is identified with the end of its interval, and sor1 is
the successor in this model. However, in all event systems with
interval time stamps, the successor is stills, since the intervalr1

started before the end oft. Similarly, the effect of addingr2 to
F = { s } is also system dependent. In Active Office and Cayuga,
the addition has no effect on the successor, as the interval ends later
thans. However, in SnoopIB,r2 is also a successor, and hence this
addition changes the contents ofSUCC(t,F).

Fortunately, all event systems agree that the addition of time
stamps likep1 or p2 to F = { s } does not effect the value of
SUCC(t,F). These are time stamps that are either far in the past or
far in the future, in that they do not overlap the time betweent and
any of its successors. Thus, in all event systems, we are permitted
to add to a candidate set via the following axiom.

AXIOM 6 (THICKENING). LetA be such that, for anys ∈ A,
either s ≺ t or p ≺ s for somep ∈ SUCC(t,F). Then
SUCC(t,F) = SUCC(t,F ∪A).

THICKENING is important for two reasons. First of all, in an
event system the candidate setF is effectively infinite. It represents
the time stamps of all the events that appear in the stream aftert. An
event system therefore never knows the full contents ofF ahead of
time; it only learns the values of these time stamps as they arrive.
Hence, if we expect to have a real-time event processing system,
the definition of successor cannot rely on such future events.

Additionally, as the following propositions demonstrate,Ax-
ioms 1-6 are enough to guarantee thatSUCC(t,F) only chooses
elements fromF that are the≺-successors oft. For reasons of
space, we omit all but a few important proofs in this paper; the
proofs of all results may be found in [17].

PROPOSITION 1. For any t0, t1 ∈ T, t0 ≺ t1 if and only if
t1 ∈ SUCC(t0, { t1 }).

PROPOSITION 2. If t1 ∈ SUCC(t0,F), thent0 ≺ t1 and there
is nos ∈ F with t0 ≺ s ≺ t1.

A related but subtly different issue is the problem ofblocking.
By Axiom 4 (RESPECTINGORDER), we know thatr1 in Figure 5
can never be a successor oft. However, there is nothing to prevent
us from saying that, sincer1 ends befores, it “blocks” s from be-
ing the successor oft, and henceSUCC(t, { s, r1 }) = ∅. In this
case we have an elementr1 that is not the successor, but prevents
other events from being successors as well. Such semantics is not
intuitive and is not found in any of the existing event systems.

AXIOM 7 (NON-BLOCKING). If SUCC(t,F) ∩ A = ∅, then
SUCC(t,F) = SUCC(t,F \ A).

4.1.3 The⊗ Axioms
The⊗ operator is used to combine time stamps from sequenced

events. Hence our first axiom for it is concerned with when se-
quencing is defined. In particular,t0 ⊗ t1 should only be defined if
theti are the time stamps to two events that can be sequenced.

AXIOM 8 (CONSERVATIVE COMPOSITION). t0⊗t1 is defined
if and only ift0 ≺ t1.

Because event systems must process events in real-time, event
sequencing should happen in a “timely” manner. In other words,
the sequenced event should have a time stamp that allows us to
add it to the output stream immediately. For example, suppose we
compose two events with time stampst0 = [0, 1] andt1 = [2, 3].
We should not allowt0⊗t1 = [0, 5] as the interval[4, 4] follows t1,
but nott0⊗t1; hence we could not addt0⊗t1 to the stream until we
are sure that all events with time[4, 4] have passed. This constraint
is implemented in all event systems by ensuring thatt0 ⊗ t1 andt1
always share the same successors.

AXIOM 9 (⊗-ELIMINATION ). Supposet0 ≺ t1. Thent2 ∈
SUCC(t0 ⊗ t1,F) if and only ift2 ∈ SUCC(t1,F).

4.1.4 TheT◦ Axioms
The operation⊗ is used to construct time stamps created by the

sequencing operation. Intuitively all time stamps should ultimately
be derived via⊗ from some universe of “base” time stamps (e.g. the
universe of clock ticks that define some event occurrence). These
are the time stamps assigned to primitive events; the time stamp for
a composite event is constructed by applying⊗ to the base time
stamps of the primitive events making up this composite event. We
refer to this set of base time stamps asT

◦.

AXIOM 10 (PRIMITIVE REPRESENTATION). There is a set
T

◦ ⊆ T such that
• for anys ∈ T

◦, there is not0, t1 ∈ T with s = t0 ⊗ t1.

• for anyt ∈ T, there aresi ∈ T
◦ such thatt = s0⊗· · ·⊗sn.

PROPOSITION 3. The setT◦ in PRIMITIVE REPRESENTATION

is unique. That is, ifT◦ and S
◦ both satisfy the conditions above,

thenT
◦ = S

◦.

In essence, PRIMITIVE REPRESENTATIONasserts thatT is a
free monoid with respect to⊗ over T

◦. Note that this axiom
only says that base time stamps exist, and does not require them
to be points, intervals, or anything in particular. Furthermore,
the decomposition in PRIMITIVE REPRESENTATIONneed not be
unique. For example, in Active Office,[1, 3] = [1, 1] ⊗ [3, 3] =
[1, 1] ⊗ [2, 2] ⊗ [3, 3].

All existing event systems have a global clock and all time
stamps of primitive events are defined in terms of values of this
clock. Thus there is an implicit linear order on the base time
stamps. Notice that this does not imply thateventtime stamps are
linearly ordered. For example, even though the natural numbers
are linearly ordered, intervals of natural numbers can overlap and
hence are only partially ordered (as pointed out earlier). The under-
lying assumption of a global clock is formalized by asserting that
T

◦ is isomorphic to the linear orderZ.

AXIOM 11 (LINEARITY ). Let T
◦ be the unique set identified

in PRIMITIVE REPRESENTATION. The ordering≺ is an infinite
discrete linear ordering onT◦.

From this axiom it may appear that we cannot handle real-
valued time stamps. However, we can remove the discrete require-
ment from LINEARITY provided that we stipulate that all candi-
date sets are well-founded. If we had a non-well-founded candi-
date setF with an infinite descending sequence converging tot,



thenSUCC(t,F) would not be well-defined, even though there are
elements inF aftert. AsF corresponds to a set of time stamps for
incoming events, well-foundedness is a realistic assumption. Fur-
thermore, as all event expressions are finite, there is no distinguish-
able difference between requiring thatT

◦ be discrete and requiring
that allF be well-founded. Therefore, for simplicity, we keep the
discreteness assumption.

4.2 Desirable Axioms
All of the axioms in the previous section are satisfied by the ex-

isting event systems. However, there are several axioms that we
would like our models to satisfy for implementation reasons. In
this section we introduce these axioms.

4.2.1 The “Time-Out” Axiom
In Section 2, we saw an important problem that occurs in the

SnoopIB system. In SnoopIB, overlapping pairs of events in
Query 2 can result in an unbounded number of matches for each
purchase. All we need is for each customer to add their item tothe
shopping cart immediately, and then pay sometime in the future.
The payment can be received in an hour, a day, or even years from
now; as all these event pairs overlap, they are all successors to the
giveaway announcement.

