
Additive Groves of Regression Trees

Daria Sorokina, Rich Caruana, and Mirek Riedewald

Department of Computer Science, Cornell University, Ithaca, NY, USA
{daria,caruana,mirek}@cs.cornell.edu

Abstract. We present a new regression algorithm called Groves of trees
and show empirically that it is superior in performance to a number
of other established regression methods. A Grove is an additive model
containing a small number of large trees. Trees added to the Grove are
trained on the residual error of other trees already in the Grove. We
begin the training process with a single small tree and gradually increase
both the number of trees in the Grove and their size. This procedure
ensures that the resulting model captures the additive structure of the
response. A single Grove may still overfit to the training set, so we further
decrease the variance of the final predictions with bagging. We show that
in addition to exhibiting superior performance on a suite of regression
test problems, bagged Groves of trees are very resistant to overfitting.

1 Introduction

We present a new regression algorithm called Grove, an ensemble of additive
regression trees. We initialize a Grove with a single small tree. The Grove is
then gradually expanded: on every iteration either a new tree is added, or the
trees that already are in the Grove are made larger. This process is designed
to try to find the simplest model (a Grove with the fewest number of small
trees) that captures the underlying additive structure of the target function. As
training progesses, this algorithm yields a sequence of Groves of slowly increasing
complexity. Eventually, the largest Groves may begin to overfit the training set
even as they continue to learn important additive structure. This overfitting is
reduced by applying bagging on top of the Grove learning process.

In Section 2 we describe the Grove algorithm step by step, beginning with the
classical way of training additive models and incrementally making this process
more complicated – and better performing – at each step. In Section 3 we com-
pare bagged Groves with two other regression ensembles: bagged regression trees
and stochastic gradient boosting. The results show that bagged Groves outper-
form these other methods and work especially well on highly non-linear data
sets. In Section 4 we show that bagged Groves are resistant to overfitting. We
conclude and discuss future work in Section 5.

2 Algorithm

Bagged Groves of Trees, or bagged Groves for short, is an ensemble of regression
trees. Specifically, it is a bagged additive model of regression trees where each

2

individual additive model is trained in an adaptive way by gradually increasing
both number of trees and their complexity.

Regression Trees. The unit model in a Grove is a regression tree. Algo-
rithms for training regression trees differ in two major aspects: (1) the criterion
for choosing the best split in a node and (2) the way in which tree complexity is
controlled. We use trees that optimize RMSE (root mean squared error) and we
control tree complexity (size) by imposing a limit on the size (number of cases)
at an internal node. If the fraction of the data points that reach a node is less
than a specified threshold α, then the node is declared a leaf and is not split
further. Hence the smaller α, 0 ≤ α ≤ 1, the larger the tree. (See Figure 7.)

Note that because we will later bag the tree models, the specific choice of
regression tree is not particularly important. The main requirement is that the
complexity of the tree should be controllable.

2.1 Additive Models — Classical Algorithm

A Grove of trees is an additive model where each additive term is represented
by a regression tree. The prediction of a Grove is computed as the sum of the
predictions of these trees: F (x) = T1(x) + T2(x) + · · ·+ TN (x). Here each Ti(x),
1 ≤ i ≤ N , is the prediction made by the i-th tree in the Grove. The Grove
model has two main parameters: N , the number of trees in the Grove, and α,
which controls the size of each individual tree. We use the same value of α for
all trees in a Grove.

In statistics, the basic mechanism for training an additive model with a fixed
number of components is the backfitting algorithm [1]. We will refer to this as
the Classical algorithm for training a Grove of regression trees (Algorithm 1).

The algorithm cycles through the trees until the trees converge. The first tree
in the Grove is trained on the original data set, a set of training points {(x, y)}.
Let T̂1 denote the function encoded by this tree. Then we train the second tree,
which encodes T̂2, on the residuals, i.e., on the set {(x, y−T̂1(x))}. The third tree
then is trained on the residuals of the first two, i.e., on {(x, y− T̂1(x)− T̂2(x))},
and so on.

