
Towards Expressive Publish/Subscribe Systems

Alan Demers, Johannes Gehrke, Mingsheng Hong,
Mirek Riedewald, and Walker White

Cornell University, Department of Computer Science
{ademers, johannes, mshong, mirek, wmwhite}@cs.cornell.edu

Abstract. Traditional content based publish/subscribe (pub/sub) systems allow
users to express stateless subscriptions evaluated on individual events. However,
many applications such as monitoring RSS streams, stock tickers, or manage-
ment of RFID data streams require the ability to handle stateful subscriptions.
In this paper, we introduce Cayuga, a stateful pub/sub system based on non-
deterministic finite state automata (NFA). Cayuga allows users to express sub-
scriptions that span multiple events, and it supports powerful language features
such as parameterization and aggregation, which significantly extend the ex-
pressive power of standard pub/sub systems. Based on a set of formally
defined language operators, the subscription language of Cayuga provides non-
ambiguous subscription semantics as well as unique opportunities for optimiza-
tions. We experimentally demonstrate that common optimization techniques used
in NFA-based systems such as state merging have only limited effectiveness,
and we propose novel efficient indexing methods to speed up subscription pro-
cessing. In a thorough experimental evaluation we show the efficacy of our
approach.

1 Introduction

Publish/Subscribe is a popular paradigm for users to express their interests (“subscrip-
tions”) in certain kinds of events (“publications”). Traditional publish/subscribe
(pub/sub) systems such as topic-based and content-based pub/sub systems allow users
to express stateless subscriptions that are evaluated over each event that arrives at the
system; and there has been much work on efficient implementations [14]. However,
many applications require the ability to handle stateful subscriptions that involve more
than a single event, and users want to be notified with customized witness events as
soon as one of their stateful subscriptions is satisfied. Let us give two example appli-
cations that motivate the types of stateful subscriptions that a stateful pub/sub system
needs to handle.

Example 1: Stock Ticker Event Monitoring. Consider a system that permits financial
analysts to compose subscriptions over a stream of stock ticks [1]. Some sample sub-
scriptions are shown in Table 1. Subscription S1 is a traditional pub/sub subscription,
and it can be evaluated on each incoming event individually. However, an important ca-
pability of event processing systems is to detect specific sequences of events, as shown
in the next four subscriptions. To detect sequences, the system has to maintain state
about events that have previously entered the system. For example, to process Sub-
scription S2, the system has to “remember” whether an event with a stock price of IBM

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 627–644, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

628 A. Demers et al.

Table 1. Sample Subscriptions

Subscription Description

S1 Notify me when the price of IBM is above $100.

S2 Notify me when the price of IBM is above $100, and the first MSFT price

afterwards is below $25.

S3 Notify me when there is a sale of some stock at some price (say p), and the next

transaction is a sale of the same stock at a price above 1.05 · p.

S4 Notify me when the price of any stock increases monotonically for ≥ 30 minutes.

S5 Notify me when the next IBM stock is above its 52-week average.

S6 Once military.blog.com posts an article on US troop morale, send me the first post

referencing (i.e., containing a link to) this article from the blogs to which I subscribe.

S7 Send postings from all blogs to which I subscribe, in which the first posting is a

reference to a sensitive site XYZ, and each later posting is a reference to the previous.

above $100 has happened since the most recent MSFT event; only then are we inter-
ested in learning about future MSFT prices. Subscriptions S3 and S4 illustrate another
important component: We need to support parameterized subscriptions, i.e., subscrip-
tions that contain parameters that are bound at run-time to values seen in events. As an
example, in Subscription S3, we are looking for some stock that exhibits a 5% jump in
price; instead of having to register a subscription for each possible stock symbol, we
register a single subscription with a parameter that is set at run time. Subscription S4
requires support for aggregation, and Subscription S5 is an example that combines both
parameterization and aggregation.

Example 2: RSS Feed Monitoring. Our second motivating application is online RSS
Feed Message Brokering. RSS feeds have become increasingly important for online
exchange of news and opinions. With a stateful pub/sub system, users can monitor
RSS Feeds and register complex subscriptions that notify the users as soon as their
requested RSS message sequences have occured. Subscriptions S6 and S7 in Figure 1
are examples in this domain.

To reiterate: Traditional pub/sub systems scale to millions of registered subscriptions
and very high event rates, but have limited expressive power. In these systems, users
can only submit subscriptions that are predicates to be evaluated on single events. Any
operation across multiple events must be handled externally. In our proposed stateful
pub/sub system, however, subscriptions can span multiple events, involving parameter-
ization and aggregation, while maintaining scalability in the number of subscriptions
and event rate. In comparison, full-fledged Data Stream Management Systems (DSMS)
[2, 25, 11] have powerful query languages that allow them to express much more pow-
erful subscriptions than stateful pub/sub systems; however, this limits their scalability
with the number of subscriptions, and existing DSMSs only do limited query optimiza-
tion. Figure 1 illustrates these tradeoffs.

Another area very closely related to stateful pub/sub is work on event systems.
Event systems can be programmed in languages (called event algebras) that can
compose complex events from either basic or complex events arriving online. How-
ever, we have observed an unfortunate dichotomy between theoretical and systems-
oriented approaches in this area. Theoretical approaches, based on formal languages and

Towards Expressive Publish/Subscribe Systems 629

well-defined semantics, generally lack efficient, scalable implementations. Systems ap-
proaches usually lack a precise formal specification, limiting the opportunities for query
optimization and query rewrites. Indeed, previous work has shown that the lack of clean
operator semantics can lead to unexpected and undesirable behavior of complex alge-
bra expressions [15, 31]. Our approach was informed by this dichotomy, and we have
taken great care to define a language that can express very powerful subscriptions, has
a precise formal semantics, and can be implemented efficiently.

Our Contributions. In this paper, we propose Cayuga, a stateful publish/subscribe sys-
tem based on a nondeterministic finite state automata (NFA) model. We start by intro-
ducing the Cayuga event algebra, which can express all example subscriptions shown
in Table 1, and we illustrate how algebra expressions map to linear finite sate automata
with self-loops and buffers (Section 2). To the best of our knowledge, this is the first
work that combines a formal event language definition with a methodology to effi-
ciently implement the language. We then overview the implementation of our system
which leverages techniques from traditional pub/sub systems as well as novel Multi-
Query Optimization (MQO) techniques to achieve scalability (Section 3). In a thorough
experimental study, we evaluate the scalability of our system both with the number of
subscriptions and their complexity, we evaluate the efficacy of our MQO techniques,
and we show the performance of our system with real data from our two example ap-
plication domains (Section 4). We discuss related work in Section 5, and conclude in
Section 6.