For a more formal illustration of this problem, in SnoopIB,

SUCC([0, 0], { [1, x] | 1 ≤ x }) = { [1, x] | 1 ≤ x } (2)

Hence this definition of successor is very difficult to implement in
an event system. Even though the time stamps may be partially
ordered, the events necessarily arrive real-time in a linear fashion.
In models with interval time stamps, they typically arrive to the
stream at the time corresponding to the end of the interval. (This
is the time when the event “happens”.) Hence for the candidate set
F = { [1, 1], [2, 2], [1, 3] }, [2, 2] will arrive before an event with
time stamp[1, 3], even though[1, 3] is a successor time stamp to
[0, 0] and [2, 2] is not. In general, there could always be an event
with interval [1, x] arriving at some future timex. Hence for every
match toE1, the system might have to keep looking for successors
indefinitely. As a result, old query state cannot be garbage collected
and memory usage grows without bound. Therefore, we would
like an axiom that limits the effect that events with arbitrary long
duration can have on the system.

AXIOM 12 (STRONGTHICKENING). Let t ∈ SUCC(s, A).
For any u, v ∈ T, if t ≺ v, then SUCC(s, A) = SUCC(s, A ∪
{ u ⊗ v }).

In essence, STRONG THICKENING is a “time-out” axiom. It
guarantees that once we see at least one successor, we can ignore
any events that happen afterwards.

4.2.2 Associativity
In Section 2 we saw that it would be advantageous for us to asso-

ciate event sequencing. Our next desirable axiom is one thatguar-
antees associativity. Naively, it would seem to be enough for us to
require that⊗ is associative.

AXIOM 13 (⊗-ASSOCIATIVITY). (t0⊗t1)⊗t2 = t0⊗(t1⊗t2),
for all ti ∈ T.

However, this axiom is satisfied by both SnoopIB and Cayuga,
which we have already seen are not associative. In fact, the only
systems that violate this axiom are the point models of Snoopand
EPL. Recall that we denotet0 ⊗ t1 = ⊥ if t0 ⊗ t1 is undefined.
So⊗-ASSOCIATIVITY implicitly guarantees that(t0 ⊗ t1) ⊗ t2
is defined exactly whent0 ⊗ (t1 ⊗ t2) is. In Snoop and EPL, the
time stamp2 ⊗ (1 ⊗ 3) = 3 is defined, but(2 ⊗ 1) ⊗ 3 is not. In

fact, this is the reason for the observation from [3, 8] that the two
sequencings

E1;(E2;E3) and E2;(E1;E3) (3)

are equivalent for event systems with point time stamps. So while
⊗-ASSOCIATIVITY does not give us sequencing associativity, it is
important in that it prevents us from sequencing events thatshould
not be sequenced. In fact, we can express this observation asthe
following proposition.

PROPOSITION 4. (t0 ⊗ t1) ⊗ t2 is defined if and only ift0 ≺
t1 ≺ t2.

In order to find the correct axiom for associativity, we first need
to formally understand what it means for sequencing to be asso-
ciative. An event system processes expressions on a streamS of
events. Events in a data stream consist of both data fields (which
define the type of the event) and a time stamp. We typically denote
these elements〈a, t〉 ∈ D × T wherea ∈ D is the data andt ∈ T

is the time stamp. As it is not relevant to our discussion, we make
no stipulation on the nature of the data domainD. In traditional
event systemsD is the finite set of all event symbols, while in pa-
rameterized event systems such as Cayuga,D can be an infinite set
of data tuples.

Given an event expressionE, an event system returns[[E]]S , the
set of all events inS that matchE. For the sequencing operator,
this set is defined as

[[E1;E2]]S =
(

〈a1⊕a2, t1⊗t2〉

˛

˛

˛

˛

˛

〈a1, t1〉∈ [[E1]]S , 〈a2, t2〉∈ [[E2]]S ,

t2∈SUCC(t1, {s |〈b, s〉∈ [[E2]]S})

)

(4)

Note that the data domain of the complex eventE1;E2 is the set
{a ⊕ b|a∈D1, b∈D2}, wherea ⊕ b is some data composition of
data valuesa andb. We give no semantics for this operation as it
will not be relevant to the discussion; in practice it is usually tuple
concatenation.

From (4), we see that there are actually two parts to ensuringthat
sequencing is associative. The first is that the data composition ⊕
is associative; the second is the associativity of the time stamps.
Because the definition of successor only uses time stamps andnot
data elements, we can safely separate these two components.Some
event systems do use data elements in their definition of successor.
For example, Active Office uses the element ID of an event to break
ties when determining successors. However, we can still separate
data from the time stamps in these systems by assuming that the
relevant ID information is added as part of the time stamp. As
data can be real-valued, this assumption does require our models
to support real-valued time stamps. However, as we discussed in
Section 4.1.4, this is not a problem.

From the definition of sequencing in (4), associativity requires
that for any event expressionsE0, E1, E2 and streamS,

[[(E0;E1);E2]]S

=

(*

(a0⊕a1)⊕a2,

(t0⊗t1)⊗t2

+˛

˛

˛

˛

˛

〈ai,ti〉∈ [[Ei]]S, t1∈SUCC(t0,FE1
),

t2 ∈ SUCC(t0⊗t1,FE2
)

)

=

(*

a0⊕(a1⊕a2),

t0⊗(t1⊗t2)

+
˛

˛

˛

˛

˛

〈ai,ti〉∈ [[Ei]]S, t2∈SUCC(t1,FE2
),

t1⊗t2 ∈ SUCC(t0,FE1;E2
)

)

= [[E0;(E1;E2)]]S

(5)

whereFE = {t |〈a, t〉 ∈ [[E]]S}. Note that this equation entails a
relationship betweenFEi

andFE1;E2
. For candidate setsF0, F1,

we define



F0;F1 = { t0 ⊗ t1 | t0 ∈ F0, t1 ∈ SUCC(t0,F1) } (6)

From this observation it is obvious that the data element component
of associativity is trivial; we only need to ensure that the composi-
tion operator⊕ is itself associative. Therefore we can focus on the
time stamp component of associativity. It should be clear then that
(5) implies the following axiom.

AXIOM 14 (⊗-DECOMPOSITION). Supposet0, t1, t2 ∈ T,
with t1 ≺ t2, and F1,F2 ⊆ T. Also suppose thatt2 ∈
SUCC(t1,F2). Thent1 ∈ SUCC(t0,F1) if and only if t1 ⊗ t2 ∈
SUCC(t0,F1;F2).

It is apparent from (5) that both⊗-ASSOCIATIVITY and ⊗-
DECOMPOSITIONare necessary for associativity. The following
proposition establishes that they are sufficient as well.

PROPOSITION 5. SupposeT is a temporal model satisfying Ax-
iom 9 (⊗-ELIMINATION ), Axiom 13 (⊗-ASSOCIATIVITY), and
Axiom 14 (⊗-DECOMPOSITION). LetE1, E2, E3 be event expres-
sions, and suppose⊕ is associative over the data elements of the
event streamS. Then[[(E0;E1);E2]]S = [[E0;(E1;E2)]]S .

5. ANALYSIS OF TEMPORAL MODELS
Now that we have stated our axioms, we would like to find the

“best” model that satisfies all of these axioms. Note that none of
the definitions of successor in Section 1 satisfy all axioms.Cayuga
and Active Office violate⊗-DECOMPOSITION, and hence do not
support associativity. SnoopIB and ODE also violate this axiom,
and in addition violate STRONGTHICKENING. Systems with point
time stamps even violate⊗-ASSOCIATIVITY. Hence to satisfy all
of the axioms, we need to find a new temporal model for event
systems.

In this section we characterize the models that satisfy all of our
axioms up to isomorphism. We also identify the trade-offs that the
systems in Section 2 make by violating one or more of the desirable
axioms.