After we have trained N trees this way, we discard the first tree and retrain it
on the residuals of the other N − 1 trees, i.e. on the set {(x, y− T̂2(x)− T̂3(x)−
· · · − T̂N (x))}. Then we similarly discard and retrain the second tree, and so
on. We keep cycling through the trees in this way until there is no significant
improvement in the RMSE on the training set.

Bagging. As with single decision trees, a single Grove tends to overfit to the
training set when the trees are large. Such models show a large variance with
respect to specific subsamples of the training data and benefit significantly from
bagging, a well-known procedure for improving model performance by reducing
variance [2]. On each iteration of bagging, we draw a bootstrap sample (bag)
from the training set, and train the full model (in our case a Grove of additive
trees) from that sample. After repeating this procedure a number of times, we

3

Algorithm 1 Classical additive model training

function Classical(α,N ,{x,y})
for i = 1 to N do

Tree
(α,N)
i = 0

Converge(α,N ,{x,y}, Tree
(α,N)
1 , . . . , Tree

(α,N)
N)

function Converge(α,N ,{x,y},Tree
(α,N)
1 , . . . , Tree

(α,N)
N)

repeat

for i = 1 to N do

newTrainSet = {x, y −
∑

k 6=i
Tree

(α,N)
k (x)}

Tree
(α,N)
i = TrainTree(α, newTrainSet)

until (change from the last iteration is small)

end up with an ensemble of models. The final prediction of the ensemble on each
test data point is an average of the predictions of all models.

Example. In this section we illustrate the effects of different methods of training
bagged Groves on synthetic data. The synthetic data set was generated by a
function of 10 variables that was previously used by Hooker [3].

F (x) = πx1x2

√
2x3 − sin−1(x4) + log(x3 + x5) −

x9

x10

√

x7

x8

− x2x7 (1)

Variables x1, x2, x3, x6, x7, x9 are uniformly distributed between 0.0 and 1.0
and variables x4, x5, x8 and x10 are uniformly distributed between 0.6 and 1.0.1

Figure 1 shows a contour plot of how model performance depends on both α,
the size of tree, and N , the number of trees in a Grove, for 100 bagged Groves
trained with the classical method on 1000 training points from the above data set.
The performance is measured as RMSE on an independent test set consisting of
25,000 points. Notice that lower RMSE implies better performance. The bottom-
most horizontal line for N = 1 corresponds to bagging single trees. The plot
clearly indicates that by introducing additive model structure, with N > 1,
performance improves significantly. We can also see that the best performance
is achieved by Groves containing 5-10 relatively small trees (large α), while for
larger trees performance deteriorates.

2.2 Layered Training

When individual trees in a Grove are large and complex, the Classical additive
model training algorithm (Section 2.1) can overfit even if bagging is applied.
Consider the extreme case α = 0, i.e., a Grove of full trees. The first tree will
perfectly model the training data, leaving residuals with value 0 for the other

1 Ranges are selected to avoid extremely large or small function values.

4

Algorithm 2 Layered training

function Layered(α,N ,train)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α

for j = 0 to max do

if j = 0 then

for i = 1 to N do

Tree
(α0,N)
i = 0

else

for i = 1 to N do

Tree
(αj ,N)

i = Tree
(αj−1,N)

i

Converge(αj ,N ,train,Tree
(αj ,N)

1 , . . . , Tree
(αj ,N)

N)

trees in the Grove. Hence the intended Grove of several large trees will degenerate
to a single tree.

One could address this issue by limiting trees to very small size. However, we
still would like to be able to use large trees in a Grove so that we can capture
complex and non-linear functions. To prevent the degeneration of the Grove as
the trees become larger, we developed a “layered” training approach. In the first
round we grow N small trees. Then in later cycles of discarding and re-training
the trees in the Grove we gradually increase tree size.

