
Exploiting

the Multi-Append-Only-Trend Property
of Historical Data in Data Warehouses�

Hua-Gang Li1, Divyakant Agrawal1, Amr El Abbadi1, and Mirek Riedewald2

1 University of California
Santa Barbara, CA 93106, USA

{huagang,agrawal,amr}@cs.ucsb.edu
2 Cornell University

Ithaca, NY 14853, USA
mirek@cs.cornell.edu

Abstract. Data warehouses maintain historical information to enable
the discovery of trends and developments over time. Hence data items
usually contain time-related attributes like the time of a sales transaction
or the order and shipping date of a product. Furthermore the values of
these time-related attributes have a tendency to increase over time. We
refer to this as the Multi-Append-Only-Trend (MAOT) property. In this
paper we formalize the notion of MAOT and show how taking advantage
of this property can improve query performance considerably. We focus
on range aggregate queries which are essential for summarizing large data
sets. Compared to MOLAP data cubes the amount of pre-computation
and hence additional storage in the proposed technique is dramatically
reduced.

1 Introduction

The notion of time has received considerable attention in data warehouses during
the past few years due to the accumulation of large amounts of time evolving
data. Data items often contain time-related attributes such as the time of a sales
transaction or the order and shipping date of a product. This enables analysts
to extract interesting information over a certain period of time, e.g., observing
a sales trend or analyzing revenue and expense trends over time. The importance
of time even resulted in a separate branch of research specifically concerned with
temporal databases [13].

A main characteristic of data collections is that the data grows very often
rapidly over time. To make these massive data collections digestible for human
analysts, support for efficient aggregation and summarization is vital. An impor-
tant tool for analyzing data is the orthogonal range aggregate query, for instance,
“what is the total value of all orders in California which were ordered in the first
� This research was supported by the NSF under IIS98-17432, EIA99-86057, EIA00-
80134, and IIS02-09112.

T. Hadzilacos et al. (Eds.): SSTD 2003, LNCS 2750, pp. 179–198, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

180 Hua-Gang Li et al.

half of July 2002 and shipped in August or later?”. This query selects ranges on
some of the attributes and computes aggregates over the selected data items.
Besides, roll-up and drill-down queries [4] that aggregate on different levels of
granularity are often collections of related range queries. In this paper, we con-
centrate on the most prevalent aggregation operation SUM in OLAP applications.
Note that the aggregation operator COUNT is a special case of SUM, and AVG can
be obtained through a tuple (sum,count).

In [20], Riedewald et al. developed a new framework supporting efficient ag-
gregation over append-only data sets. An append-only data set refers to a collec-
tion of data items with one of the describing attributes being a transaction time
dimension (TT-dimension). Typically there is a correlation between the value of
the transaction time attribute and when the data item is incorporated into the
data collection. For instance, sales transactions and phone calls are recorded in
a timely manner and hence the earlier a sales event or phone call takes place, the
earlier it will be recorded in the data warehouses. Intuitively, a d-dimensional
data set is append-only, if updates can only affect data items with the latest or
a greater transaction time coordinate.

In practice we observe that there are many data sets with multiple time-
related attributes whose values increase over time. For example, the retail data
set from an online shop has an order date, a shipping date, and may be even
a delivery date to describe data items. Hence the data space grows along multiple
dimensions which introduces a high degree of sparseness. For that reason data
cubes like prefix sum cube and its variations [12, 3, 10, 18] which are based on
array structures will not be space efficient for supporting aggregation. A “diago-
nal line” of data points (when looking only at the time-related dimensions with
growing values) is also difficult to index with popular bounding-shape based trees
like R-tree [9] and SS-tree [21]. On the other hand if there is truly a diagonal line,
i.e., the data is Multi-Append-Only (MAO) in time-related dimensions, we can
just reduce the multiple time-related dimensions to one-dimensional aggregation.

In real applications one will rarely find multiple dimensions such that newly
inserted data items have increasing values in all these dimensions. For instance,
once an order for a product is placed, the retailer processes it and ships the
product to the customer within a certain amount of time. Typically given a later
order date, there will be a later shipping date. However, varying order processing
speed will cause exceptions from the rule. On the other hand such exceptions
are not arbitrarily bad. In the order example most outliers will be off by at
most 1 or 2 days. Hence such data sets with multiple time-related dimensions
may exhibit a non-decreasing trend in some time-related dimensions while in
others may maintain this trend approximately. That is to say, some data points
in the data sets are slightly off, but still within a certain bound. We refer to this
as the Multi-Append-Only-Trend (MAOT) property and data sets with such
property are the focus of this paper. Intuitively in a MAOT data set the data
points are within a narrow diagonal band (when considering only the time-related
dimensions), hence we want to be able to deal with aggregation in MAOT data

Exploiting the Multi-Append-Only-Trend Property of Historical Data 181

Fig. 1. The original array and prefix sum array

sets as efficiently as in MAO data sets. This idea is at the heart of our novel
aggregation technique.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. In Section 3, motivation of our research work is stated. In Section 4,
we discuss and empirically evaluate our proposed technique for two-dimensional
MAOT data sets. Conclusions and future research work are given in Section 5.