5.1 Satisfying All Axioms
There is at least one model that satisfies all of the axioms. That is

the complete-history model from Section 3.1; we leave verification
of this fact as an exercise for the reader. Unfortunately, this par-
ticular model is impractical because of its memory requirements.
In any event system, each base time stamp (i.e. an element ofT

◦)
requires a memory word. A complete history of time stamps fora
composite event would require as many words as there are primi-
tive events that form the composite event. This is particularly bad
for queries in which the history can grow without bound. In addi-
tion to regular sequencing, all of the major event systems have an
iterated sequencing operator, similar to Kleene-*. This operator is
illustrated by the following stock monitoring query.

Query 3. Notify me when a stock price has been monotonically
increasing for at least 30 minutes.

This sequence can be composed of any number of stock quotes.
In the complete-history model, we have to store and rememberthe
time stamps for all of the quotes in the sequence.

To get a model that uses bounded memory for time stamps, we
need to compress the time stamp representation. For example, in-
terval time stamp models have bounded representation because we
can drop any intermediate information. For example,

[0, 1] ⊗ [2, 3] ⊗ [4, 5] = [0, 1] ⊗ [4, 5] = [1, 5]

Formally, we want some fixedn such that everyt ∈ T can be
written t = p0 ⊗ · · · ⊗ pn for pi ∈ T

◦. Unfortunately, as the
following theorem demonstrates, this is impossible.

THEOREM 1. AssumeT is a temporal model satisfying Ax-
ioms 1-14. For eacht ∈ T, there is a unique sequence
p0, . . . , pn ∈ T

◦ with t = p0 ⊗ · · · ⊗ pn, wheren depends upont.

From this theorem we see that any temporal model that satisfies
all of the axioms must keep a complete history of the time stamps.
Intuitively this is the case because any time stamp in the history
can be used to determine its order with respect to another history.
From this theorem, we can prove an even stronger result, namely
that complete-history model is theonly model of the axioms, up to
isomorphism.

THEOREM 2. Let T be a temporal model satisfying Axioms 1-
14. LetS be the complete-history model. If we identifyT

◦ with Z,
the mappingt0⊗· · ·⊗tn 7→ σ whereσ(i) = ti is an isomorphism.

As an interesting technical aside, Theorem 2 demonstrates that
our axioms are a sound and complete axiomatization of the the-
ory of the complete-history model. They are sound because the
complete-history model satisfies the axioms. They are complete
because they have only one model up to isomorphism, and so
their logical consequences are exactly those statements true in the
complete-history model. However, this result is only of theoretical
interest as we are not interested in using our axioms for validation,
but only in characterizing those temporal models that are accept-
able.

As these two theorems are the primary result of this paper, the
remainder of this section is a outline of their proof. We present the
important steps of the proof as propositions, which are themselves
stated without proof.

5.1.1 Proof of Theorem 1
To prove Theorem 1, we will assume from here on thatT is a

temporal model satisfying all of the axioms (Axioms 1-14). Before
we prove Theorem 1, we first need a way of distinguishing time
stamps. To do this, we introduce two equivalence relations.

Definition 1. For anyt0, t1 ∈ T, we sayt0, t1 have thesame
end time(denotedt0 ∼E t1) when, for anys ∈ T, t0 ≺ s if and
only if t1 ≺ s. Similarly, t0, t1 have thesame start time(denoted
t0 ∼S t1) when, for anys ∈ T, s ≺ t0 if and only if s ≺ t1.

Intuitively, these relations give us an abstract way to identify
the start and end time of a time stamp without having to assume
our time stamps are actually intervals. The following propositions
below guarantee that every time stampt has a unique start time
t ∼S s0 ∈ T

◦, and a unique end timet ∼E s1 ∈ T
◦. Thus we

can unambiguously speak of a time stamp “interval” in an abstract
sense.

PROPOSITION 6. Supposet0 ≺ t1. Thent0 ⊗ t1 ∼E t1 and
t0 ⊗ t1 ∼S t0.

PROPOSITION 7. Supposep0, p1 ∈ T
◦. Thenp0 = p1 if and

only if p0 ∼E p1. Similarly,p0 = p1 if and only ifp0 ∼S p1

To prove Theorem 1, we will need to induct over the length
of a decompositiont = p0 ⊗ · · · ⊗ pn of t. We can reduce
a time stamp to one with smaller decomposition length by using
Axiom 14 (⊗-DECOMPOSITION). However, in order to make use
of this axiom, we need to understand what happens when we ap-
ply SUCC twice. Proposition 8 tells us that all of the successors



have the same end time. Hence by Axiom 9 (⊗-ELIMINATION ),
if t0, t1 are both successors ofs from the same candidate set,
SUCC(t0,F) = SUCC(t1,F).

PROPOSITION 8. Supposet0, t1∈SUCC(s,F). Thent0∼E t1.

COROLLARY 1. Supposet0, t1 ∈ SUCC(s,F) with t0, t1 ∈T
◦.

Thent0 = t1.

While these propositions appear fairly technical, they areenough
to prove that every time stamp has at most one successor. Thisis
such a powerful result that we state it as a theorem in its own right.

THEOREM 3. Let s, t0, t1 ∈ T. For all F ⊆ T, if t0, t1 ∈
SUCC(s,F), thent0 = t1.

PROOF. Using Axiom 10 (PRIMITIVE REPRESENTATION),
supposet0 = u0⊗· · ·⊗un, t1 = v0⊗· · ·⊗vm, whereui, vj ∈ T

◦.
We proceed by induction onn and m. The case forn, m = 1
is covered by Corollary 1. Suppose we know it is true for any
n, m ≤ k, and take somet0, t1 with n, m ≤ k + 1. Without loss
of generality,m = k + 1.

First we consider the case forn > 1. By Propositions 7 and 8,
we have thatun = vm. Let q = un, and letp0 = u0 ⊗ · · ·⊗ un−1

andp1 = v0⊗· · ·⊗vm−1. Hencet0 = p0⊗q, t1 = p1⊗q. By Ax-
iom 5 (THINNING), p0 ⊗ q, p1 ⊗ q ∈ SUCC(s, { p0 ⊗ q, p1 ⊗ q }).
Hencep0, p1 ∈ SUCC(s, { p0, p1 }) andq ∈ SUCC(pi, { q }) by
Axiom 14 (⊗-DECOMPOSITION). Thenp0 = p1 by our induction
hypothesis, and so we are done.

Now supposen = 1, i.e., t0 ∈ T
◦. By Propositions 8 and

7, vm = t0. Now let r ≺ s. Then s ∈ SUCC(r, { s }). As
SUCC(s, { t0, t1 }) = { t0, t1 }, ⊗-DECOMPOSITIONgives us

{ s ⊗ t0, s ⊗ v0 ⊗ · · · ⊗ vm−1 ⊗ t0 }

= SUCC(r, { s ⊗ t0, s ⊗ v0 ⊗ · · · ⊗ t0 })

Again by⊗-DECOMPOSITION, we have thats, s ⊗ · · · ⊗ vm−1 ∈
SUCC(r, { s, s ⊗ · · · ⊗ vm−1 }). However,s ≺ v0 ≺ vm−1, and
so this case contradicts Proposition 8.

To prove Theorem 1, we need one more result. Proposition 9
establishes that a single usage of⊗ cannot collapse two different
time stamps into a single time stamp.