In closing this introduction, we would like to emphasize two important aspects of
our approach. First, instead of adding features to a pub/sub system in an ad-hoc fash-
ion, our system is based on formal language operators and therefore provides unam-
biguous query semantics that are necessary for query optimization. Second, compared
to similar approaches that use NFAs for scalability such as YFilter [13], Cayuga sup-
ports novel powerful language features such as parameterization and aggregation. One
interesting result from our experimental study is that common optimization techniques
used in NFA-based systems, such as state merging, have only limited effectiveness for
the workloads that we consider. On the other hand, some of our novel MQO techniques
can potentially be applied to other NFA-based systems.

2 Cayuga Algebra and Automaton

2.1 Data Model

Our event algebra consists of a data model for event streams plus operators for produc-
ing new events from existing events. An event stream, denoted as S or Si, is a (possibly
infinite) set of event tuples 〈a; t0, t1〉. As in the relational model, a = (a1, . . . , an)
are data values with corresponding attributes (symbolic names). The ti’s are temporal
values representing the start (t0) and end timestamps (t1) of the event. For example,
in the stock monitoring application, assume the stream of stock sales published by the
data source has fields (name,price,vol;timestamp). An event from that stream
then could be the tuple 〈IBM, 90, 15000; 9:10, 9:10〉. The timestamps are identical, be-
cause each sale is an instantaneous event. We assume each event stream has a fixed

630 A. Demers et al.

Table 2. Algebraic Expressions

Algebraic Expressions
S1: σθ(S1), where θ = S1.name = IBM ∧ S1.price > 100
S2: σθ2(σθ(S1);θ1 S2), where θ same as in Subscription S1, θ1 = S2.name = MSFT, θ2 = S2.price < 25
S3: σθ2(S1;θ1 S2), where θ1 = S2.name = S1.name, θ2 = S2.price > 1.05 ∗ S1.price
S4: σθ3(µσθ2 ,θ1(S1, S2)), where

θ1 = S2.name = S1.name, θ2 = S2.price >= S2.price.last, θ3 = DUR >= 30min

S5: σθ2(E;θ1 S3), where E = σDUR=52 weeks

`
µαg2 ,TRUE(αg1 ◦ σθ(S1), σθ(S2))

´
,

θ = name = IBM, θ1 = S3.name = IBM, θ2 = S3.price > AVG

S6: σθ1(S1);θ2 σθ3(S2)), where

θ1 = S1.website = ‘military.blog.com′ ∧ S1.category = ‘US troop morale′,
θ2 = contains(S2.description, S1.link), θ3 = (S2.website = site1 ∨ . . . S2.website = siten)
S7: µID,θ1(σθ3∧θ2(S1), σθ3(S2)), where θ1 = contains(S2.description, S2.link.last),

θ2 = contains(S1.description, ‘XY Z′), θ3 same as in Subscription S6

schema, and events arrive in temporal order. That is, event e1 is processed before e2
iff e1.t1 ≤ e2.t1. However, a stream may contain events with non-zero duration, over-
lapping events and simultaneous events (events with identical time stamp values). Our
operator definitions depend on the timestamp values, so we do not allow users to query
or modify them directly. However, we do allow constraints on the duration of an event,
defined as t1 − t0 + 1 (we treat time as discrete, so the duration of an event is the
number of clock ticks it spans). We store starting as well as ending timestamps and
use interval-based semantics to avoid well-known problems involving concatenation of
complex events [15].

2.2 Operators

Our algebra has four unary and three binary operators. Due to space constraints, we
give here only a brief description of them here; a formal definition and more examples
can be found in our technical report [12].

The first three unary operators, the projection operator πX, the selection operator
σθ, and the renaming operator ρf are well known from relational algebra. Projection
and renaming can only affect data values; temporal values are always preserved. As
the renaming operator only affects the schema of a stream and not its contents, we will
often ignore this operator for ease of exposition. Instead, we will denote attributes of an
event using the input stream and a dot notation, making renaming implicit. For example,
the name attribute of events from stream S1 will be referred to as S1.name. A selec-
tion formula is any boolean combination of atomic predicates of the form τ1 relop τ2,
where the τi are arithmetic combinations of attributes and constants, and relop can
be one of =,≤, <,≥, >, or string matching. We also allow predicates of the form
DUR relop c where the special attribute DUR denotes event duration and c is a con-
stant. The unary operators above enable filtering of single events and attributes, equiv-
alent to a classical pub/sub system. Subscription S1 is an example of such a stateless
subscription.

The added expressive power of our algebra lies in the binary operators, which sup-
port subscriptions over multiple events. All of these operators are motivated by a cor-
responding operator in regular expressions. The first binary operator is the standard

Towards Expressive Publish/Subscribe Systems 631

union operator ∪, where S1 ∪ S2 is defined as { e | e ∈ S1 or e ∈ S2 }. Our second
operator is the conditional sequence operator S1;θ S2. For streams S1 and S2, and
selection formula θ (a predicate), S1;θ S2 computes sequences of two consecutive and
non-overlapping events, filtering out those events from S2 that do not satisfy θ. Adding
this feature is essential for parameterization, because θ can refer to attributes of both S1
and S2. This enables us to express “group-by” operations, e.g., to group stock quotes
by name via S1;θ S2, with θ being S1.name = S2.name. S1;θ S2 essentially works as
a join, combining each event in S1 with the event immediately after it in S2. However,
θ works as a filter, removing uninteresting intervening events. Subscriptions S2 and S3
are examples of such subscriptions.