2 Related Work

Some of the most efficient OLAP aggregation techniques maintain a d-
dimensional data set D in a d-dimensional array-like data cube structure. For
Example, Fig. 1 shows a two-dimensional data set with its corresponding data
cube. Ho et al. [12] introduced an elegant technique for computing range ag-
gregate queries on general data sets, which is referred to as the Prefix Sum
technique (PS). The basic idea is to compute the prefix sums of the origi-
nal data cube (see Fig. 1). In particular, each cell indexed by (x1, x2) in the
prefix sum cube P maintains the sum of all cells (c1, c2) of the original data
cube A that satisfy 0 ≤ c1 ≤ x1 and 0 ≤ c2 ≤ x2. The PS technique en-
sures constant query time, more precisely at most 2d cell accesses per query.
In Fig. 1, the range sum query shown by the shaded area can be computed by
accessing cells (3,2), (0,2), (3,0) and (0,0) in the prefix sum data cube P , i.e.
P [3, 2]− P [0, 2]− P [3, 0] + P [0, 0] = 40− 11− 12 + 3 = 20. The storage cost for
pre-aggregated information is O(nd) assuming each dimension size of n without
loss of generality. Other array-based techniques [3, 10, 18] provide a variety of
different tradeoffs between query and update costs. Similar to PS their stor-
age requirement is in the order of O(nd). Unfortunately array-based techniques
are not feasible for very sparse and high-dimensional data sets. For instance
constructing the PS cube for a sparse data set will result in a high degree of
redundancy.

A number of highly sophisticated aggregation techniques for sparse data have
been proposed for computational geometry applications [6, 5, 22]. However, typ-
ically the storage overhead is super-linear, e.g., O(N logd−1 N) for a data set
of size N , which is infeasible for large multidimensional data sets in data ware-
housing applications. Also, since the data structures are fairly involved, they are
rarely used in practice.

182 Hua-Gang Li et al.

Another approach for aggregating over sparse data is to take advantage of
existing index structures. A broad survey on various index structures is given
in [11]. More recent techniques can be found in [1, 2, 8, 16, 17]. Indexing can
provide fast access to all selected data items. However, to retrieve and aggregate
each selected item on-the-fly is still too slow. This is addressed by augmenting
index structures with pre-computed aggregates as proposed in [19, 14]. None of
these techniques can take advantage of the semantic knowledge provided by the
time-related attributes.

The only previous aggregation framework that explicitly takes advantage of
properties of time-related attributes was introduced by Riedewald et al. [20].
Their approach reduced the complexity of the aggregation problem by making
query and update costs independent of the time dimension. However, taking
advantage of multiple time-related dimensions was not supported.

3 Technique for Multi-Append-Only Data

Assume that all dimensions are time-related and that inserted data items have
the MAO property, i.e., in each dimension the coordinate value of a newly in-
serted data point is at least as high as for all previously inserted points. In the
following we describe a simple yet efficient aggregation approach for this setup.

As discussed in Section 1, the data space of an MAO data set grows along
multiple time-related dimensions and hence high sparseness will be introduced
due to the infinite domain of time-related dimensions. To apply the PS technique
and its variations directly on an MAO data set will cause high storage overhead
as illustrated in Example 1.

Example 1. Fig. 2 shows the data cube of a two-dimensional MAO data set. The
original data cube has a high degree of sparseness, therefore the corresponding
PS cube contains a high amount of redundant information. Applying any of the
other array-based aggregation techniques would have a similar effect.

As the data set in Fig. 2 has the MAO property, we can conceptually map
all MAO dimensions to a single dimension and then apply a technique similar
to [20] as follows. Let R denote a data structure such that for each pair of time
coordinates (t1, t2), a R-instance R(t1, t2) maintains the cumulative information
of all data points whose time1 attribute value is less than or equal to t1 and
time2 attribute value is less than or equal to t2. Fig. 3 shows the R-instances

Fig. 2. An MAO data set and its prefix sum cube

Exploiting the Multi-Append-Only-Trend Property of Historical Data 183

constructed for the two-dimensional MAO data set in Fig. 2. For instance, R(2, 2)
maintains the cumulative knowledge of data points (2, 2), (1, 1), (0, 1).

This cumulative knowledge enables us to reduce a two-dimensional range
query to finding two R-instances as follows. For example, a range aggregate
query is specified as 2 ≤ time1 ≤ 5 and 1 ≤ time2 ≤ 3 (shaded area in Fig. 2).
We first get R(4, 3) with the greatest time values, in both dimensions, which
are less than or equal to the upper values of the selected time ranges. R(4, 3)
maintains the sum of all data points whose time1 coordinate is less than or equal
to 4 and time2 coordinate is less than or equal to 3, which is 20. To answer the
actual range query, we have to remove all the data points whose time1 coordinate
is less than 2 and time2 coordinate is less than 1. Hence, we refer to R(1, 1) to
get the sum of those data points, which is 10. Then we subtract the result from
the initial value, obtaining the correct result of 10.

So far we have not described how to find the appropriate R-instances needed
to answer range aggregate queries. In order to do that, we need a directory
that maintains the correspondence between time coordinates and instances of R,
called R-instance directory. For example, Fig. 3 also shows the R-instance di-
rectory maintained for the given two-dimensional MAO data set. For any given
range aggregate query, we have to perform two lookups of the R-instance direc-
tory, one for the lower and one for the upper end of the range query. The time
coordinates of data points are ordered in non-decreasing order, therefore we can
perform a ‘binary-search-like’ lookup. The actual procedure is shown in Fig. 3.
The cost of a lookup is at most logarithmic in the number of data points. Thus
the total query cost is O(logN) where N is the total number of data points in
the data set. Also it is obvious that the storage cost for additional information
is O(N). When compared with the existing techniques, this technique achieves
significant reduction in storage cost while maintaining efficient query processing
time. Note that our approach easily generalizes to higher dimensionality and to
data sets with both time-related and “general” dimensions. In the latter case our
technique reduces the complexity for queries and updates to that of a data set
which is the projection of the original set to the lower-dimensional data space
defined by the general dimensions only.

However, the MAO property imposes a very strict condition on time-related
attributes of historical data sets. In real applications, data sets with multiple
time-related attributes very often only exhibit the weaker MAOT property. In
this paper, we propose a space-efficient technique to handle range aggregate
queries in MAOT data sets and our goal is to treat the data sets as if there were
no outliers and to correct for possible mistakes by paying a small cost, which
depends on the deviation of the outlier.