PROPOSITION 9. Supposet0, t1, s ∈ T with t0, t1 ≺ s and
t0 6= t1. Thent0 ⊗ s 6= t1 ⊗ s

PROOF OFTHEOREM1. Let t0 = u0 ⊗ · · · ⊗ un, t1 = v0 ⊗
· · · ⊗ vm. Also suppose thatn 6= m, or n = m andui 6= vi

for somei ≤ n. We need to show thatt0 6= t1.We proceed by
induction onn andm. The case forn = m = 1 is obvious. So
suppose we know that thet0 6= t1 for n, m ≤ k. Let m = k + 1
andn ≤ m.

First we consider the case wheren > 1. Suppose for a contradic-
tion thatt0 = t1. Then by Proposition 6 and 7,un = vm = q. Let
p0 = u0⊗· · ·⊗un−1 andp1 = v0⊗· · ·⊗vm−1. By Proposition 9,
p0 = p1, contradicting our induction hypothesis.

Now supposen = 1. Thenn 6= m and sou0 6= v0. However,
t0 ∼S t1 and so this contradicts Proposition 7.

5.1.2 Proof of Theorem 2
Theorem 3 proves that there is at most one successor at any time.

While this is true in complete-history, this is not enough toestab-
lish complete-history as the unique temporal model. We needto
prove that this unique successor is structurally identicalto the one
in complete-history. In particular, we need to know that thepar-
tial order≺ behaves just like the interval partial order<. This fact
follows from the next proposition.

PROPOSITION 10. Supposet0, t1 ∈ T with s0, s1 ∈ T
◦ such

that t0 ∼E s0 andt1 ∼S s1. Thent0 ≺ t1 if and only ifs0 ≺ s1.
In other words,t1 followst0 if and only if the start time oft1 follows
the end time oft0.

Thus the only difference between any two models that satisfy
all the axioms could lie in how they break ties between overlap-
ping “intervals”. We therefore need to establish that any two such
models must break ties in the same way. Complete-history uses the
linear order⊑ to break ties. Because of Theorem 1, we can extend
the definition of⊑ to arbitrary temporal models in the usual way,
identifying t0 ⊗ · · · ⊗ tn with σ as specified in Theorem 2. As the
following proposition demonstrates, for small candidacy sets,⊑ is
our only option to choose a successor.

PROPOSITION 11. SupposeSUCC(s, { t0, t1 }) = { t0 } with
ti ∈ T. If s ≺ t1, thent0 ⊑ t1.

Theorem 3 guarantees that there is at most one successor, and
Proposition 11 suggests that when we have a successor, we always
use⊑ to determine which one it is. Therefore, to prove Theorem 2,
we only need to guarantee that, when there is somes ∈ F with t ≺
s, then there isat leastone element inSUCC(t,F). Fortunately,
this follows from Axiom 7 (NON-BLOCKING).

PROOF OFTHEOREM 2. By Theorem 1, the mappingt0⊗· · ·⊗
tn 7→ σ is well-defined; it is clearly a bijection. We need to show
that this mapping preserves the successor operation. We already
know from Proposition 10 that≺ and the interval order are the
same. So we need only show that we break ties properly on all
candidate sets.

Supposet0 ∈ SUCC(s,F) with s ≺ t1 ∈ F . Applying
NON-BLOCKING to Proposition 11, we see thatt0 < t1 when-
evert0 6= t1. Thus⊑ is the only way to break ties over arbitrary
candidate sets. The only thing left to show is thatSUCC(s,F) 6= ∅
whenevert ∈ F with s ≺ t. Suppose for a contradiction that
t ∈ F with s ≺ t, but SUCC(s,F) = ∅. Then by NON-BLOCK-
ING, SUCC(s, { t }) = ∅. But this contradicts Proposition 1.

5.2 Relaxing the Desirable Axioms
The moral of Section 5.1 is that to satisfy all axioms, the tempo-

ral model needs to rely on time stamps of unbounded size. If we
want models with time stamps of bounded size, we need to relax
our demands. This means that our primary goal now is to identify
the least number of axioms that we need to relax in order to get
such temporal model, e.g., an interval model.

Definition 2. An interval modelis a modelT in which

t0 ⊗ t1 ⊗ t2 = t0 ⊗ t2 for anyt0, t1, t2 ∈ T (7)

An interval model allows us the most compact representation,
as we only need to remember two primitive time stamps for each
element ofT◦ (see Proposition 12 below). While this may seem
like a fairly extreme restriction, our results in this section generalize
for any model with bounded representation (i.e. there is some fixed
n such that for eacht, t = p0 ⊗ · · · ⊗ pn for somepi ∈ T

◦). Thus
we consider only interval models in order to simplify our analysis.

We still require any temporal model to satisfy the standard ax-
ioms (Axioms 1-11). Furthermore, of all the desirable axioms in
Section 4.2, we do not want to drop Axiom 13 (⊗-ASSOCIATIVI-
TY). That axiom is necessary to prevent the pathological behavior
equating the two expressions in (3), which is clearly undesirable.
Therefore, in this section we will determine what types of interval
models we get if we relax either Axiom 12 (STRONG THICKEN-
ING) or Axiom 14 (⊗-DECOMPOSITION).



As many of the of the propositions in Section 5.1 did not require
the use of axioms in Section 4.2, we can still say a lot about these
models. In particular, Propositions 6 and 7 require neitherSTRONG

THICKENING nor ⊗-DECOMPOSITION. Therefore, we can prove
the following result, which shows that our name “interval model”
is indeed appropriate.

PROPOSITION 12. Let T be any interval model satisfying the
accepted axioms and lett ∈ T \ T

◦. There are uniquet0, t1 ∈ T
◦

such thatt0 ∼S t, t1 ∼E t. Furthermore,t = t0 ⊗ t1.

5.2.1 RelaxingSTRONG THICKENING
STRONG THICKENING is an important part of the proof of The-

orem 1, which prevents any model of the axioms from being an
interval model. As an illustrative example, suppose thatt has two
representations

t = t0 ⊗ p ⊗ t1 = t0 ⊗ q ⊗ t1

as is the case in an interval model. Also suppose thatp ≺ q. Then
by ⊗-DECOMPOSITION, for anys ≺ t,

SUCC(s, { t0 ⊗ p, t0 ⊗ q }) = { t0 ⊗ p, t0 ⊗ q }

However, this violates STRONGTHICKENING, sincet0 ⊗p ≺ q by
⊗-ELIMINATION .

This example suggests that might be able to get an associative
interval model by relaxing this axiom. However, as we saw in Sec-
tion 2, none of the existing interval models are associative. Fur-
thermore, as the following theorem shows, there is no way to get
an associative interval model of the standard axioms.

THEOREM 4. There is no interval model of the standard axioms
that is also associative.

This theorem is true because any associative model must satisfy
both Axiom 13 (⊗-ASSOCIATIVITY) and Axiom 14 (⊗-DECOMP-
OSITION). And any interval model of these two axioms can never
have more than one successor. Suppose eventE1 has time stamp
[0, 0] and there are two instances of(E2;E3) with time stamps
[1, 3] and [2, 3], respectively. We cannot tell from the time stamp
[1, 3] whetherE2 had time stamp[1, 1] or [1, 2]. So if we choose
both the event at[1, 3] and the one at[2, 3] as the next occurrence
of (E2;E3), and the twoE2 events have time stamps[1, 1] and
[2, 2], respectively, then we must choose both of them as the next
E2 event afterE1. However, this violates Axiom 6 (THICKENING),
which is an standard axiom. In fact, as the following proposition
shows, we can never limit the successor in an associative interval
model to a single choice.