Our third binary operator is the iteration operator µF,θ(S1, S2), motivated by the
Kleene-+ operator. Informally, we can think of µF,θ(S1, S2) as a repeated application of
conditional sequencing: (S1;θ S2)∪(S1;θ S2;θ S2)∪· · · . Each clause separated by the
∪ operator corresponds to an iteration of processing an event from S2 which satisfies
θ. The additional parameter F, a composition of selection, projection and renaming
operators, enables us to modify the result of each iteration. Thus µ acts as a fixed point
operator, applying the operator;θ on each incoming event repeatedly until it produces
an empty result. To avoid unbounded storage, at each interation, it will only remember
the attribute values from stream S1 and the values from the most recent iteration of S2.
For any attribute ATTi in S2, we refer to the value from the most recent iteration via
ATTi.last. Initially, this value is equivalent to the corresponding attribute in S1, but it
will be overwritten by each iteration.

At first it might seem surprising that our algebra needs µF,θ(S1, S2) to express the
equivalent of something as simple as (S2)+ in regular languages. The reason, like for
the;θ operator, is that we want to support parameterization efficiently. In fact, θ serves
the same purpose as in;θ: during each iteration it filters irrelevant events from S2 when
the next event from S2 is selected. In Subscription S5, it was used to make sure that no
quotes for other companies would be selected for a sequence of IBM prices, and vice
versa. Similarly, F removes irrelevant events during each iteration, like non-increasing
sequences in the example. Another interesting feature is that µ is a binary operator,
while Kleene-+ is unary. One reason, as can be seen in the definition of µ, is that we
need a way to initialize our attributes ATTi.last. The other reason is that, by adding
S1 to µ, both F and θ can refer to S1’s attributes. This enables us to support powerful
parameterized subscriptions such as S4.

Aggregates fit naturally into our algebra, where aggregation occurs over a se-
quence of events. Our aggregate operator is αg , where g is a function used to in-
troduce a new attribute to the output. Together with µ, we get a natural aggregate
of the form αg3

(
µαg2◦F,θ(αg1(E1), E2)

)
. In this expression, αg1 functions as an ini-

tializer, αg2 is an accumulator, and αg3 is a finalizer. For example, suppose we want
the average of IBM stock over the past 52 weeks, as referenced in Subscription S5.
If we let S1, S2, S3 all refer to our stream of stock quotes, S, this is expressed as
E = σDUR=52 weeks

(
µαg2 ,TRUE(αg1 ◦ σθ(S1), σθ(S2))

)
, where θ is name = IBM,

g1 is defined as AVG �→ price, COUNT �→ 1, and g2 is defined as AVG �→
COUNT.last×AVG.last+price

COUNT.last+1 , COUNT �→ COUNT.last+1. Notice that we use the last
feature of µ to compute our aggregate recursively. The average is now a value attached

632 A. Demers et al.

to an attribute and can be used by the remaining part of Subscription S5. Therefore
Subscription S5 can be expressed as σθ2(E;θ1 S3) where E is defined above, θ1 is
S3.name = IBM, and θ2 is S3.price > AVG.

For completeness, Table 2 also contains the two RSS subscriptions listed in Table 1.
Here we assume all the blogs the user subscribes to consist of site1, · · · , siten, and
contains(T, P) is the substring match operator that tries to find substring pattern P in
text T ; ID is the identity function that has no effect on the input.

2.3 Automaton Description

Given the algebra’s similarity to regular expressions, finite automata would appear to
be a natural implementation choice. Similar to the classic NFA model, for an incoming
event, an automaton instance in one state can explore all the out-going edges, and non-
deterministically traverse any number of them. If it cannot traverse any edge, however,
this instance will be dropped.

We extend standard finite automata [19] in two ways. First, attributes of events can
have infinite domains, e.g., text attributes, and therefore the input alphabet of our au-
tomaton, which is the set of all possible events, can be infinite as well. To handle this
case, we associate each automaton edge with a predicate, and for an incoming event,
this edge is traversed iff the predicate is satisfied by this event. Second, to be able to
generate customized notification and to handle parameterized predicates over infinite
domains, we need to store in each automaton instance the attributes and values of those
events that have contributed to the state transition of this instance. These attributes and
values are called bindings. To avoid overwriting the bindings of earlier events with that
of latter events, we also need an attribute renaming function for each edge so that when
an event makes an automaton instance traverse that edge, the bindings in that event are
properly renamed before being stored in the instance.

We have developed a mechanical way to translate algebra expressions into automata.
Details of this mechanism as well as the proof of correctness can be found in our technical
report [12]. Intuitively, for a given algebra expression, we first construct a parse tree,
and then translate each tree node corresponding to a binary operator into an automaton
node. In our mechanism any left-deep parse tree can be translated into a single automaton,
referred to as a left-deep automaton. In the following sections, we focus only on left-deep
expressions and automata, and we leave general algebra expressions to future work.

We use an example to illustrate a left-deep automaton. Let subscription AutQ
be “Notify me when for any stock s, there is a monotonic decrease in price for
at least 10 minutes, which starts at a large trade (vol > 10, 000). The imme-
diately next quote on the same stock after this monotonic sequence should have
a price 5% above the previously seen (bottom) price.” Its algebra expression is
σθ5(σθ4(µσθ3 ,θ2(S1, S2));θ2 S3). The Si are shorthand notation for appropriately re-
named and projected versions of S: S1 ≡ ρf1 ◦ πname,price ◦ σθ1(S), S2 ≡ ρf2 ◦
πname,price(S), S3 ≡ ρf3 ◦ πname,price(S). The corresponding predicates and renam-
ing functions are: θ1 ≡ vol > 10, 000, θ2 ≡ company = company.last, θ3 ≡
θ2 ∧ minP < minP.last, θ4 ≡ θ3 ∧ DUR ≥ 10min, θ5 ≡ θ2 ∧ price >
1.05minP, f1 ≡ (name,price) �→ (company,maxP), f2 ≡ (name,price) �→
(company,minP), f3 ≡ (name,price) �→ (company,finalP). The explicit use

Towards Expressive Publish/Subscribe Systems 633

of renaming is necessary for this example to make the schemas of the intermediate re-
sults at the different automaton nodes clear. The corresponding automaton is shown in
Figure 2.

Number of
concurrent subscriptions

few many

Complexity
low (trivial) pub/sub

of subscriptions high DSMS stateful pub/sub

Fig. 1. Tradeoffs between pub/sub and
Data Stream Management Systems

Fig. 2. Automaton for query AutQ

As opposed to NFA’s with arbitrary structures, certain regularity is enforced by the
translation from Cayuga algebra expressions. Now we describe some important proper-
ties of the structure of a left-deep automaton. Note that our MQO techniques described
in Section 3 have a crucial dependence on these properties.