More precisely, no matter what the value of α, we always start the training
process with small trees, typically using a start value α0 = 0.5. Let αj denote the
value of the size parameter after j iterations of the Layered algorithm (Algorithm
2). After reaching convergence for αj−1, we increase tree complexity by setting
αj to approximately half the value of αj−1. We continue to cycle through the
trees, re-training all trees in the Grove in the usual way, but now allow them
to reach the size correspondent to the new larger αj , and as before, we proceed
until the Grove converges on this layer. We keep gradually increasing tree size
until αj ≈ α.

For a training set with 1000 data points and α = 0, we use the following
sequence of values of αj : (0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001). It is
worth noting that while training a Grove of large trees, we automatically obtain
all Groves with the same N for all smaller tree sizes in the sequence. Figure 2
shows how 100 bagged Groves trained by the layered approach perform on the
synthetic data set. Overall performance is much better than for the classical
algorithm and bagged Groves of N large trees now perform at least as well as
bagged Groves of N smaller trees.

2.3 Dynamic Programming Training

There is no reason to believe that the best (α,N) Grove should always be con-
structed from a (≈ 2α,N) Grove. In fact, a large number of small trees might
overfit the training data and hence limit the benefit of increasing tree size in
later iterations. To avoid this problem, we need to give the Grove training al-
gorithm additional flexibility in choosing the right balance between increasing

5

tree size and the number of trees. This is the motivation behind the Dynamic

Programming Grove training algorithm.
This algorithm can choose to construct a new Grove from an existing one by

either adding a new tree (while keeping tree size constant) or by increasing tree
size (while keeping the number of trees constant). Considering the parameter
grid, the Grove for a grid point (αj , n) could be constructed either from its left
neighbor (αj−1, n) or from its lower neighbor (αj , n − 1). Pseudo-code for this
approach is shown in Algorithm 3. We make a choice between the two options
for computing each Grove (adding another tree or making the trees larger) in a
greedy manner, i.e., the one that results in better performance of the Grove on
the validation set. We use the out-of-bag data points [4] as the validation set
for choosing which of the two Groves to use at each step.

Figure 3 shows how the Dynamic Programming approach improves bagged
Groves over the layered training. Figure 4 shows the choices that are made during
the process: it plots the average difference between RMSE of the Grove created
from the lower neighbor (increase n) and performance of the Grove created from
the left neighbor (decrease αj). That is, a negative value means that the former
is preferred, while a positive value means that the latter is preferred at that grid
point. We can see that for this data set increasing the tree size is the preferred
direction, except for cases with many small trees.

This dynamic programming version of the algorithm does not explore all
possible sequences of steps to build a Grove of trees, because we require that
every grove built in the process should contain trees of equal size. We have tested
several other possible approaches that don’t have this restriction, but they failed
to produce any improvements and were noticeably worse from the running time
point of view. For these reasons we prefer the dynamic programming version
over other, less restricted options.

2.4 Randomized Dynamic Programming Training

Our bagged Grove training algorithms so far performed bagging in the usual way,
i.e., create a bag of data, train all Groves for different vallues of (α,N) on that
bag, then create the next bag, generate all models on this bag; and so on for 100
different bags. When the Dynamic Programming algorithm generates a Grove
using the same bag, i.e., the same train set that was used to generate its left and
lower neighbors, complex models might not be very different from their neighbors
because those neighbors already might have overfitted and there is not enough
training data to learn anything new. We can address this problem by using a
different bag of data on every step of the Dynamic Programming algorithm,
so that every Grove has some new data to learn from. While performance of a
single Grove might become worse, performance of bagged Groves improves due to
increased variability in the models. Figure 5 shows the improved performance of
this final version of our Grove training approach. The most complex Groves are
now performing worse than their left neighbors with smaller trees. This happens
because those models need more bagging steps to converge to their best quality.
Figure 6 shows the same plot for bagging with 500 iterations where the property

6

0.16

0.2

0.2

0.
2

0.2

0.3

0.30.4
0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 1. RMSE of bagged Grove, Classical
algorithm

0.
11

0.11

0.12

0.12 0.12

0.13

0.13
0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.3

0.4

0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 2. RMSE of bagged Grove, Layered
algorithm

0.1

0.1

0.11

0.11 0.11

0.12

0.12 0.12

0.13

0.13

0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.3

0.40.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 3. RMSE of bagged Grove, Dynamic
Programming algorithm

−
0.