4 A Technique for Two-Dimensional MAOT Data Sets

4.1 Notation

Let D denote a data set with d dimensional attributes δ1, . . . , δd, and a single
measure attribute m. Let (Xd, v), Xd = (x1, . . . , xd), refer to a data point

184 Hua-Gang Li et al.

Fig. 3. R-instances, R-instance directory and searching

in D and its measure value is v. A data point exists in the data set, if and
only if its measure value is not NULL. A multi-dimensional range aggregate
query specifies a range (Li, Ui) in each dimension δi, the selection possibly being
a single value or the entire domain. The query selects all data points Xd that
satisfy Li ≤ xi ≤ Ui for all dimensions δi and applies aggregate operator (e.g.
SUM) over these cells. Ld = (L1, . . . , Ld) and Ud = (U1, . . . , Ud) are referred to
as the lower-bound query point and the upper-bound query point of a
multi-dimensional range aggregate query.

The d-dimensional data set D is a data set with Multi-Append-Only-
Trend (MAOT) property if and only if it satisfies the following conditions:

1. one of its dimensions, say δ1, is a transaction time dimension (TT-
dimension).

2. dt of its dimensions, say δ2, . . . , δdt+1, are valid time dimensions (VT-
dimensions).

3. the TT-coordinate of the latest update u always follows a non-decreasing
trend, i.e., if an update to a data point Xd arrives at the data set before
another update to a data point Y d, then x1 ≤ y1.

4. if the ith VT-coordinate of the latest update u does not follow a non-
decreasing trend, it should be at most ε time units earlier than the ith VT-
coordinate of the previous data point, which has the greatest TT-coordinate
and whose ith VT-coordinate follows a non-decreasing trend. We refer to
this preceding point as the Sentinel Data Point (SDP) for ith VT-dimension
(ε-bound).

Exploiting the Multi-Append-Only-Trend Property of Historical Data 185

To simplify the following discussion we will further on assume no two data
points have the same coordinate in the TT-dimension δ1. The generalization is
straightforward.

4.2 Illustration of the Technique

For simplicity, the technique is illustrated for a two-dimensional MAOT data
set D with ε = 1 and the operator SUM, which is shown in Fig. 4. Let the
dimensions be time1, time2. New points arrive in the strict order of time1, i.e.,
time1 dimension is a TT-dimension. The time2 dimension is a VT-dimension,
i.e., if the VT-coordinate of the latest update u does not follow a non-decreasing
trend, it should be at most ε = 1 time unit earlier than the corresponding
VT-coordinate of its SDP for time2 dimension.

Adjustment of Outlier Data Points. Like the technique proposed for MAO
data sets, we can capture the information of the MAOT data set D in a collection
of instances of a data structure I (defined later in this subsection) such that there
is an I-instance for each pair of time coordinates (t1, t2) for which a data point
exists. The information in these data structures is cumulative. The TT-dimension
property ensures that an update u in D either affects the existing I-instance
with the greatest TT-coordinate or appends a new I-instance with a greater TT-
coordinate. Furthermore, if the VT-coordinate of the newly appended I-instance
does not follow a non-decreasing trend (an outlier data point), we adjust it by
increasing its value by at most ε time units to ensure its new value is at least as
large as that of its SDP for time2 dimension.

After adjustment, the data set D appears as though there were no outlier
data points. Thus the technique proposed for MAO data sets can be applied
to the MAOT data set. However, to correct for possible mistakes, we need to
store additional information. For each pair of time coordinates (t1, t2) (t2 may
be an adjusted VT-coordinate), the corresponding I-instance I(t1, t2) maintains
not only cumulative knowledge of all the data points X2 = (x1, x2) where x1 ≤
t1, x2 ≤ t2, but also some other auxiliary information which is not required for
MAO data sets.

Example 2. In Fig. 4, we can observe that there are two outlier data points in
the data set D. The VT-coordinate of data point (3, 4) does not follow a non-
decreasing trend, thus we adjust it to ensure its VT-coordinate is at least as
large as that of its SDP for time2 dimension (2, 5), i.e., 5 (as shown from circle
to star in the figure). Similarly, we increase the VT-coordinate of data point
(8, 9) to that of its SDP for time2 dimension (7, 10), i.e., (8, 9) → (8, 10).

Classification of Data Points. Recall that the R-instance constructed for
each pair of time coordinates in a two-dimensional MAO data set maintains

186 Hua-Gang Li et al.

Fig. 4. A 2-dimensional MAOT data set (time1: TT-dimension, time2: VT-
dimension, ε = 1)

the same kind of cumulative information. However, we cannot deal with two-
dimensional MAOT data sets likewise as we need additional information in I-
instances with adjusted VT-coordinates to correct for the possible errors intro-
duced by VT-coordinate adjustment. Thus it is necessary to classify data points
into groups according to the characteristics of their original VT-coordinates and
each group is either of the following two kinds of groups:

1. Normal group: a group in which the VT-coordinates of all data points always
follow a non-decreasing trend;

2. Outlier group: a group starting at a data point s whose original VT-
coordinate does not follow a non-decreasing trend and ending at a data
point e whose VT-coordinate is later than that of s by at least ε time units;
in order to keep the outlier group as small as possible, e is selected such
that e has a VT-coordinate at most ε time units greater than that of s and
the least TT-coordinate.

Intuitively an outlier group is the smallest group that begins with an outlier
and “advances the clock” in the VT-dimension by at least ε.

Example 3. In the example of Fig. 4 we can divide all the data points into groups
as shown by rectangles. Solid rectangles represent normal groups and dashed
rectangles represent outlier groups. For instance [(6, 8),(7, 10)] is a normal group
and [(8, 10),(9, 10),(10, 11)] is an outlier groups. Note that the first outlier group
starts at the data point (3, 5) whose original VT-coordinate (4) does not follow
a non-decreasing trend and ends at the data point (5,7) whose VT-coordinate
(7) is later than that of (3, 5) by 2 time units, which is greater than ε = 1 time
unit(s).