Each left-deep automaton is acyclic, except for self-loops. There are three types of
edges, described as follows. Forward edges are those edges whose destination node is
different from the source node, e.g., the edge from A to B in the example. Each node
has at least one forward edge, except for the end node. Also on each node other than the
start node, there will be two self-loop edges called filter and rebind edge, respectively.
We draw a filter edge on top of the node, a rebind edge below the node (see node A in
Fig. 2). The predicate on a filter edge (or filter predicate) corresponds to the negation of
the filter formula θ in;θ or µF,θ. Nodes A and B in Figure 2 are two examples of nodes
containing filter edges that are translated from operators µF,θ and;θ respectively. Also,
by construction θ will appear in the forward and rebind edges of the same node as a
conjunction to the remaining predicate there. Predicate θ4 on the forward edge between
node A and B in Figure 2 illustrates this. The reason for this automaton construction
from algebra operators is that on the algebra side, an event is filtered when θ is not
satisfied (or ¬θ is satisfied), and on the automaton side, this happens if it traverses the
filter edge (and therefore cannot traverse any forward/rebind edge). Filter edges are
unique among the three types of edges in that the traversal of a filter edge does not
modify the bindings of the instance. If a node is not translated from;θ or µF,θ, the filter
predicate will be FALSE, and we omit drawing the edge. A rebind predicate corresponds
to the selection formula in F of µF,θ. Similarly, if a node is not translated from µF,θ, the
rebind predicate is FALSE, and we omit drawing the edge. The construction of rebind
edge is illustrated in Figure 2 by node A, translated from µσθ3 ,θ2 . Node B is shown
without rebind edge since it is translated from operator;θ2 .

3 Implementation and MQO Techniques

Our algebra and automaton model are designed to be amenable to multi-query opti-
mization. An obvious optimization is to merge equivalent states that occur in several

634 A. Demers et al.

automata. This is the approach taken by YFilter; details can be found in the paper by
Diao et al. [13]. The result of the merging process is a DAG with a single start node.
In the following we focus on implementation challenges that are unique to Cayuga. For
this discussion we need some additional notation.

3.1 Notation

A static predicate is a conjunction of atomic predicates that compare attribute values
of the incoming event to constants, e.g., name = IBM ∧ price > 10. A dynamic
predicate (or parameterized predicate) is a conjunction of atomic predicates of the form
ATT1 relop ATT2, which compares an attribute value of the incoming event with an
attribute of an earlier event. An example is θ2 in Subscription S3.

For ease of exposition, in the following discussion we assume that each predicate is a
conjunction of atomic predicates. Our techniques can be easily generalized to arbitrary
boolean combinations of atomic predicates by requiring that predicates be supplied in
disjunctive normal form (DNF), a disjunction of conjunctions of atomic predicates.
Each conjunction P can be rewritten as P =

∧
i ATTi relop CONSTi ∧

∧
j ATTj relop

ATTkj
. We refer to

∧
i ATTi relop CONSTi and

∧
j ATTj relop ATTkj

as the static and
dynamic parts of P , respectively. If either part is empty, it is equivalent to TRUE.

A node of an automaton is active if there are automaton instances at the node. For
each incoming event, an automaton instance is unaffected if that event makes the in-
stance traverse its filter edge; otherwise it is affected. For example, in Subscription S2
the filter condition θ1 ensures that after matching the high-price IBM quote, the cor-
responding instance of the automaton will be affected only by MSFT quotes and can
safely ignore quotes for other companies.

3.2 Design Challenges

Effective multi-query optimization for Cayuga’s stateful parameterized subscriptions
must meet three crucial challenges. Evaluating Static Predicates. Evaluation of
Cayuga’s subscriptions is driven by edge predicates being satisfied (or not) for an in-
coming event. The number of active automaton instances and the number of edges that
each instance could potentially traverse can be very large. Hence, evaluating all these
edge predicates for each incoming event is not feasible. So we need to index the pred-
icates, which is the classic pub/sub matching problem. Evaluating Dynamic Pred-
icates. Besides the static predicates handled by traditional pub/sub systems, Cayuga
also needs to deal with dynamic predicates. This problem has not been studied in tra-
ditional pub/sub systems. Identifying Affected Instances. Although the total number
of automaton instances can be very large at any time, the number of instances affected
by an event is typically orders of magnitude lower. In the stock monitoring application,
for example, a subscription that matches a sequence of IBM prices can ignore events
for any other company. So we need an index that enables us to identify the affected
instances quickly.

Observe that an instance is affected iff it cannot traverse the filter edge of its state
(i.e., its filter predicate is satisfied). Therefore the problem of identifying affected in-
stances is the same as the problem of efficiently evaluating predicates.

Towards Expressive Publish/Subscribe Systems 635

While we can use standard data structures from the pub/sub literature for indexing
static predicates, it is not obvious how to index dynamic predicates. We propose two
general approaches: (1) dynamic predicates are handled like static predicates once the
parameter values are known, and (2) dynamic predicates are not indexed. The first ap-
proach is based on the observation that for an instance in automaton state X , all the
parameters on the outgoing edges of state X are already bound by that instance. For
example, in Subscription S3, assume the automaton advances to the first state on an
incoming stock quote for IBM. Now the name parameter (S1.name in θ1) is bound to
IBM, and hence θ1 will check if the name attribute of later stock quotes is equal to
IBM. At this time the corresponding predicate S2.name = IBM can be inserted into
a (pub/sub) index. There is an obvious tradeoff with this approach: if we index the dy-
namic predicates, index maintenance becomes much more expensive compared to not
indexing dynamic predicates. On the other hand, if we index only the static predicates,
the index will be less selective and require evaluating the dynamic parts of those predi-
cates whose static part is satisfied.

In the following sections, we describe our solutions to handling dynamic predicates
for the case of indexing filter predicates and FR predicates (predicates on forward or
rebind edges) respectively.

3.3 AN-Index and AI-Index

The goal of these indexes is to efficiently identify the instances that are affected by an
incoming event. To do so, we index each instance by the filter predicate of its current
state. More precisely, the index takes the filter predicate as the key and the correspond-
ing instance as the value. We implement this index with a two-level scheme. The first
level index only works on the static part of filter predicates. We refer to it as the Active
Node Index (AN-Index), since it essentially returns all the automaton instances of those
active nodes on which the static parts of filter predicates are satisfied. Then, for each
such node, the second level index, called the Active Instance Index (AI-Index), is used
to further prune the candidate set of affected instances by indexing the dynamic part of
the filter predicates.