PROPOSITION 13. LetT be any interval model of the accepted
axioms which is associative. Lett ∈ T and letF ⊆ T be such that
s1 ∼E s2 andt ≺ s1 for all s1, s2 ∈ F . ThenSUCC(t,F) = F .

As a result of Theorem 4, there is no obvious benefit for relaxing
STRONG THICKENING.

5.2.2 Relaxing⊗-DECOMPOSITION
Even though there is no hope for an associative interval model,

we may still be able to construct an interval model thatapprox-
imatesassociativity. All of the interval models in Section 2 sat-
isfy ⊗-ASSOCIATIVITY. The only problem is how we treat the
candidate sets of composite events. For full associativity, we re-
quire [[(E0;E1);E2]]S = [[E0;(E1;E2)]]S . Suppose instead that
we have a model in which[[(E0;E1);E2]]S ⊇ [[E0;(E1;E2)]]S .
In such a model we could rewrite the expressionE0;(E1;E2) as
a left-associated expression, and eliminate false positives in post-
processing. However, even this is impossible in an intervalmodel.

THEOREM 5. Let T be an interval model satisfying all axioms
but ⊗-DECOMPOSITION. Then there are expressionsEi and a
streamS such that[[(E0;E1);E2]]S 6⊇ [[E1;(E1;E2)]]S .

It is also possible to approximate associativity when
[[(E0;E1);E2]]S ⊆ [[E0;(E1;E2)]]S . This property guar-
antees that we can rewrite(E0;E1);E2 as a right-associated
expression, and eliminate the false positives in post-processing,
thus allowing us to take advantage of those cases where the pattern
E2 is selective, butE0 andE1 are not. Furthermore, this property
guarantees that we will never produce false positives if we rewrite
E0;(E1;E2) as a left-associated expression.

Satisfying this half of associativity requires the forwarddirection
of ⊗-DECOMPOSITION, namely

t1 ∈ SUCC(t0,F1), t2 ∈ SUCC(t1,F2)

⇒ t1 ⊗ t2 ∈ SUCC(t0,F1;F2)
(8)

It is easy to verify that Cayuga has this property. Furthermore,
any interval model with this property must accept almost all≺-
successor time stamps with the minimal end time, and thus is at
most a minor variation of the Cayuga model. In particular, the fol-
lowing proposition demonstrates that a model like the one used in
Active Office does not approximate associativity in either direction.

PROPOSITION 14. Let T be an interval model satisfying(8)
and all axioms but⊗-DECOMPOSITION. Let F be a candidate
set in whicht = r0 ⊗ r1 ⊗ r2 for everyt ∈ F . Then

SUCC(s,F) = {t|s≺ t∈Fand end timet∼E q ∈ T
◦ is least}.

It is possible for an interval model satisfying (8) to have arbitrary
behavior on time stamps of very short duration (i.e., the composi-
tion of one or two base time stamps), as they are too short for as-
sociativity to apply. However, in addition to (8), Cayuga also has
a very weak form of associativity that applies when it is sequenc-
ing a stream of events with itself (i.e. an expression of the form
E1;(E2;E2)). In Cayuga, if there are no overlappingE2 events
in S, then [[E1;(E2;E2)]]S = [[(E1;E2);E2]]S . This property
follows from a weaker version of⊗-DECOMPOSITION, namely

SUCC(t, { pi ⊗ s }i∈I) = SUCC(t, { pi }i∈I);{ s } (9)

This property, in addition to (8), uniquely characterizes Cayuga up
to isomorphism, suggesting that this temporal model is the closest
we can get to an associative interval model.

THEOREM 6. LetT be an interval model satisfying(8), (9) and
all axioms but⊗-DECOMPOSITION. LetS be the Cayuga temporal
model. If we identifyT◦ withZ, the mappingt0⊗t1 7→ [t0, t1] ∈ S,
whereti ∈ T

◦, is an isomorphism.

Again, we note as an aside that Theorem 6 shows that these prop-
erties are a sound and complete axiomatization of the weaklyasso-
ciative interval time stamps. We also note that SnoopIB and ODE
satisfy both (8) and (9), and thus approximate associativity equally
well as Cayuga. Still, they do not satisfy STRONG THICKENING.
As our results show, there is no gain from eliminating STRONG

THICKENING and hence there is no apparent advantage to adopt-
ing the temporal models of SnoopIB or ODE over Cayuga.

6. RELATED WORK
Initial implementations of event composition systems, such as

Snoop [6] and EPL [14], used a linear temporal model based
on point time stamps. Results from the Knowledge Represen-
tation community [3, 8] demonstrated that this temporal model



did not correctly implement the semantics of sequencing in right-
associated queries. Other attempts at event systems [2, 7, 9, 15] all
use interval or history models. However, there has been no research
into which definition of successor is most appropriate.

The work on EPL [14] is particularly notable as it provides a for-
mal semantics for event languages. However, even though thelan-
guage is well-defined, it still exhibits unusual behavior like equat-
ing the queries in (3). Instead of presenting yet another formal
semantics, our work in this paper has been to determine criteria for
evaluating and comparing alternate semantics.

The theory of temporal logic has covered many aspects of tempo-
ral models; an excellent survey can be found in van Benthem [16].
Bohlen et al [5] have examined the difference between point and
interval models in database systems. Our temporal model is agen-
eral framework that includes all of these types of models, and many
of our axioms in Section 4.1 were motivated by work in this area.
To our knowledge, our paper is the first formulation of a temporal
model that examines the definition of a successor operation differ-
ent from the usual one defined by the partial order on time.

Kraemer and Seeger [10] have examined the difficulty of imple-
menting a window join operation on streaming data with interval
time stamps. However, their analysis only looks at implementing
a specific temporal model, and is not an attempt to characterize all
possible implementations, such as we have done in this paper.

Finally, there has been much work on the theory of specific tem-
poral models for event systems. Interval temporal logic [13] is
a framework for first-order reasoning about intervals. Bickford
and Constable [4] also have a logic for reasoning about events in
general distributed processes. However, these approachesassume
a fixed temporal model and provide rules for making inferences
within that model. Our approach differs in that it is answersa
higher level question; we do not assume a fixed temporal model,
but use generic properties of event systems to reason which tempo-
ral models are best.

7. CONCLUSIONS AND FUTURE WORK
While our approach has been motivated by practical implemen-

tation concerns, we have attempted to give a formal and rigorous
analysis of the different ways in which we can define a sequenc-
ing operator in event composition systems. Admitting that two of
the axioms in Section 4.2 are controversial, we have identified two
canonical temporal models. One of the two models — complete-
history — has serious implementation issues because it requires
time stamps of unbounded size. The interval-based time stamp
model of Cayuga appears to be the best trade-off between easeof
implementation and support of sequencing associativity and right-
associated queries.

Notice that our results were obtained for what one might call
a “minimal CEP system”, which only has the sequencing opera-
tor. Considering additional operators, and hence possiblyadding
more axioms about their properties, can only introduce further con-
straints that limit the choice of temporal models. Hence intuitively,
the best temporal model identified for this minimal system consti-
tutes the ideal case for any CEP system with additional operators.

There are two axioms in Section 4.1 which, while accepted by
all event composition systems, are controversial in the temporal
logic community. In particular, while Axiom 11 (LINEARITY ) is
appropriate for synchronous event systems, it is not applicable to
distributed event systems as initially studied by Lamport [11] and
later by Liebig et al [12]. Future work is needed to determinethe
effect of removing this axiom from our framework.