05

−0.05

−0.05 −0.05

−0
.0

4

−0
.0

4

−0.04 −0.04

−0.03

−0
.0

3

−0.03 −0.03

−
0.02

−0.02

−0.02 −0.02

−
0.

01

−0.01

−0.01

0

0
0.

01

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Fig. 4. Difference in performance be-
tween “horizontal” and “vertical” steps

0.09

0.09

0.1

0.1
0.1

0.11

0.11
0.11

0.12

0.12 0.12

0.13

0.13 0.13

0.16

0.16
0.16

0.2

0.2

0.2 0.2

0.3

0.3
0.4

0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 5. RMSE of bagged Grove (100
bags), Randomized Dynamic Program-
ming algorithm

0.09

0.09

0.1

0.1 0.1

0.11

0.11
0.11

0.12

0.12 0.12

0.13

0.13 0.13

0.16

0.16

0.16

0.2

0.2

0.2 0.2

0.3

0.30.4
0.5

Alpha (size of leaf)

#t
re

es
 in

 a
 g

ro
ve

 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fig. 6. RMSE of bagged Grove (500

bags), Randomized Dynamic Program-
ming algorithm

7

Algorithm 3 Dynamic Programming Training

function DP(α,N ,trainSet)
α0 = 0.5, α1 = 0.2, α2 = 0.1, . . . , αmax = α

for j = 0 to max do

for n = 1 to N do

for i = 1 to n − 1 do

Treeattempt1,i = Tree
(αj ,n−1)

i

Treeattempt1,n = 0
Converge(αj ,n,train,Treeattempt1,1, . . . , Treeattempt1,n)

if j > 0 then

for i = 1 to n do

Treeattempt2,i = Tree
(αj−1,n)

i

Converge(αj ,n,train,Treeattempt2,1, . . . , Treeattempt2,n)

winner = Compare
∑

i
Treeattempt1,i and

∑

i
Treeattempt2,i on validation set

for i = 1 to n do

Tree
(αj ,n)

i = Treewinner,i

“more complex models are at least as good as their less complex counterparts”
is restored.

3 Experiments

We evaluated bagged Groves of trees on 2 synthetic and 5 real-world data sets
and compared the performance to two other regression tree ensemble methods
that are known to perform well: stochastic gradient boosting and bagged regres-
sion trees. Bagged Groves consistently outperform both of them. For real data
sets we performed 10 fold cross validation: for each run 8 folds were used as a
training set, 1 fold as a validation set for choosing the best set of parameters
and the last fold was used as the test set for measuring performance. For the
two synthetic data sets we generated 30 blocks of data containing 1000 points
each and performed 10 runs using different blocks for training, validation and
test sets. We report mean and standard deviation of the RMSE on the test set.
Table 1 shows the results; for comparability across data sets all numbers are
scaled by the standard deviation of the response in the dataset itself.

3.1 Parameter Settings

Groves. We trained 100 bagged Groves using the Randomized Dynamic Pro-
gramming technique for all combinations of parameters N and α with 1 ≤ N ≤
15 and α ∈ {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005}. Notice that with these settings
the resulting ensemble can consist of at most 1500 trees. From these models we
selected the one that gave the best results on the validation set. The performance
of the selected Grove on the test set is reported.