From the definition and the example above, one may notice that there are
some data points in the outlier group which are not outlier data points. We now
briefly motivate why we extend outlier groups to an ending data point whose
VT-coordinate is later than that of the starting data point by at least ε time
units. The ε difference is chosen to ensure that for each range query there is

Exploiting the Multi-Append-Only-Trend Property of Historical Data 187

at most one outlier group which is intersected by the query and which could
contain data points whose VT-coordinates are less than that of the lower-bound
query point. This leads to the efficient query algorithm presented later on which
only has to deal with different cases for a single outlier group.

Cumulative and Auxiliary Information. In this subsection, we define the
data structure I such that for each pair of time coordinates, I(t1, t2) maintains
cumulative and auxiliary information which exploits the MAOT property of data
set D. All I-instances maintain the following common information:

1. Similar to the technique for MAO data sets, in each I-instance I(t1, t2) we
maintain the cumulative values of data points X2 = (x1, x2) in data set D
whose time coordinates satisfy x1 ≤ t1 and x2 ≤ t2, denoted as PSum;

2. Original measure value of the data point (t1, t2) denoted as OVal;
3. The group type (normal, outlier) to which the data point (t1, t2) belongs,

denoted as GRP.

In addition, for an I-instance constructed for a data point (t1, t2) of an outlier
group, we need to maintain extra information as follows which is used to correct
for the possible errors introduced by the VT-coordinate adjustments of outlier
data points.

1. A one-dimensional array EPSum of size ε. The cell EPSum[i](0 ≤ i ≤ ε − 1)
maintains the sum of measure values of data points X2 = (x1, x2) where
x1 ≤ t1, x2 ≤ t2, but excludes those data points in the same outlier group
with original VT-coordinates earlier than s− i where s is the VT-coordinate
of the starting data point of its group;

2. A pointer to the I-instance for the starting data point of the outlier group,
denoted as SIns;

3. A pointer to the I-instance for the ending data point of the outlier group,
denoted as EIns; if there is no ending data point yet for the group, it is set
to NULL;

4. A pointer to the I-instance for the data point arriving immediately after
data point (t1, t2), denoted IIns, if data point (t1, t2) is the ending data
point of its outlier group;

5. A boolean variable indicating whether the VT-coordinate of a data point
(t1, t2) is adjusted or not, denoted as ADJUSTED;

6. Original time coordinates, if data point (t1, t2) is an adjusted one, denoted
as ORC. Otherwise it is set to NULL;

Example 4. Referring to Fig. 4 again, we can construct the I-instances of data
set D as shown in Fig. 5. Note that the I-instance I(3, 5) belongs to an outlier
group, so its group information is ‘outlier’; PSum stores the sum of measure values
of data points whose TT-coordinate is less than or equal to 3 and VT-coordinate
is less than or equal to 5, i.e., 2+3+2 = 7; OVal stores the original measure value
of data point (3, 5). EPSum[0] stores the sum of measure values of data points
whose TT-coordinate is less than or equal to 3 and VT-coordinate is less than

188 Hua-Gang Li et al.

Fig. 5. I-instances constructed for the two-dimensional MAOT data set D
shown in Fig. 4

or equal to 5, but excludes those data points which are in the same group and
whose original VT-coordinate is less than 5− 0 = 5, i.e., EPSum[0] = 2 + 3 = 5.

Answering Range Aggregate Queries. Now we illustrate how to use the
cumulative and auxiliary information to speed up range aggregate (SUM) queries.
Consider a range query represented as Query(L2 = (3, 5), U2 = (8, 9)), which
corresponds to the lighter grey area in Fig. 6. We observe that the outlier data
point (8, 9) is actually inside the given query range, but due to the adjustment of
its VT-coordinate, it appears to be outside. In order to guarantee that no point
is missed, we have to expand the query range by increasing the VT-coordinate
of the upper-bound query point by ε = 1. Then we obtain Queryexpand(L

2 =
(3, 5), U2 = (8, 10)), as shown by the lighter and darker grey areas together.
A natural question is why an analogous correction is not necessary at the bottom
(for data points that move up into the query region). The reason is that we can

Fig. 6. Ranges selected on time1 and time2 dimensions

Exploiting the Multi-Append-Only-Trend Property of Historical Data 189

use the EPSum array for correction instead of examining the ε stripe at the query
bottom.

After query range expansion, some data points which are not inside the given
query range may now appear in the expanded query range. For example, data
point (7, 10) is not inside the given range query, but now appears in the ex-
panded query range, which is shown as a darker gray region in Fig. 6. Such
points must be excluded from the final answer. Hence, the original range query
is transformed into two sub-queries: subQueryexpand(L

2 = (3, 5), U2 = (8, 10))
and subQuerysurplus(L

2 = (3, 9), U2 = (8, 10)), i.e., the query result is equal to
subQueryexpand − subQuerysurplus.

Therefore, given any range aggregate query, we expand the original query
such that it is guaranteed that all selected points are included. Since data points
can only move “up”, we do not need to expand the bottom part of the query.
After expanding, all we need to do is filter out the effect of false hits by using
the pre-computed information.

Both sub-queries can be processed similarly. Here we only use subQueryexpand
as an example to show how to process the sub-query. We start by defining two I-
instances LB ins,UB ins where LB ins is the I-instance with the least time coor-
dinates which is greater than or equal to the lower values of the selected time
ranges and UB ins is the I-instance with the greatest time coordinates which
is less than or equal to the upper values of the selected time ranges. For our
example, we get LB ins = I(3, 5) and UB ins = I(8, 10).