One reason for this separation is that it enables us to leverage existing data struc-
tures. For the fairly static AN-index, we can use a pub/sub index like Le Subscribe [14].
However, to keep index maintenance costs in the second level low, the AI-indexes
are simple hash tables. Hence only equality predicates are indexed. This nevertheless
proves to be a very useful feature for supporting parameterized atomic predicates like
name = Si.name, which simulates a grouping by name and essentially has the same
effect as the frequently-used “partition-by” window feature in CQL [25]. The two-level
approach also simplifies data structure optimizations. If the system determines that for
one of the AI-indexes the maintenance overhead exceeds the savings from improved
selectivity, this AI-index can be disabled without affecting the use of the first level
index.

3.4 FR-Index

Knowing the instances affected by an incoming event is not sufficient. We also have
to determine, which forward and rebind edges these instances will traverse. Traversing

636 A. Demers et al.

an FR edge modifies instance bindings, affecting the instance content; if no edge can
be traversed, the instance is affected by being deleted. A second pub/sub-style index,
called the FR-Index, is used in Cayuga to index the static part of the FR predicates. Since
all FR predicates are conjunctions, after using the FR-Index, we still need to eliminate
false hits by post-processing those instances whose static predicates are satisfied by
evaluating their dynamic predicates.

Here we do not index the dynamic part of each FR predicate, because for each in-
coming event, only the affected instances will need to have their FR predicates further
evaluated. This leads to a much lower benefit-cost ratio compared to the problem of
finding affected instances.

Figure 3 illustrates the relationship between the different indices with respect to how
the search space of instances is pruned. The AN-Index and AI-Index identify affected
instances efficiently, while the FR-Index evaluates the static part of FR predicates of
each instance so that a decision of whether to advance or drop the instance can be made
quickly.

3.5 System Architecture and Data Flow

The overall system architecture of Cayuga is shown in Figure 4. Its core component is
the State Machine Manager, which manages the merged query DAG and the automaton
instances at the nodes. It also maintains the AN-Index and AI-Index. Outside the State
Machine Manager, there is the FR-Index.

Cayuga needs to handle two types of updates—insertion/deletion of subscriptions
and arrival of input events. A new query is inserted by first merging it into the query
DAG in the State Machine Manager. Then, for each forward and each rebind edge, an
entry is added into the FR-index for the static part of the edge predicate. When the query
is deleted, the insertion process is simply reversed.

The diagram in Figure 5 summarizes the Cayuga event processing steps. On arrival
of an event, the following happens. First, the FR-index generates the set of IDs of the
satisfied static predicates on FR edges, and the AN-index returns the set of AI-Index
instances. Then, for each AI-Index instance in the set, we do the following. We first
obtain from this AI-index the set of relevant instances for which the dynamic equality
predicate of the filter condition is satisfied. For each of these instances the remaining dy-
namic atomic predicates of the filter edge are evaluated. This gives us the set of affected

Fig. 3. InstanceSearchSpace

subscriptions

event stream
FR-Index

AI-Index

AI-Index

AI-Index

A
N

-I
nd

ex

θ1

θ2

notification
stream

st
at

ic

co
nj

un
ct

s θ1

θ2

satisfied

conjuncts

Fig. 4. Cayuga architecture

Towards Expressive Publish/Subscribe Systems 637

Fig. 5. Event Processing Diagram

instances. Then we determine for each affected instance the candidates of satisfied FR
edges by intersecting the output of FR-index with the set of IDs of the static FR predi-
cates associated with the current node, followed by an evaluation of the dynamic parts
of FR predicates whose static parts are satisfied.

Simultaneous event arrivals pose no serious problems for our implementation. We
compute new instances for each arriving event as discussed above, but do not install
them into the NFA. When we see an incoming event with end timestamp strictly greater
than all previous events, we install all new instances atomically.

We use a garbage collection mechanism to manage the memory resource consumed
by storing bindings in events and automaton instances. Details are omitted due to space
constraint.

4 Performance Evaluation

We built an initial prototype of Cayuga in C++. All experiments were run on a 3 GHz
Pentium 4 PC with 1 GB of RAM and 512 KB cache. The operating system is Red
Hat Linux 9. We loaded the input stream into memory before starting the experiment
to make sure that the input tuples are delivered as fast as our system can process them.
We measured the total runtime for matching all incoming events with all subscriptions
in the system. For each experiment we perform several runs. The standard deviation in
all experimental runs was well below 1%; we therefore only report averages and omit
error bars from the graphs.

4.1 Technical Benchmark

To test the overall efficiency of Cayuga and measure the evaluation cost of the different
operators of our algebra, we designed a synthetic technical benchmark motivated by the
stock application, but more complex to provide flexibility in subjecting our system to a
stress test.

Event and Subscription Generation. We use an event stream with eight data at-
tributes: four discrete attributes (e.g., company name) and four continuous attributes
(e.g., stock price). The parameters for generating the stream and the associated sub-
scriptions are shown in Table 3.

We generated subscriptions according to five different templates: LinearStat,
LinearDyn, Filter, NonDeterministic, and NonDeterministicAgg. All
subscriptions are over a single input stream S. We use Si to refer to an appropriately
renamed occurrence of S in the algebraic expression.