8

California Elevators Kinematics Computer Stock Synthetic Synthetic
Housing Activity No Noise Noise

Bagged Groves

RMSE 0.38 0.309 0.364 0.117 0.097 0.087 0.483
StdDev 0.015 0.028 0.013 0.0093 0.029 0.0065 0.012

Boosting

RMSE 0.403 0.327 0.457 0.121 0.118 0.148 0.495
StdDev 0.014 0.035 0.012 0.01 0.05 0.0072 0.01

Bagged trees

RMSE 0.422 0.44 0.533 0.136 0.123 0.276 0.514
StdDev 0.013 0.066 0.016 0.012 0.064 0.0059 0.011

Table 1. Performance of bagged Groves (Randomized Dynamic Programming training)
compared to boosting and bagging. RMSE on the test set averaged over 10 runs.

Stochastic Gradient Boosting. The obvious main competitor to bagged
Groves is gradient boosting [5] [6], a different ensemble of trees also based on
additive models. There are two major differences between boosting and Groves.
First, boosting never discards trees, i.e., every generated tree stays in the model.
Grove iteratively retrains its trees. Second, all trees in a boosting ensemble are
always built to a fixed size, while groves of large trees are trained first using
groves of smaller trees. We believe that these differences allow Groves to better
capture the natural additive structure of the response function.

The general gradient boosting framework supports optimizing for a variety
of loss functions. We selected squared-error loss because this is the loss function
that our current version of the Groves algorithm optimizes for. However, like
gradient boosting, Groves can be modified to optimize for other loss functions.

Friedman [6] recommends boosting small trees with at most 4–10 leaf nodes
for best results. However, we discovered for one of our datasets that using larger
trees with gradient boosting did significantly better. This is not surprising since
some real datasets contain complex interactions, which cannot be accurately
modeled by small trees. For fairness we therefore also include larger boosted
trees in the comparison than Friedman suggested. More precisely, we tried all
α ∈ {1, 0.5, 0.2, 0.1, 0.05}. Figure 7 shows the typical correspondence between α
and number of leaf nodes in a tree, which was very similar across the data sets.
Preliminary results did not show any improvement for tree size beyond α = 0.05.

Stochastic gradient boosting deals with overfitting by means of two tech-
niques: regularization and subsampling. Both techniques depend on user-set pa-
rameters. Based on recommendations in the literature and on our own evaluation
we used the following values for the final evaluation: 0.1 and 0.05 for the regu-
larization coefficient and 0.4, 0.6, and 0.8 as the fraction of the subsampling set
size from the whole training set.

Boosting can also overfit if it is run for too many iterations. We tried up to
1500 iterations to make the maximum number of trees in the ensemble equal for

9

α # leaf nodes

1 2 (stump)
0.5 3
0.2 8
0.1 17
0.05 38
0.02 100
0.01 225
0.005 500

0 full tree

Fig. 7. Typical number of leaf nodes for
different values of α

100 200 300 400 500

0.48

0.5

0.52

0.54

0.56

0.58

0.6

bagging iterations

R
M

S
E

α = 0.1, n = 5
α = 0, n = 10

Fig. 8. Performance of bagged Grove for
simpler and more complex models

all methods in comparison. The actual number of iterations that performs best
was determined based on the validation set, and therefore can be lower than
1500 for the best boosted model.

In summary, to evaluate stochastic gradient boosting, we tried all combina-
tions of the values described above for the 4 parameters: size of trees, number of
iterations, regularization coefficient, and subsampling size. As for Groves, we de-
termine the best combination of values for these parameters based on a separate
validation set.

Bagging. Bagging single trees is known to provide good performance by sig-
nificantly decreasing variance of the individual tree models. However, compared
with Groves and boosting, which are both based on additive models, bagged
trees do not explicitly model the additive structure of the response function.
Increasing the number of iterations in bagging does not result in overfitting and
bagging of larger trees usually produces better models than bagging smaller
trees. Hence we omitted parameter tuning for bagging. Instead we simply report
results for a model consisting of 1500 bagged full trees.

3.2 Datasets

Synthetic Data without Noise. This is the same data set that we used as a
running example in the earlier sections. The response function is generated by
Equation 1. The performance of bagged Groves on this dataset is much better
than the performance of other methods.