As LB ins is an I-instance for a data point of an outlier group (R1 in Fig. 6),
we can locate the I-instance for the ending data point of the outlier group
through LB ins.EIns, which is I(5, 7). Recall that the VT-coordinate of the end-
ing data point of the outlier group is greater than that of the starting data
point of the outlier group by at least ε time units. Thus the VT-coordinate
of all data points after I(5, 7) can not fall below the query range. Thus we
can simply use the cumulative information stored in I(8, 10) and I(5, 7) to
compute the sum of data points remaining in the query(R2 in Fig. 6), i.e.,
I(8, 10).PSum− I(5, 7).PSum = 31− 14 = 17.

R1 only contains data points of an outlier group and not all of them are
inside the query range due to the VT-coordinate adjustment. To exclude those
data points whose original VT-coordinates are not within the selected range on
time2 dimension, we can use the EPSummaintained in the I-instances I(3, 5) and
I(5, 7) to compute the sum of data points in R1. The lower bound of the selected
range in time2 dimension is 5, so we have to exclude those data points in the
outlier group whose original VT-coordinate is earlier than 5. From the definition
of EPSum, we know that EPSum[0] will exclude those data points, i.e., sum of data
points in R1 can be computed through I(5, 7).EPSum[0]− I(3, 5).EPSum[0], which
is 12−5 = 7. Thereby we can get the result for Queryexpand, which is 17+7 = 24.
Likewise, we can get the result for Querysurplus, which is 8. Thus the query result
for Query(L2 = (3, 5), U2 = (8, 9)) is 24− 8 = 16.

190 Hua-Gang Li et al.

4.3 Algorithm and Time Complexity Analysis

We now present a formal description of how sub-queries such as subQueryexpand
or subQuerysurplus are processed. Recall that we get the final answer to any given
range aggregate query by subtracting subQuerysurplus from subQueryexpand,
hence both sub-queries by themselves may include false hits. Also note that
data points in the following refer to data points after VT-coordinate adjustment
unless otherwise specified:

1. If both LB ins and UB ins are NULL, the sub-query range does not contain
any data point and consequently we return 0 as the sub-query result.

2. If LB ins is equal to UB ins (an example sub-query shown in Fig. 7(a)), the
sub-query range contains only one I-instance. If it is not an adjusted data
point (by checking ADJUSTED) or the original time coordinates of its data
point (by checking ORC) are inside the range, we return LB ins.OVal as the
sub-query result; otherwise we return 0 as the sub-query result.

3. If LB ins and UB ins are two different I-instances and the VT-coordinate
of LB ins is greater than that of the lower-bound query point L2 by at
least ε time units (an example sub-query shown in Fig. 7(b)), every data
point between LB ins and UB ins must be inside the sub-query range. PSum
maintained in UB ins gives the sum of all data points whose time coor-
dinates are less than or equal to those of UB ins. To answer the actual
sub-query, we have to remove all data points whose time coordinates are

Fig. 7. Processing a sub-query: case 2, 3, 4.i, 4.ii

Exploiting the Multi-Append-Only-Trend Property of Historical Data 191

less than those of LB ins. The sum of such data points can be obtained
by subtracting LB ins.OVal from LB ins.PSum. Hence, the correct answer is
UB ins.PSum− (LB ins.PSum− LB ins.OVal).

4. If LB ins and UB ins are two different I-instances, and the difference between
the VT-coordinate of LB ins and that of L2 is less than ε time units, then
there might be data points between LB ins and UB ins which are not inside
the sub-query range because of the VT-coordinate adjustments. In this case,
the sub-query will be processed differently according to the characteristics
of LB ins, i.e., depending on LB ins being the I-instance for a data point of
a normal group, the starting data point of an outlier group, or the middle
data point (including the ending data point) of an outlier group. The cor-
responding cases are called normalQuery, outlierSQuery, outlierMQuery
respectively.
Case i normalQuery (example sub-queries shown in Fig. 7(c)): If LB ins is

the I-instance for a data point of a normal group, an I-instance Oins

will be obtained such that its data point is the starting data point of
the outlier group which is immediately after LB ins’s group. If Oins is
NULL or not inside the sub-query range, then the sub-query range only
contains data points from a normal group and the processing is the
same as described in case 3; otherwise, we divide the data points covered
by the sub-query into two parts such that the first part contains data
points arriving before the data point ofOins and the second part contains
the remaining data points. The second part can be processed by calling
outlierSQuery because it starts with the data point of Oins which is
the starting data point of an outlier group. Thus we return (Oins.PSum−
LB ins.PSum + LB ins.OVal − Oins.OVal) + outlierSQuery(Oins,UB ins)
as the sub-query result.

Case ii outlierSQuery (example sub-queries shown in Fig. 7(d)): If LB ins

is the I-instance for the starting data point of an outlier group, an I-
instance Eins is obtained through LB ins.EIns, whose data point is the
ending data point of the outlier group. If Eins is NULL or not in-
side the sub-query range or Eins is equal to UB ins, then all the data
points between LB ins and UB ins are in the same group, i.e., the out-
lier group. If LB ins aligns with the bottom line of the range, we re-
turn UB ins.EPSum[0]−LB ins.EPSum[0] as the sub-query result; otherwise,
we return UB ins.PSum− LB ins.PSum+ LB ins.OVal as the sub-query re-
sult. If Eins is inside the range (as the query example in Section 4.2),
then every data point between Eins and UB ins is inside the sub-query.
Similarly, if LB ins aligns with the bottom line of the range, we re-
turn (Eins.EPSum[0] − LB ins.EPSum[0]) + (UB ins.PSum − Eins.PSum) as
the sub-query result; otherwise, we return (Eins.PSum − LB ins.PSum +
LB ins.OVal) + (UB ins.PSum− Eins.PSum) as the sub-query result.

Case iii outlierMQuery: This covers the remaining possibility of LB ins be-
ing the I-instance for a data point in an outlier group which is not the
starting point of the outlier group. If LB ins is not the ending data point
of the outlier group, the processing is similar to the outlierSQuery;

192 Hua-Gang Li et al.

time coordinates of a
data point

pointer to I -instance

(1,3)
...