An even more interesting solution to the synchronous assump-
tion would be to remove both LINEARITY and Axiom 10 (PRIM-

ITIVE REPRESENTATION). While the base time stamps are fun-
damental to our arguments, we can artificially construct them as
equivalence classes over the relations∼S and∼E. Further research
is needed to determine what temporal models arise when we extend
an existing model with these equivalence classes as time stamps.
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APPENDIX

A. PROOFS OMITTED FROM PAPER

A.1 Propositions from Section 4
In this section, we present the proofs of all of the propositions

posed in Section 4. All of these proofs follow from algebraicma-
nipulation and direct application of the axioms, and so are pre-
sented without comment.

PROPOSITION 1. For any t0, t1 ∈ T, t0 ≺ t1 if and only
t1 ∈ SUCC(t0, { t1 }).

PROOF. By Axiom 4 (RESPECTINGORDER), t0 ≺ t1 if and
only there is someF such thatt1 ∈ SUCC(t0,F). By Axiom 5
(THINNING), we can chooseF = { t1 }.

PROPOSITION2. If t1 ∈ SUCC(t0,F), thent0 ≺ t1 and there
is nos ∈ F with t0 ≺ s ≺ t1.

PROOF. Suppose that there is such ans. As s ∈ F , we
get t1 ∈ SUCC(t0, { s, t1 }) from Axiom 5 (THINNING). As
t0 ≺ s, { s } = SUCC(t0, { s }) by Proposition 1. Hence
{ s } = SUCC(t0, { s, t1 }), by Axiom 6 (THICKENING), a con-
tradiction.

PROPOSITION3. The setT◦ in PRIMITIVE REPRESENTATION

is unique.

PROOF. Let T1 andT2 both satisfy the properties ofT
◦ in Ax-

iom 10 (PRIMITIVE REPRESENTATION), and supposeT1 6= T2.
Without loss of generality, there is somes ∈ T1 with s 6∈ T2.
As s 6∈ T2, there is somep0, . . . , pn ∈ T2, n ≥ 1 such that
s = p0 ⊗ (p1 ⊗ · · ·⊗ pn). However, ass ∈ T1, this is a contradic-
tion.

PROPOSITION4. (t0 ⊗ t1) ⊗ t2 is defined if and only ift0 ≺
t1 ≺ t2.

PROOF. Suppose(t0 ⊗ t1) ⊗ t2 is defined. Thent0 ≺ t1 by
Axiom 8 (CONSERVATIVE COMPOSITION). Furthermore, by Ax-
iom 13 (⊗-ASSOCIATIVITY),we know thatt0⊗(t1⊗t2) is defined
and hencet1 ≺ t2.

Now supposet0 ≺ t1 ≺ t2. By CONSERVATIVE COMPOSI-
TION, t0 ⊗ t1 is defined, and hencet0 ⊗ t1 ≺ t2 by Axiom 9
(⊗-ELIMINATION ). Therefore,(t0 ⊗ t1) ⊗ t2 is defined.

PROPOSITION 5. SupposeT is a temporal model satisfying
Axiom 9 (⊗-ELIMINATION ), Axiom 13 (⊗-ASSOCIATIVITY), and
Axiom 14 (⊗-DECOMPOSITION). LetE1, E2, E3 be event expres-
sions, and suppose⊕ is associative over the data elements of the
event streamS. Then[[(E0;E1);E2]]S = [[E0;(E1;E2)]]S .

PROOF. Suppose that

〈(a0 ⊕ a1) ⊕ a2, (t0 ⊗ t1) ⊗ t2〉 ∈ [[(E0;E1);E2]]S

with 〈ai, ti〉 ∈ [[Ei]]S . As⊕ is associative, and⊗ is associative by
Axiom 13 (⊗-ASSOCIATIVITY)

〈(a0 ⊕ a1) ⊕ a2, (t0 ⊗ t1) ⊗ t2〉

= 〈a0 ⊕ (a1 ⊕ a2), t0 ⊗ (t1 ⊗ t2)〉
(10)

Furthermore,t1 ∈ SUCC(t0,FE1
) andt2 ∈ SUCC(t0 ⊗ t1,FE2

).
By Axiom 9 (⊗-ELIMINATION ), we havet2 ∈ SUCC(t1,FE2

).

Hencet1 ⊗ t2 ∈ SUCC(t0,FE1;E2
) by Axiom 14 (⊗-DECOMPO-

SITION), and thus

〈(a0 ⊕ a1) ⊕ a2, (t0 ⊗ t1) ⊗ t2〉 ∈ [[E0;(E1;E2)]]S

Now suppose

〈a0 ⊕ (a1 ⊕ a2), t0 ⊗ (t1 ⊗ t2)〉 ∈ [[E0;(E1;E2)]]S

Again, ⊗-ASSOCIATIVITY gives us (10). Furthermore,t2 ∈
SUCC(t1,FE2

) and t1 ⊗ t2 ∈ SUCC(t0,FE1;E2
). So t1 ∈

SUCC(t0,FE1
) by ⊗-DECOMPOSITION.

A.2 Propositions from Section 5.1
Once we are given the definition of the equivalence relations∼S

and∼E, the propositions in this section all follow from algebraic
manipulation and direct application of the axioms. Therefore, they
are presented without comment.

PROPOSITION6. Supposet0 ≺ t1. Thent0 ⊗ t1 ∼E t1 and
t0 ⊗ t1 ∼S t0.

PROOF. t0 ⊗ t1 ∼E t1 is immediate from Axiom 9 (⊗-ELI -
MINATION ), so we need only provet0 ⊗ t1 ∼S t0. First suppose
s ≺ t0 ⊗ t1. By Axiom 8 (CONSERVATIVE COMPOSITION), s ⊗
(t0 ⊗ t1) is defined. Thuss ≺ t0 by Axiom 13 (⊗-ASSOCIATI-
VITY ) and Proposition 4. Now supposes ≺ t0. By Proposition 4,
(s ⊗ t0) ⊗ t1 is defined. Sos ⊗ (t0 ⊗ t1) is defined by⊗-ASSO-
CIATIVITY , and hences ≺ t0 ⊗ t1.

PROPOSITION7. Supposep0, p1 ∈ T
◦. Thenp0 = p1 if and

only if p0 ∼E p1. Similarly,p0 = p1 if and only ifp0 ∼S p1

PROOF. If t0 = t1 thent0 ∼E t1 is clear. Suppose then that
t0 ∼E t1 but t0 6= t1. By Axiom 11 (LINEARITY ) we can assume
t0 ≺ t1 without loss of generality. But ast0 ∼E t1, t1 ≺ t1, which
contradicts Axiom 2 (IRREFLEXIVITY).

The proof for∼S is analogous.

PROPOSITION8. Supposet0, t1∈SUCC(s,F). Thent0∼E t1.

PROOF. Suppose thatt0, t1 ∈ SUCC(s,F) with t0 6∼E t1. As
elements ofT are built up fromT

◦, we know from Proposition 6
that there arep0, p1 ∈ T

◦ with pi ∼E ti. As∼E is an equivalence
relation,p0 6∼E p1. So from Axiom 13 (⊗-ASSOCIATIVITY) and
Axiom 11 (LINEARITY ), we can assume without loss of generality
that p0 ≺ p1. Thus asp0 ∼E t0, we havet0 ≺ p1. We now
consider two cases.