Synthetic Data with Noise. This is the same synthetic dataset, only this
time Gaussian noise is added to the response function. The standard deviation
σ of the noise distribution is chosen as 1/2 of the standard deviation of the
response in the original data set. As expected, the performance of all methods
drops. Bagged Groves still perform clearly better, but the difference is smaller.

10

We have used 5 regression data sets from the collection of Lúıs Torgo [7] for
the next set of experiments.

Kinematics. The Kinematics family of datasets originates from the Delve
repository [8] and describes a simulation of robot arm movement. We used a
kin8nm version of the dataset: 8192 cases, 8 continuous attributes, high level
of non-linearity, low level of noise. Groves show 20% improvement over gradient
boosting on this dataset. It is worth noticing that boosting preferred large trees
on this dataset; trees with α = 0.05 showed clear advantage over smaller trees.
However, there was no further improvement for boosting even larger trees. We
attribute these effects to high non-linearity of the data.

Computer Activity. Another dataset from the Delve repository, describes
the state of multiuser computer systems. 8192 cases, 22 continuous attributes.
The variance of performance for all algorithms is low. Groves show small (3%)
improvement compared to boosting.

California Housing. This is a dataset from the StatLib repository [9] and it
describes housing prices in California from the 1990 Census: 20, 640 observations,
9 continuous attributes. Groves show 6% improvement compared to boosting.

Stock. This is a relatively small (960 data points) regression dataset from
the StatLib repository. It describes daily stock prices for 10 aerospace companies:
the task is to predict the first one from the other 9. Prediction quality from all
methods is very high, so we can assume that the level of noise is small. This
is another case when Groves give significant improvement (18%) over gradient
boosting.

Elevators. This data set is obtained from the task of controlling an aircraft
[10]. It seems to be noisy, because the variance of performance is high although
the data set is rather large: 16, 559 cases with 18 continuous attributes. Here we
see a 6% improvement.

3.3 Discussion

Based on the empirical results we conjecture that Bagged Groves outperform
the other algorithms most when the datasets are highly non-linear and not very
noisy. (Noise can obscure some of the non-linearity in the response function,
making the best models that can be learned from the data more linear than they
would have been for models trained on the response without noise.) This can be
explained as follows. Groves can capture additive structure yet at the same time
use large trees. Large trees capture non-linearity and complex interactions well,
and this gives Groves an advantage over gradient boosting which relies mostly
on additivity. Gradient boosting usually works best with small trees, and fails
to make effective use of large trees. At the same time most data sets, even non-
linear ones, still have significant additive structure. The ability to detect and
model this additivity gives Groves an advantage over bagging, which is effective
with large trees, but does not explicitly model additive structure.

Gradient boosting is a state of the art ensemble tree method for regres-
sion. Chipman et al [11] recently performed an extensive comparison of several

11

algorithms on 42 data sets. In their experiments gradient boosting showed per-
formance similar to or better than Random Forests and a number of other types
of models. Our algorithm shows performance consistently better than gradi-
ent boosting and for this reason we do not expect that Random Forests or other
methods that are not superior to gradient boosting would outperform our bagged
Groves.

In terms of computational cost, bagged Groves and boosting are comparable.
In both cases a large number of tree models has to be trained (more for Groves)
and there is a variety of parameter combinations that need to be examined (more
for boosting).

4 Bagging Iterations and Overfitting Resistance

In our experiments we used a fixed number of bagging iterations and did not
consider this a tuning parameter because bagging rarely overfits. In bagging the
number of iterations is not as crucial as it is for boosting: if we bag as long
as we can afford, we will get the best value that we can achieve. In that sense
the experimental results we report are conservative and Bagged Groves could
potentially be improved by additional bagging iterations.