638 A. Demers et al.

Table 3. Parameters (default values)

Variable Value Variable Value

Number of events 100,000 Number of attributes per event 8
Number of discrete attributes 4 Number of continuous attributes 4
Number of subscriptions 200,000 Domain size of discrete attribute 100
Number of atomic predicates 2 + 2 Number of distinct ranges that can be 25
(discrete + continuous) selected for inequality predicates
Selectivity of atomic inequality predicate 0.7 Number of steps per sequence query 3
Zipf parameter, first step (zipf1) 1 Zipf parameter, second step (zipf2) 1
Zipf parameter, third step (zipf3) 0.8 Duration constant (t) 20

LinearStat subscriptions define simple sequential patterns of three consecutive
events, expressed as σθ3(σθ2(σθ1(S1);S2);S3) in our algebra. Essentially, this query
looks at any three consecutive events in the stream, and outputs the concatenated re-
sult if all of the three selections are satisfied. If such a template were applied to our
stock stream example, then our template might generate the following subscription
Q: “Notify me when there are three consecutive stock quotes representing IBM be-
low $10, followed by IBM above $15, and finally IBM below $15.” The θi are con-
juncts of four static atomic predicates: two equality predicates on two of the discrete
attributes, and two inequality predicates on two of the continuous attributes. One of
the discrete attributes, ATT, is designated as the primary attribute of the query. This
attribute is guaranteed to appear in all three of the θi, and to select exactly the same
value for each formula. The name attribute in Subscription Q is an example of such
an attribute, as it is assigned to IBM in each case. As all of the formula select the
same value, we refer to the predicate ATT = CONST as the primary predicate of
the query.

Attributes and their values are selected independently, using zipf1 to select attributes
and zipfi to select the value for θi. This setup is motivated by practical scenarios where
user preferences typically follow a skewed (often Zipf) distribution. By adjusting the
Zipf parameter, we can control the similarity of the different subscriptions.

To test the overhead of evaluating parameterized predicates in Cayuga, we designed
the LinearDyn based on LinearStat. The difference between it and Linear-
Stat is that θ2 and θ3 now have an additional parameterized atomic predicate. An
example of such a predicate from our stock stream would be the requirement that the
stock price from the second quote is 1% above the price of the original quote.

The overhead of evaluating filter predicates is measured with the Filter template
σθ3(σθ2(σθ1(S1);θ4 S2);θ5 S3). In this template, θ1, θ2, θ3 are all selected in the same
way as for LinearStat. On the other hand, θ4 is a filter formula of the form DUR ≤
t ∧ S2.ATT = CONST, where the default value of t is shown in Table 3 and S2.ATT =
CONST is the primary predicate of the query in LinearStat. θ4 relaxes the selectivity
of the original LinearStat query by allowing intermediate non-matching events to
be filtered out. The second filter formula θ5 is similar to θ4; we merely replace S2.ATT

with S3.ATT. To illustrate this idea with our stock stream example, suppose we took
Subscription Q and made θ4 the filter predicate DUR ≤ 10min ∧ S2.name = IBM. In

Towards Expressive Publish/Subscribe Systems 639

this case, stock quotes of other companies that arrive between the first two IBM quotes
would not lead to a failure of the pattern, as long as consecutive IBM quotes arrive
within 10 minutes of each other.

The effect of non-determinism in our automata is measured by the NonDeter-
ministic template σθ3 ◦ µID,θ5(σθ2 ◦ µID,θ4(σθ1(S1), S2), S3). This query is much
more powerful than the previous queries. An analogy based on Subscription Q would
be a query that not only searches for patterns of consecutive IBM stock quotes, but one
that finds any n-tuple of IBM stock quotes (n ≥ 3) that satisfies the duration constraints
and selection criteria θ4 and θ5, ignoring all stock quotes in between. Hence the output
of this query will be a superset of the Filter query with exactly the same formulas θi.

Finally, template NonDeterministicAgg implements aggregation. It extends
NonDeterministic by computing the sum of the values of the continuous
attributes, for the n events that satisfy the query pattern.

In processing these subscriptions, events were generated by uniformly selecting val-
ues for each of the eight attributes of the stream schema. We also examined skewed
event distributions, but observed the same trends.

Experimental Results. Figure 6 illustrates the results of various throughput experi-
ments. Figure 6(a) shows how the system throughput changes with the number of sub-
scriptions. Even for 400K concurrently active subscriptions, throughput is well above
1000 events per second. As expected, the more complex the query workload, the lower
the throughput, except for LinearStat and LinearDyn, which are almost identical
because the cost of checking parameterized predicates is negligible compared to the
other matching costs and the cost of maintaining the index structures.

Cayuga’s high throughput is achieved for a challenging workload. Each event on
average matches about 100 static predicates in the FR index. Furthermore, at any time,
an average of 6000 to 16,000 nodes are active in the State Machine Manager, indicating
that events satisfied a high percentage of the edge predicates. The high throughput was
achieved because the index structures ensured that only about 40 to 120 of these active
nodes had to be accessed per incoming event.

Note also that, despite the skewed query distribution, the merged query DAG is very
large. For instance, before merging states the DAG for 100K subscriptions would have
300K nodes and edges. Our merged DAG still has about 215K nodes: 48K at level 1,
71K at level 2, and 96K at level 3.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100000 200000 300000 400000

T
hr

ou
gh

pu
t (

ev
en

ts
 /

se
co

nd
)

Number of Subscriptions

LinearStat
LinearDyn

Filter
NonDeterministic

NonDeterministicAgg

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.8 0.9 1 1.1 1.2 1.3 1.4

T
hr

ou
gh

pu
t (

ev
en

ts
 /

se
co

nd
)

Zipfian Parameter Value

LinearStat
LinearDyn

Filter
NonDeterministic

NonDeterministicAgg
 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

T
hr

ou
gh

pu
t (

ev
en

ts
 /

se
co

nd
)

Selectivity of Atomic Inequality Predicate

LinearStat
LinearDyn

Filter
NonDeterministic

NonDeterministicAgg

(a) Throughput vs. number of
subscriptions

(b) Throughput vs. Zipf skew (c) Throughput vs. inequality
selectivity

Fig. 6. Throughput Measurements

640 A. Demers et al.

In Figure 6(b), we compare the effect of parameter zipf1 on system performance.
Less skew makes the subscriptions less similar, hence reduces the possibilities for state
merging. This can be observed in the graph. Most of the performance difference is
caused by the number of level 1 nodes in the query DAG, because that is where most
activity takes place. For Zipf parameter 0.8, there are 101K nodes, while for Zipf param-
eter 1.4, there are 36K nodes. The overall number of matched subscriptions is virtually
unaffected by the Zipf parameter, because there is no correlation between event values
and query constants. This shows that state merging is effective when subscriptions fol-
low a very skew distribution. However, by looking at the trend of curves in Figure 6(b),
state merging becomes less important when the query distribution is less skew (e.g.
zipfian value no greater than 1).