(2,5)

...

... ...

I -instance directory

(3,5)
...

(8,10)

...

...

outlier directory

time coordinates of the starting
data point of an outlier group

pointer to the I -instance

...

I (1,3)

I (2,5)

I (3,5)

I (8,10)

Fig. 8. I-instance directory and outlier directory

otherwise, an I-instance Iins is obtained through LB ins.IIns, whose
data point arrives immediately after LB ins. We return Eins.OVal +
normalQuery(Iins,UB ins) as the sub-query result if Iins is the I-instance
for a data point of a normal group; otherwise return LB ins.OVal +
outlierSQuery(Iins,UB ins)

So far we have not discussed how to find the appropriate I-instances
LB ins,UB ins and Oins. We need two directories: One directory, referred to as
I-instance directory, maintains the correspondence between the time coordinates
of data points and their I-instances and is used to search for LB ins and UB ins.
The other directory, referred to as outlier directory, maintains the correspon-
dence between the time coordinates of the starting data points of outlier groups
and their I-instances. It is used to search for Oins.

Example 5. For the two-dimensional MAOT data set shown in Fig. 4, we main-
tain the I-instance directory and outlier directory as shown in Fig. 8.

We now analyze the query and storage costs of the proposed approach.
For any range query, two sub-queries are executed to compute the result, i.e.,
subQueryexpand and subQuerysurplus. For either sub-query, we first need to find
the appropriate I-instances for the lower and upper-bound query points of the

Fig. 9. Modify EPSum filed for two-dimensional MAOT data sets with ε > 1

Exploiting the Multi-Append-Only-Trend Property of Historical Data 193

query range. The cost of a lookup is logarithmic in the number of data points N
of a data set D as it performs a ‘binary-search-like’ search in the I-instance direc-
tory. Then according to the characteristics of LB ins and UB ins, the sub-query is
processed in four cases as discussed above. Cases 1, 2 and 3, take constant time.
For case 4, a normalQuery, requires another lookup in the outlier directory and
the lookup cost is logarithmic in the number of outlier groups, which is no more
than N ; if it is an outlierSQuery, it takes constant time; an outlierMQuery,
on the other hand, may be reduced to another normalQuery and thus the worst
cost is logarithmic in the number of outlier groups. Therefore the query cost for
any range aggregate query is O(logN) in the worst case.

We maintain a historical I-instance for each data point, an I-instance direc-
tory and an outlier directory. The storage cost for the cumulative and auxiliary
information maintained in a historical I-instance is constant and thus the stor-
age cost for the historical I-instances is O(N). The storage cost of the I-instance
directory is also O(N) since we maintain the correspondence between the time
coordinates of data points and the pointers to their I-instances. Likewise, the
storage cost of the outlier directory is O(N) in the worst case. Consequently the
storage cost of additional information is O(N).

Since two-dimensional MAOT data sets with ε = 1 are special cases of two-
dimensional MAOT data sets, when dealing with range aggregate queries on data
sets with ε > 1, we need to apply some minor changes to the above-mentioned
technique for two-dimension MAOT data sets with ε = 1. The changes are
described as follows.

For convenience, we denote a two-dimensional MAOT data set with ε > 1
as D2

ε>1 and a two-dimensional MAOT data set with ε = 1 as D2
ε=1. Let Ie denote

a data structure which extends I (as defined in Section 4.2) in the field of EPSum
only such that for each pair of time coordinates in D2

ε>1, there is an Ie-instance
of Ie which maintains cumulative and auxiliary information.

From Fig. 9, we observe that the characteristics of an outlier group in D2
ε>1

is different from that of an outlier group in D2
ε=1. Once a data point whose

VT-coordinate is greater than that of the starting data point of the outlier
group, the outlier group will be ending for D2

ε=1 according to the definition of
an outlier group. However, that is not the case for D2

ε=1. Even after some data
point whose VT-coordinate is greater than that of the starting data point of the
outlier group, there are still possibly some outlier data points and the outlier
group will be ending at a data point whose VT-coordinate is later than that
of the starting data point of the outlier group by at least ε time units. Thus it
is enough for D2

ε=1 to keep EPSum sized of ε to correct for the possible errors
introduced due to the VT-coordinate adjustments. However it is not enough
for D2

ε>1. For example, for data point P in Fig. 9, if we maintain EPSum sized of
ε, i.e., the information of outlier data points on lines l1, l2 and l3, then we are
missing the information of outlier data points on line l4.

Therefore, we redefine the EPSum of I(t1, t2) for a data point (t2, t2) (excluding
the ending data point) of an outlier group as a one-dimensional array structure
with dimension size ε+ t2 − s (s is the VT-coordinate of the starting data point

194 Hua-Gang Li et al.

of the outlier group), in which a cell EPSum[i](0 ≤ i ≤ ε+t2−s−1) maintains the
sum of measure values of data points X2 = (x1, x2) where x1 ≤ t1, x2 ≤ t2 but
excludes those data points in the same outlier group with original VT-coordinate
earlier than t2 − i.

If I(t1, t2) is the Ie-instance for the ending data point of an outlier group, the
EPSummaintains a one-dimensional array structure with dimension size ε+tbe−s
(s is the VT-coordinate of the starting data point of its group and tbe is the VT-
coordinate of the data point immediately before the ending data point), in which
a cell EPSum[i](0 ≤ i ≤ ε + tbe − s − 1) maintains the sum of measure values of
data points X2 = (x1, x2) where x1 ≤ t1, x2 ≤ t2 but excludes those data points
in the same outlier group with original VT-coordinate earlier than tbe − i. As we
know t2 of a non-ending data point is at most s + ε − 1 and so is tbe, thus we
know that the size of EPSum of any time instance within an outlier group is at
most 2ε− 1, which still promises the maintained information finite.