First, supposet1 ∈ T
◦. In this caset1 = p1 and sot0 ≺ t1. As

t0, t1 ∈ SUCC(s,F), { t0, t1 } = SUCC(s, { t0, t1 }) by Axiom 3
(CANDIDATE PRESENCE) and Axiom 5 (THINNING). Then, again
by these two axioms,{ t0 } = SUCC(s, { t0 }). But t0 ≺ t1, and
this so this contradicts Axiom 6 (THICKENING).

Now supposet1 6∈ T
◦. We write t1 = v0 ⊗ · · · ⊗ vm ⊗ p1

wherevi ∈ T
◦. Again by CANDIDATE PRESENCEand THIN-

NING we have that{ t0, t1 } = SUCC(s, { t0, t1 }) and{ t0 } =
SUCC(s, { t0 }). But ast0 ≺ p1, Axiom 12 (STRONG THICKEN-
ING) gives us{ t0 } = SUCC(s, { t0, t1 }), a contradiction.

COROLLARY 1. Supposet0, t1 ∈ SUCC(s,F) with t0, t1 ∈T
◦.

Thent0 = t1.

PROOF. Apply Proposition 7 to Proposition 8.

PROPOSITION9. Supposet0, t1, s ∈ T with t0, t1 ≺ s and
t0 6= t1. Thent0 ⊗ s 6= t1 ⊗ s



PROOF. By Proposition 1,s ∈ SUCC(ti, { s }) for eachi. Sup-
pose for a contradiction thatt0 ⊗ s = t1 ⊗ s. Let r ∈ T

◦ be such
thatr ≺ t0. By Proposition 6,r ≺ t0 ⊗ s = t1 ⊗ s. Hence

t0 ⊗ s = t1 ⊗ s ∈ SUCC(r, { t0 ⊗ s, t1 ⊗ s })

By Axiom 14 (⊗-DECOMPOSITION), t0, t1 ∈ SUCC(r, { t0, t1 }).
But this contradicts Theorem 3.

PROPOSITION10. Supposet0, t1 ∈ T with s0, s1 ∈ T
◦ such

that t0 ∼E s0 andt1 ∼S s1. Thent0 ≺ t1 if and only ifs0 ≺ s1.
In other words,t1 followst0 if and only if the start time oft1 follows
the end time oft0.

PROOF. Supposet0 ∼E s0 andt1 ∼S s1. First suppose that
t0 ≺ t1. As t0 ∼E s0, s0 ≺ t1 by the definition of∼E . Sim-
ilarly, s0 ≺ s1 as t1 ∼S s1. The proof for whens0 ≺ s1 is
analogous.

PROPOSITION11. SupposeSUCC(s, { t0, t1 }) = { t0 } with
ti ∈ T. If s ≺ t1, thent0 ⊑ t1.

PROOF. SupposeSUCC(s, { t0, t1 }) = { t0 } with ti ∈ T, and
also thats ≺ t1. Furthermore, suppose for a contradiction that
t0 6⊑ t1. As < is a linear order,t1 < t0.

We first prove our claim assuming thatt0 6∼E t1. By Ax-
iom 10 (PRIMITIVE REPRESENTATION) and Proposition 6, there
arep0, p1 ∈ T

◦ with pi ∼E ti. Thenp0 6∼E p1, and so from Ax-
iom 13 (⊗-ASSOCIATIVITY) and Axiom 11 (LINEARITY ), either
p0 ≺ p1 or p1 ≺ p0. As t1 < t0, it is clear from Proposition 6
and the definition of⊑ thatp1 ≺ p0. As p1 ∼E t1, we have that
t1 ≺ p0. We now split into two cases.

First assumet0 ∈ T
◦. In that caset0 = p0, and sot1 ≺ t0.

Thus we haveSUCC(s, { t0, t1 }) = { t1 } by the arguments in the
proof of Proposition 8.

Now assumet0 6∈ T
◦. By PRIMITIVE REPRESENTATION, we

can write t0 = v0 ⊗ · · · ⊗ vm ⊗ p0. By Axiom 3 (CAN-
DIDATE PRESENCE) and Axiom 5 (THINNING), we have that
{ t0, t1 } = SUCC(s, { t0, t1 }) and{ t1 } = SUCC(s, { t1 }). But
as t1 ≺ p0, Axiom 12 (STRONG THICKENING) gives { t1 } =
SUCC(s, { t0, t1 }), a contradiction.

We now consider the case wheret0 ∼E t1. We decompose
t0 = v0 ⊗ · · · ⊗ vm, t1 = u0 ⊗ · · · ⊗ un. As t0 ∼E t1, vm = un

by Proposition 6. Again we have two possibilities.
The first possibility is that there is somek > 0 such that

vm−k < un−k and vm−i < un−i for i < k. In that case
m, n > 0, so we letp0 = v0⊗· · ·⊗vm−1, p1 = u0 ⊗· · ·⊗un−1,
and q = vm = un. So t0 = p0 ⊗ q and t1 = p1 ⊗ q. As
SUCC(s, { t0, t1 }) = { t0 }, we have{ p0 } = SUCC(s, { p0, p1 })
by Axiom 14 (⊗-DECOMPOSITION). As s ≺ t1, Axiom 5 (THIN-
NING) gives{ t1 } = SUCC(s, { t1 }), and thuss ≺ p1 by ⊗-DE-
COMPOSITION. Therefore,p0 ⊑ p1 by our induction hypothesis,
and hencet0 ⊑ t1.

The second possibility is thatm > n andvm−i = un−i for
all i ≤ n. This time we letp = v0 ⊗ · · · ⊗ vm−n−1 andq =
vm−n ⊗ · · · ⊗ vm, and sot0 = p ⊗ q, t1 = q. By L INEARITY ,
pick r ≺ s. Thens ∈ SUCC(r, { s }) and so⊗-DECOMPOSITION

gives

{ s ⊗ p ⊗ q } = SUCC(r, { s ⊗ p ⊗ q, s ⊗ q })

Then again by⊗-DECOMPOSITION

{ s ⊗ p } = SUCC(r, { s ⊗ p, s })

As s ≺ p, s ⊗ p 6⊆ p andp 6∼E s, which contradicts our proof of
the caset0 6∼E t1.

A.3 Proofs from Section 5.2
Given the equivalence relations∼S and∼E introduced in the

previous section, the remainder of the proofs have a very similar
style. We present them without further comment.

PROPOSITION12. Let T be any interval model satisfying the
accepted axioms and lett ∈ T \ T

◦. There are uniquet0, t1 ∈ T
◦

such thatt0 ∼S t, t1 ∼E t. Furthermore,t = t0 ⊗ t1.

PROOF. By Axiom 10 (PRIMITIVE REPRESENTATION), we
have thatt = v0 ⊗ · · · ⊗ vn with vi ∈ T

◦. By Proposition 6,
v0 ∼S t andvn ∼E t. Also asT is an interval model,t = v0 ⊗vn.
Let t0 = v0, t1 = vn. We need only show that they are unique.

Supposet = s0 ⊗ s1 with si ∈ T
◦. By Proposition 6,s0 ∼S t

and hences0 ∼S t0. Thuss0 = t0 by Proposition 7. A similar
argument shows thats1 = t1.

PROPOSITION13. Let T be any interval model of the accepted
axioms which is associative. Lett ∈ T and letF ⊆ T be such that
s1 ∼E s2 andt ≺ s1 for all s1, s2 ∈ F . ThenSUCC(t,F) = F .

PROOF. By Proposition 12, there is somet0 ∈ T
◦ with t0 ∼S t.

Similarly, for eachs ∈ F there is somes1 ∈ T
◦ such thats1 ∼E s.