Finally, we examined the effect of edge predicate selectivity on the performance.
Figure 6(c) shows how the throughput decreases when the inequality predicates on the
continuous attributes select more values. Notice that the curve’s slope is inverse quadratic,
which is to be expected, as we are varying the selectivity of two predicates simultaneously.

Multi-query Optimization. In order to see the benefits of our MQO techniques, we
run our system with different optimizations being turned on/off against the technical
benchmark. Due to limited space, we report only the result on Filterworkload. Other
results are similar.

Figure 7 shows the performance of Cayuga compared to four other system modes ex-
plained in Table 4. “Instance Index” corresponds to AN-Index + AI-Index. To keep the
runtime of the naive system manageable, we reduced the number of concurrently active

 1

 10

 100

 1000

 10000

 100000

 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t (

ev
en

ts
 /

se
co

nd
)

Number of Subscriptions

Filter, Cayuga
Filter, No State Merging

Filter, No FR-Index
Filter, No Instance Index

Filter, No MQO

Fig. 7. Effect of multi-query optimization

 1

 10

 100

 1000

 10000

 100000

 10000 15000 20000 25000 30000 35000 40000

T
hr

ou
gh

pu
t (

ev
en

ts
 /

se
co

nd
)

Number of Subscriptions

Stateless
Concatenation

Parameterization
Iteration

Fig. 8. RSS Subscription

Table 4. Meaning of the curves

Mode Name StateMerge FR-Index Instance Index

Cayuga on on on
No State Merging off on on
No FR-Index on off on
No Instance Index on on off
No MQO off off off

Towards Expressive Publish/Subscribe Systems 641

subscriptions to 10K-40K, compared to 100K-400K in other experiments. Note that the
y-axis is a log scale; hence with multi-query optimization the system is faster by a few
orders of magnitude compared to that of a system without any of our MQO techniques.

It is clear from the graph that most of the performance gain comes from the indexing
of FR predicates and instances, and not from merging automata states. This is true
especially when the query workload is generated with a medium zipfian value, such as
the default value 1.0 in our setup.

4.2 Experiments with Real Data

Full-fledged DSMSs are expressive enough to support extended pub/sub subscriptions,
although the have only limited support for MQO and the query language based on
SQL is not suitable for online event detection, as will be elaborated in Section 5. We
used real stock data to compare Cayuga with the Stanford STREAM system, a general
stream processing system with a relatively mature implementation. The result confirms
our expectation that Cayuga is more suitable to extended pub/sub applications. Due to
space constraints, we refer to the interested readers to our technical report for a full
description of this experiment [12].

Subscriptions on RSS Feeds. We obtained RSS V2.0 feeds from 415 websites. Since
our current prototype cannot handle string comparison, we preprocessed the feeds by
converting each RSS feed item into a Cayuga event by hashing the string values of the
RSS fields to integers. Some RSS fields such as <title> and <link> occur in each item,
while others such as <author> are optional. To be able to pose interesting subscriptions,
we augment the event schema with three additional attributes: website, channel, and
popularity. The information of the first two attributes can be obtained directly from
the feeds, while that of the last attribute is obtained through an external source that
maintains the hit counts of these feeds. We sort the feed items by their publication
date (<pubDate> field) and form an event stream of 26,623 events. The number of
attribute/value pairs in each event varies from 6 to 11.

We composed four query templates shown in Table 5. To generate 10K to 40K sub-
scriptions for each template, we randomly pick integer values to instantiate W and X .
The domain sizes of W and X are respectively 415 and 100. The duration constraint of
each query is fixed to be no more than 100 events.

The result is shown in Figure 8. The trade-off between query expressiveness and sys-
tem throughput is well exhibited. However, even when processing 40K subscriptions of
Iteration template, where thousands of witnesses are found and output, the system
can still maintain a throughput of more than 100 events per second.

Table 5. Template Name and Description

Stateless: return all articles from website W with popularity > X .
Concatenation: return a series of 3 articles from website W with popularity > X .
Parameterization: return a series of 3 articles from website W on the same channel

with increasing popularity.
Iteration: return a series of N articles from website W on the same channel

with increasing popularity. N unbounded.

642 A. Demers et al.

5 Related Work

There has been much interest in event processing systems with a wide variety of ex-
pressiveness of the subscriptio language. At one end of the spectrum lie pub/sub sys-
tems [4, 30, 14]. These systems sacrifice expressiveness to achieve high performance.
Work on large-scale filtering of streaming XML documents handles query languages
that are fragments of XPath, which is more expressive than pub/sub [13, 10, 18, 17].
However, XML filtering systems do not address parameterization, and they cannot han-
dle subscriptions across multiple XML documents. Automata are also a popular choice
for many systems in this category [13, 18]. Our FR-Index can be potentially useful to
YFilter, given that currently YFilter will have to sequentially evaluate all the structure
predicates (usually equality comparison on string tags) on out-going edges for each
active node to make non-deterministic state transitions [13].

Somewhat higher in the expressiveness spectrum is work from the Active Database
community [29] on languages for specifying more complex event-condition-action
rules. The composite event definition languages of SNOOP [9, 3] and ODE [16] are
important representatives of this class. Both systems describe composite events in a
formalism related to regular expressions, allowing events to be recognized using a
nondeterministic finite automaton model. The automaton construction of [16] supports
a limited form of parameterized composite events defined by equality constraints
between attributes of primitive events. However, the semantics of some of the more
expressive event languages is not well-defined [15, 31], and it is not clear how the dif-
ferent languages compare to each other in terms of expressiveness. In addition, the
performance of event processing systems with very expressive query languages has
not been explored in depth, especially in terms of scalability with the number of
subscriptions. Our work can be viewed as extending this style of system with full
support for parameterized composite events and support for aggregate subscriptions, fo-
cusing on multi-query optimization using a combination of state merging and indexing
techniques.