As the algorithm for two-dimensional MAOT data sets with ε > 1 is very
similar to that for two-dimensional MAOT data sets with ε = 1 and also due
to the space limit, we do not present it here and more details can be found
in [15]. Furthermore, we generalized our technique to d-dimensional data sets
with two MAOT dimensions, i.e., data sets having two MAOT dimensions as
well as other non-temporal “general” attributes, e.g., location. The details of
this generalization can also be found in [15].

4.4 Experimental Results

We empirically evaluated the performance of our technique for two-dimensional
MAOT data sets and also compared it with R-tree technique. We implemented
both techniques in Java and all experiments were performed on a Pentium IV PC
with 2.4GHZ CPU and 1GB of main memory which runs Linux RedHat 8.0. We
generated synthetic two-dimensional MAOT data sets as data source by varying
epsilon (ε) and data set size. The ratio of the outlier data points over total
data points of each data set is about 10%. We compared our proposed technique
with the R-Tree technique in three settings and the metrics we used are average
query time and average number of disk I/Os per query. For the purpose of a fair
comparison, we cached part of the R-tree in main memory during searching for
a query answer and the cache size is the same as that of the I-instance directory
(It is maintained in main memory for our proposed technique when answering
range queries). Moreover we used Least Recently Used (LRU) cache algorithm.

The first setting is to evaluate the effect of data set size on the performance.
We generated MAOT data sets by fixing the epsilon (ε) and varying the data set
size from 104 to 106. We executed about 5000 uniformly generated range queries
on every data set to compute the average query time and average number of
disk I/Os. The experimental results of this setting are shown in Fig. 10. We can
observe that changing the data set size does not change the performance of our
technique too much while the performance of R-tree technique degrades actually
grows linearly with respect to the data set size. As the dominant query time is
the hard disk access time and our technique just requires a few number of hard

Exploiting the Multi-Append-Only-Trend Property of Historical Data 195

disk accesses, thus even a large data set size will not affect overall query time too
much, which comprises hard disk access time and I-instance directory searching
time.

The second setting is to evaluate the effect of epsilon (ε) on the performance.
We generated MAOT data sets by fixing the data set size (105) and varying
epsilon (ε) from 3 to 10. Likewise, we executed about 5000 uniformly generated
range queries on every data set to compute the average query time and average
number of disk I/Os. As both techniques’ searching algorithms are independent
of the size of epsilon, thus changing epsilon size do not affect the performance
of both techniques which coincides the experimental results shown in Fig. 11.
Besides we can observe that our proposed technique still outperforms the R-
tree technique. However a larger epsilon definitely results in more storage space
needed for outlier instances.

The third setting is to evaluate the effect of query selectivity on the per-
formance. In this setting, we ran queries on a two-dimensional MAOT data set
with epsilon = 3 and data set size = 105. We then generated range queries by
enforcing the selectivity constraint k% on time dimensions and then examined
how they affected query time and disk I/Os. The selectivity constraint k% means
that the length of any queried ranged is less than or equal to k × dom(i)/100
where dom(i) represents the length of the domain. When generating the range
queries, the start points of the ranges is selected uniformly from the domain of
the dimensions and then the range is determined randomly according to the se-
lectivity. Note that the range in every dimension is independently selected. The
experimental results of about 40000 range queries are reported in Fig. 12. We
can observe that the performance of our technique does not change too much
as the query selectivity decreases while the performance of R-tree technique de-
grades. Our technique requires at most a few number of hard disk accesses per
query and thus query size do not really matter a lot when searching the query

0

200

400

600

800

1000

1200

1400

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
ill

is
ec

on
d)

Number of data points

2-dimensional MAOT data sets with epsilon = 3

MAOT
R-Tree

(a) Average query time comparison

0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

A
ve

ra
ge

 n
um

be
r

of
 d

is
k

I/O
s

Number of data points

2-dimensional MAOT data sets with epsilon = 3

MAOT
R-Tree

(b) Average disk I/Os comparison

Fig. 10. Effect of data set size on performance

196 Hua-Gang Li et al.

0

20

40

60

80

100

120

140

3 4 5 6 7 8 9 10

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
ill

is
ec

on
d)

epsilon

2-dimension MAOT data sets with number of data points = 100000

MAOT
R-Tree

(a) Average query time comparison

0

50

100

150

200

250

3 4 5 6 7 8 9 10

A
ve

ra
ge

 n
um

be
r

of
 d

is
k

I/O
s

epsilon

2-dimensional MAOT data sets with number of data points = 100000

MAOT
R-Tree

(b) Average disk I/Os comparison

Fig. 11. Effect of epsilon on performance

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
ill

is
ec

on
d)

Query selectivity

2-dimension MAOT data set with number of data points = 100000 and epsilon = 3

MAOT
R-Tree

(a) Average query time comparison

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 n
um

be
r

of
 d

is
k

I/O
s

Query selectivity

2-dimension MAOT data set with number of data points = 100000 and epsilon = 3

MAOT
R-Tree

(b) Average disk I/Os comparison

Fig. 12. Effect of query selectivity on performance

answer. However, that is the different case with R-tree technique, a small query
size may need to go further down the tree to trace the data points which are
actually are in the given query range. Consequently it may require more page
swapping and thus lead more hard disk accesses, thereby more query time.

In all we can observe that our technique outperforms R-tree techniques in
terms of answering range aggregate queries on MAOT data sets. Our technique
has a good scalability with respect to the data set size and R-tree technique
obviously has a poor scalability with respect to the data set size, i.e., query time
and the number of disk I/Os grows linearly with respect to the data set size.
Also our technique handle the skewness of range query size very well while the
performance of R-tree degrades if the range query size is too small.