We observed a similar trend for parameters α and N as well: more complex
models (larger trees, more trees) are at least as good as their less complex coun-
terparts, but only if they are bagged sufficiently many times. Figure 3.1 shows
how the performance on the synthetic data set with noise depends on the num-
ber of bagging iterations for two bagged Groves. The simpler one is trained with
N = 5 and α = 0.1 and the more complex one is trained with N = 10 and α = 0.
We can see that eventually they converge to the same performance and that the
simpler model only does better than the complex model when the number of
bagging iterations is small. 2

We observed similar behavior for the other datasets. This suggests that one
way to get good performance with bagged Groves might be to build the most
complex Groves (large trees, many trees) that can be afforded and bag them
many, many times until performance tops out. In this case we might not need
a validation set to select the best parameter settings. However, in practice the
most complex models can require many more iterations of bagging than simpler
models that achieve almost the same level of performance much faster. Hence
the approach that used in our experiments can be more useful in practice: select
a computationally acceptable number of bagging iterations (100 seems to work
fine, but one could also use 200 or 500 to be more confident) and search for the
best N and α for this number of bagging iterations on the validation set.

2 Note that this is only true because of the layered approach to training Groves which
trains Groves of trees of smaller size before moving on to Groves with larger trees. If
one initialized a Grove with a single large tree, performance of bagged Groves might
still decrease with increasing tree size because the ability of the Grove to learn the
additive structure of the problem would be injured.

12

5 Conclusion

We presented a new regression algorithm, bagged Groves of trees, which is an
additive ensemble of regression trees. It combines the benefits of large trees
that model complex interactions with benefits of capturing additive structure
by means of additive models. Because of this, bagged Groves perform especially
well on complex non-linear datasets where the structure of the response function
contains both additive structure (which is best modeled by additive trees) and
variable interactions (which is best modeled within a tree). We have shown that
on such datasets bagged Groves outperform state-of-the-art techniques such as
stochastic gradient boosting and bagging. Thanks to bagging, and the layered
way in which Groves are trained, bagged Groves resist overfitting—more complex
Groves tend to achieve the same or better performance as simpler Groves.

Groves are good at capturing the additive structure of the response func-
tion. A future direction of our work is to develop techniques for determining
properties inherent in the data using this algorithm. In particular, we believe we
can use Groves to learn useful information about statistical interactions between
variables in the data set.

Acknowledgements. The authors would like to thank Daniel Fink, Wes
Hochachka, Steve Kelling and Art Munson for useful discussions. This work was
supported by NSF grants 0427914 and 0612031.

References

1. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2001)

2. Breiman, L.: Bagging Predictors. Machine Learning 24 (1996) 123–140
3. Hooker, G.: Discovering ANOVA Structure in Black Box Functions. In: Proc.

ACM SIGKDD. (2004)
4. Bylander, T.: Estimating Generalization Error on Two-Class Datasets Using Out-

of-Bag Estimates. Machine Learning 48(1–3) (2002) 287–297
5. Friedman, J.: Greedy Function Approximation: a Gradient Boosting Machine.

Annals of Statistics 29 (2001) 1189 – 1232
6. Friedman, J.: Stochastic Gradient Boosting. Computational Statistics and Data

Analysis 38 (2002) 367 – 378
7. Torgo, L.: Regression DataSets.

http://www.liacc.up.pt/˜ltorgo/Regression/DataSets.html
8. Rasmussen, C.E., Neal, R.M., Hinton, G., van Camp, D., Revow, M.,

Ghahramani, Z., Kustra, R., Tibshirani, R.: Delve. University of Toronto.
http://www.cs.toronto.edu/˜delve

9. Meyer, M., Vlachos, P.: StatLib. Department of Statistics at Carnegie Mellon
University. http://lib.stat.cmu.edu

10. Camacho, R.: Inducing Models of Human Control Skills. In: European Conference
on Machine Learning (ECML’98). (1998)

11. Chipman, H., George, E., McCulloch, R.: Bayesian Ensemble Learning. In: Ad-
vances in Neural Information Processing Systems 19. (2007) 265–272