Furthermore, asp1 ∼E p2 for eachpi ∈ F , by Proposition 7, there
is a uniques1 that works for all elements ofF . Now take anyp ∈
F . As t ≺ p, t⊗ p is defined. By Proposition 6,t0 ∼S t ∼S t⊗ p
ands1 ∼E p ∼E t ⊗ p. Thust ⊗ p = t0 ⊗ s1 for all p ∈ F , and
hence{ t0 ⊗ s1 } = { t };F .

By Axiom 11 (LINEARITY ), there is somer ∈ T
◦ such

that r ≺ t0. Hence r ≺ t0 ⊗ s1 by Proposition 6.
Thus SUCC(r, { t0 ⊗ s1 }) = { t0 ⊗ s1 } by Proposition 1. As
{ t0 ⊗ s1 } = { t };F , SUCC(t,F) = F by Axiom 14 (⊗-DE-
COMPOSITION).

THEOREM4. There is no interval model of the accepted axioms
that is also associative.

PROOF. By Axiom 11 (LINEARITY ), let ti ∈ T
◦ with 0 ≤ i ≤

3 andt0 ≺ t1 ≺ t2 ≺ t3. By Proposition 13,

SUCC(t0, { t1 ⊗ t3, t2 ⊗ t3 }) = { t1 ⊗ t3, t2 ⊗ t3 }

Then by Axiom 14 (⊗-DECOMPOSITION), SUCC(t0, { t1, t2 }) =
{ t1, t2 }. However,SUCC(t0, { t1 }) = { t1 } andt1 ≺ t2, which
violates Axiom 6 (THICKENING).

THEOREM 5. Let T be an interval model satisfying all axioms
but ⊗-DECOMPOSITION. Then there are expressionsEi and a
streamS such that[[(E0;E1);E2]]S 6⊇ [[E1;(E1;E2)]]S .

PROOF. Suppose for a contradiction that[[(E0;E1);E2]]S ⊇
[[E0;(E1;E2)]]S for any Ei andS. This means that we get the
reverse direction of⊗-DECOMPOSITION. In other words, for any
t0, t1, t2, andF1,F2,

t1 ⊗ t2 ∈ SUCC(t0,F1;F2), t2 ∈ SUCC(t1,F2)

⇒ t1 ∈ SUCC(t0,F1)
(11)

Now suppose we haves ≺ t0 ≺ p ≺ q ≺ t1, all elements ofT◦.
By (7), we have that

t ⊗ p ⊗ t1 = t0 ⊗ q ⊗ t1 = t0 ⊗ t1 (12)

As t0 ≺ p, q, t0 ≺ p ⊗ t1, q ⊗ t1 by Proposition 6.
Consider now the setSUCC(t0, { p ⊗ t1, q ⊗ t1 }). We know
by Axiom 3 (CANDIDATE PRESENCE) and Axiom 4 (RES-
PECTING ORDER) that SUCC(t0, { p ⊗ t1 }) = { p ⊗ t1 } and



SUCC(t0, { q ⊗ t1 }) = { q ⊗ t1 }. Therefore, by Axiom 7 (NON-
BLOCKING), SUCC(t0, { p ⊗ t1, q ⊗ t1 }) cannot be empty. By
Axiom 3 (CANDIDATE PRESENCE), it must contain eitherp ⊗ t1
or q ⊗ t1. Therefore, by (12), we have that

{ t0 };{ p ⊗ t1, q ⊗ t1 } = { t0 ⊗ t1 } (13)

As s ≺ t0, we also have thats ≺ t0 ⊗ t1 by Proposition 6. Thus
SUCC(s, { t0 ⊗ t1 }) = { t0 ⊗ t1 }) as before. So, in particular,
the equivalence in (12) gives us

t ⊗ p ⊗ t1, t0 ⊗ q ⊗ t1 ∈ SUCC(s, { t0 };{ p ⊗ t1, q ⊗ t1 })

By (11) and CANDIDATE PRESENCE, we have that
SUCC(t0, { p ⊗ t1, q ⊗ t1 }) = { p ⊗ t1, q ⊗ t1 }. Since
p, q ≺ t1, arguing as before

{ p ⊗ t1, q ⊗ t1 } = { p, q };{ t1 }

Therefore, again by (11) and CANDIDATE PRESENCE,
SUCC(t0, { p, q }) = { p, q }. However, we know that
SUCC(t0, { p }) = { p } by CANDIDATE PRESENCEand RES-
PECTING ORDER. As p ≺ q, Axiom 6 (THICKENING) yields
SUCC(t0, { p, q }) = { p }, which is a contradiction.

PROPOSITION14. LetT be an interval model satisfying(8) and
all axioms but⊗-DECOMPOSITION. LetF be a candidate set in
whicht = r0 ⊗ r1 ⊗ r2 for everyt ∈ F . Then

SUCC(s,F) = {t|s≺ t∈Fand end timet∼E q ∈ T
◦ is least}

PROOF. The key idea of this proof is to use the interior element
r1 of each time stamp, together with Axiom 12 (STRONG THICK-
ENING), to show that no time stamp can block another with the
same end time. Given Proposition 10 and several other axioms, we
can assume without loss of generality that all events inF have the
same end time and follows. We let q ∈ T

◦ be the unique end
time of all these elements. Then by (7), every element ofF can be
expressed aspi ⊗ q with pi ∈ T

◦.
Let F ′ = { pi | pi ⊗ q ∈ F , pi ∈ T

◦ } be the set of start times
of all these time stamps. AsF ′ is linearly ordered, pickp0⊗q ∈ F
such thatp0 ∈ F ′ is least. By Axiom 6 (THICKENING), p0 ∈
SUCC(s,F ′), and thusp0 ⊗ q ∈ SUCC(s,F) by (8).

As every element inF has formr0 ⊗ r1 ⊗ q, there is some
r ∈ T

◦ such thatpi ≺ r ≺ q for all pi ∈ F ′. Let r be the
greatest such primitive time stamp. Take anyt = pi ⊗ q ∈ F ,
and defineFt = { pj ⊗ r | i 6= j } ∪ { pi }. Note thatFt;{ q } =
F . By STRONG THICKENING, pi ∈ SUCC(s,Ft), and sot ∈
SUCC(s,F) by (8).

THEOREM 6. Let T be an interval model satisfying(8), (9) and
all axioms but⊗-DECOMPOSITION. LetS be the Cayuga temporal
model. If we identifyT◦ withZ, the mappingt0⊗t1 7→ [t0, t1] ∈ S,
whereti ∈ T

◦, is an isomorphism.

PROOF. Proposition 12 guarantees that the mapping is a well-
defined bijection. The proof of Proposition 8 does not require
⊗-DECOMPOSITION. Hence by Axiom 7 (NON-BLOCKING) and
Axiom 12 (STRONG THICKENING), it is sufficient to show that
SUCC(t,F) = F for anyF such thatp1 ∼E p2 andt ≺ p1 for all
pi ∈ F .

Take any sucht, F . By Propositions 7 and 12, there is a unique
s such thatp ∼E s for all p ∈ F . By Axiom 11 (LINEARITY ),
there is somes ≺ u ≺ v. By (9),

SUCC(t, { pi ⊗ (u ⊗ v) }
pi∈F

) = SUCC(t,F);{u ⊗ v }

Hence by Proposition 14,

SUCC(t, { pi ⊗ (u ⊗ v) }
pi∈F

) = { pi ⊗ (u ⊗ v) }
pi∈F

By Proposition 12, each element ofF has a unique start time. Thus
SUCC(t,F) = F