Exploiting the Multi-Append-Only-Trend Property of Historical Data 197

5 Conclusion and Future Work

Append-only data sets are increasing in popularity due to the increasing demand
for both archival data as well as trend analysis of such data sets. OLAP applica-
tions that need aggregate support for different ranges for such data sets need to
be efficient. In this paper, we formalize the notion of Multi-Append-Only-Trend
(MAOT) property of historical data sets in data warehousing. Due to the sparsity
of MAOT data sets, application of existing techniques leads to significant stor-
age explosion. Thus, we propose a new technique for handling range aggregate
(SUM) queries efficiently on MAOT data sets. This paper is thus a continua-
tion of our development of techniques for managing large append-only data sets.
In [20], we proposed a framework for efficient aggregation over data sets with
a single append-only dimension. In this paper, we extended our development
to data sets with multi-append-only-trend property. Data sets would benefit
significantly if such dimensions are recognized and efficiently incorporated into
analysis tools. The technique proposed in this paper essentially allows us to pro-
cess a d-dimensional data set with two time-related dimensions as efficient as if
it was only a (d − 2)-dimensional data set. In particular a data set of size N
that only has TT- and VT-dimensions can be searched and updated in O(logN)
time, while requiring storage linear in N .

We are currently extending this approach to d-dimensional data set with ar-
bitrary number of MAOT dimensions. Part of our future work is also to examine
how to choose the ε parameter for data sets where the value is not known in
advance.

References

[1] C. Böhm and H.-P. Kriegel. Dynamically Optimizing High-Dimensional Index
Structures. In Proc. Int. Conf. on Extending Database Technology (EDBT), pages
36-50, 2000. 182

[2] C.-Y. Chan and Y.E. Ioannidis. An Efficient Bitmap Encoding scheme for se-
lection Queries. In Proc. Int. Conf. on Management of Data (SIGMOD), pages
215-216, 1999. 182

[3] C.-Y. Chan and Y.E. Ioannidis. Hierarchical Cubes for Range-Sum Queries. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 675-686, 1999. 180,
181

[4] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Tech-
nology. SIGMOD Record, 26(1):65-74, 1997. 180

[5] B. Chazelle. A Functional Approach to Data Structures and its Use in Multidi-
mensional Searching. SIAM Journal on Computing, 17(3):427-462, 1988. 181

[6] M. de Berg and M. van Kreveld and M. Overmars and O. Schwarzkopf. Compu-
tational Geometry. Springer Verlag, 2 edition, 2000. 181

[7] J. R. Driscoll and N. Sarnak and D.D. Sleator and R.E. Tarjan. Making
Data Structures Persistent. Journal of Computer and System Sciences (JCSS),
38(1):86-124, 1989.

[8] M. Ester and J. Kohlhammer and H.-P. Kriegel. The DC-Tree: A Fully Dynamic
Index Structure for Data Warehouses. In Proc. Int. Conf. on Data Engineering
(ICDE), pages 379-388, 2000. 182

198 Hua-Gang Li et al.

[9] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 47-57, 1984. 180

[10] S. Geffner and D. Agrawal and A. El Abbadi. The Dynamic Data Cube. In Proc.
Int. Conf. on Extending Database Technology (EDBT), pages 237-253, 2000. 180,
181

[11] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, 1998. 182

[12] C. Ho and R. Agrawal and N. Megiddo and R. Srikant. Range Queries in OLAP
Data Cubes. In Proc. Int. Conf. on Management of Data (SIMGMOD), pages
73-88, 1997. 180, 181

[13] C. S. Jensen et al. Temporal Databases - Research and Practice, volume 1399 of
LNCS, chapter The Consensus Glossary of Temporal Database Concepts, pages
367-405, Springer Verlag, 1998. 179

[14] I. Lazaridis and S. Mehrotra. Progressive Approximate Aggregate Queries with
a Multi-Resolution Tree Structure. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 401-412, 2001. 182

[15] H.-G. Li and D. Agrawal and A. El Abbadi and M. Riedewald. Exploiting the
Multi-Append-Only-Trend Property of Historical Data in Data Warehouses. Tech-
nical Report, Computer Science Department, University of California, Santa Bar-
bara, 2003. http://www.cs.ucsb.edu/research/trcs/docs/2003-09.ps. 194

[16] V. Markl and F. Ramsak and R. Bayer. Improving OLAP Performance by Multi-
dimensional Hierarchical clustering. In Proc. Int. Conf. on Database Engineering
and Applications Symp. (IDEAS), pages 165-177, 1999. 182

[17] P. E. O’Neil and D. Quass. Improved Query Performance with Variant Indexes.
In Proc. Int. Conf. on Management of Data (SIGMOD), pages 38-49, 1997. 182

[18] M. Riedewald and D. Agrawal and A. El Abbadi. Flexible Data Cubes for Online
Aggregation. In Proc. Int. Conf. on Database Theory (ICDT), pages 159-173,
2001. 180, 181

[19] M. Riedewald and D. Agrawal and A. El Abbadi. pCube: Update-Efficient Online
Aggregation with Progressive Feedback and Error Bounds. In Proc. Int. Conf. on
Scientific and Statistical Database Management (SSDBM), pages 95-108, 2000.
182

[20] M. Riedewald and D. Agrawal and A. El Abbadi. Efficient Integration and Ag-
gregation of Historical Information. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 13-24, 2002. 180, 182, 197

[21] D.A. White and R. Jain. Similarity Indexing with the SS-tree. In Proc. Int. Conf.
on Data Engineering (ICDE), pages 516-523, 1996. 180

[22] D.E. Willard and G. S. Lueker. Adding Range Restriction Capability to Dynamic
Data Structures. Journal of the ACM, 32(3):597-617, 1985. 181

	Exploiting the Multi-Append-Only-Trend Property of Historical Data in Data Warehouses
	Introduction
	Related Work
	Technique for Multi-Append-Only Data
	A Technique for Two-Dimensional MAOT Data Sets
	Notation
	Illustration of the Technique
	Algorithm and Time Complexity Analysis
	Experimental Results

	Conclusion and Future Work