Still higher in the spectrum, several groups are building systems with very expressive
query languages [8, 25, 11, 2]. Sistla and Wolfson [27] describe an event definition and
aggregation language based on Past Temporal Logic. The TREPLE language [24] is a
Datalog-based system with a precise formal specification; it extends the parameterized
composite event specification language of EPL [23] with a powerful aggregation mech-
anism that is capable of explicit recursion. Perhaps the most powerful formal approach
is STREAM’s CQL query language [25], which extends SQL with support for window
queries. Like SQL itself, CQL is declarative and admits of a formal specification [6];
and there are some initial results characterizing a sub-class of queries that can be com-
puted with bounded memory [28, 5]. However, as we pointed out in the introduction,
it is not clear whether SQL based languages with set semantics are suitable for real-
time event detection and composition. Similar to SQL, the data model underlying these
stream query languages is unordered, and so in order to pin-point the i-th tuple (in terms
of temporal order) within a set of N tuples returned by a window operator, an N -way
self-join with temporal constraints on these N tuples is required. A similarly powerful
approach is represented by Aurora and Borealis [8, 2]. These two systems, however,
use a procedural boxes-and-arrows paradigm which is much less amenable to formal

Towards Expressive Publish/Subscribe Systems 643

specification in our style. Without formal semantics, it is hard to prove the correctness
of query formulations, and opportunities for query rewrite/optimization in such systems
are limited since many operator boxes are treated as black boxes.

There has also been some work in extending the expressiveness of pub/sub sys-
tems [22, 21]. However, [22] focuses on a distributed setting, and the degree of ex-
pressive power achieved by its query language is not as high as our algebra (e.g. no
parameterization), and its implementation does not have MQO techniques other than
state merging. There is no query language defined in [21], and the notion of a “state-
ful” subscription there is based on ”state transition”; that is, when a regular (stateless)
pub/sub subscription starts to be satisfied, or ceases to be satisfied.

Related to our implementation, Sellis [26] is one of the first to address general multi-
query optimization in databases. Traditionally this is performed by sharing operators
and query results [7, 8, 11, 20]. Our multi-query optimization is fundamentally different
and aggressively exploits the relationship of our event algebra to automata.

6 Conclusions and Future Work

We presented Cayuga, a novel solution for extended pub/sub applications. Cayuga ex-
tends previous work on event processing by adding built-in support for parameteri-
zation, aggregatation, and it supports simultaneous events and events with non-trivial
duration. We plan to extend this work by developing a complete optimization frame-
work, including query rewrite rules and more effective MQO strategies. It would also
be interesting to investigate how to adapt Cayuga to a distributed setting.

Acknowledgments. This work was supported in part by the DARPA SRS Program, by
the KDD Program, and by NSF Grants IIS-0121175, IIS-0133481, and IIS-0330201.
Any opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the sponsors.

References

1. Traderbot financial search engine. http://www.traderbot.com/.
2. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lind-

ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik. The design of
the borealis stream processing engine. In Proc. CIDR, pages 277–289, 2005.

3. R. Adaikkalavan and S. Chakravarthy. Snoopib: Interval-based event specification and de-
tection for active databases. In Proc. ADBIS, pages 190–204, 2003.

4. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events
in a content-based subscription system. In Proc. PODC, pages 53–61, 1999.

5. A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom. Characterizing memory require-
ments for queries over continuous data streams. In Proc. PODS, pages 221–232, 2002.

6. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic founda-
tions and query execution. Technical report, Stanford University, 2003.

7. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In Proc. PODS, pages 1–16, 2002.

8. D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, and S. Zdonik. Monitoring streams — a new class of data management applica-
tions. In Proc. VLDB, 2002.

644 A. Demers et al.

9. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active
databases: Semantics, contexts and detection. In Proc. VLDB, pages 606–617, 1994.

10. C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of XML docu-
ments with XPath expressions. In Proc. ICDE, pages 235–244, 2002.

11. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Con-
tinuous dataflow processing for an uncertain world. In Proc. CIDR, 2003.

12. A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. A general algebra and
implementation for monitoring event streams. Technical report, Cornell University, 2005.
http://techreports.library.cornell.edu.

13. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M. Fischer. Path sharing and predicate
evaluation for high-performance XML filtering. ACM TODS, 28(4):467–516, 2003.

14. F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering algo-
rithms and implementation for very fast publish/subscribe. In Proc. SIGMOD, pages 115–
126, 2001.

15. A. Galton and J. C. Augusto. Two approaches to event definition. In Proc. DEXA, pages
547–556, 2002.

16. N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model and implementation. In Proc. VLDB, pages 327–338, 1992.

17. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with determin-
istic automata. In Proc. ICDT, pages 173–189, 2003.

18. A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In Proc.
SIGMOD, pages 419–430, 2003.

19. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 2nd edition, 2000.

20. S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein, and G. Jacobson. The case for precision
sharing. In Proc. VLDB, pages 972–986, 2004.

21. H. Leung and H. Jacobsen. Efficient matching for state-persistent publish/subscribe systems.
In CASCON ’03: Proceedings of the 2003 conference of the Centre for Advanced Studies on
Collaborative research, pages 182–196. IBM Press, 2003.

22. G. Li and H. Jacobsen. Composite subscriptions in content-based publish/subscribe systems.
In Proc. ACM/IFIP/USENIX International Middleware Conference, 2005.

23. I. Motakis and C. Zaniolo. Formal semantics for composite temporal events in active
database rules. Journal of Systems Integration, 7(3-4):291–325, 1997.

24. I. Motakis and C. Zaniolo. Temporal aggregation in active database rules. In Proc. SIGMOD,
pages 440–451, 1997.

25. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing, approximation, and resource management
in a data stream management system. In Proc. CIDR, 2003.

26. T. K. Sellis. Multiple-query optimization. ACM TODS, 13(1):23–52, 1988.
27. A. P. Sistla and O. Wolfson. Temporal conditions and integrity constraints in active database

systems. In Proc. SIGMOD, pages 269–280, 1995.
28. U. Srivastava and J. Widom. Memory-limited execution of windowed stream joins. In Proc.

VLDB, pages 324–335, 2004.
29. J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For Advanced

Database Processing. Morgan Kaufmann Publishers, 1996.
30. A. Yalamanchi, J. Srinivasan, and D. Gawlick. Managing expressions as data in relational

database systems. In Proc. CIDR, 2003.
31. D. Zimmer and R. Unland. On the semantics of complex events in active database manage-

ment systems. In Proc. ICDE, pages 392–399, 1999.

	Introduction
	Cayuga Algebra and Automaton
	Data Model
	Operators
	Automaton Description

	Implementation and MQO Techniques
	Notation
	Design Challenges
	AN-Index and AI-Index
	FR-Index
	System Architecture and Data Flow

	Performance Evaluation
	Technical Benchmark
	Experiments with Real Data

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

