Efficient Integration and Aggregation of Historical
Information’

Mirek Riedewald
University of California
Santa Barbara, CA 93106

mirek@cs.ucsb.edu

ABSTRACT

Data warehouses support the analysis of historical data.
This often involves aggregation over a period of time. Fur-
thermore, data is typically incorporated in the warehouse
in the increasing order of a time attribute, e.g., date of a
sale or time of a temperature measurement. In this paper
we propose a framework to take advantage of this append-
only nature of updates due to a time attribute. The frame-
work allows us to integrate large amounts of new data into
the warehouse and generate historical summaries efficiently.
Query and update costs are virtually independent from the
extent of the data set in the time dimension, making our
framework an attractive aggregation approach for append-
only data streams. A specific instantiation of the general ap-
proach is developed for MOLAP data cubes, involving a new
data structure for append-only arrays with pre-aggregated
values. Our framework is applicable to point data and data
with extent, e.g., hyper-rectangles.

1. INTRODUCTION

The notion of ¢#ime plays an important role in data ware-
houses which are designed to support the analysis of histor-
ical business data. Data items often contain time-related
attributes such as a date of a sales transaction or when a
bill was paid. This enables analysts to examine revenue
and expense trends over time. Important business queries
compare the revenues of the different months of a year, or
how a value for a month compares to the same month in
other years. Similarly, statistical databases for environmen-
tal studies, census databases, and digital libraries all need to
support a notion of time. Environmental studies draw con-
clusions about processes like global warming and the devel-
opment of the ozone hole; census statistics examine trends
like an increase of the number of people with College de-

*This work was partially supported by NSF grants EIA-
9818320, 1IS-98-17432, EIA-9986057, and I1S-99-70700.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ACM SIGMOD ' 2002 June 4-6, Madison, Wisconsin, USA

Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

Divyakant Agrawal
University of California
Santa Barbara, CA 93106

agrawal@cs.ucsb.edu

Amr El Abbadi

University of California
Santa Barbara, CA 93106

amr@cs.ucsbh.edu

grees, and so forth. The importance of time even resulted
in a separate thread of research specifically concerned with
temporal databases [7).

However, time is not only important as an attribute to
describe a data item. Typically there is a correlation be-
tween the value of the time attribute and when the item
is incorporated into the data collection. For instance, sales
transactions and phone calls are recorded in a timely manner
and hence the earlier a sales event or phone call took place,
the earlier it will be recorded in the data warehouse. Sim-
ilarly, sensors that measure environmental data report the
measurements in timely order. We refer to such data sets
as append-only data. Intuitively, a d-dimensional data set is
append-only, if updates can only affect data items with the
latest or a greater time coordinate. Hence, updates are re-
stricted to a (d —1)-dimensional “time slice” with the great-
est time coordinate. However, we also propose solutions for
dealing with out-of-order updates that affect historic time
slices.

A main characteristic of data collections that allow the
analysis of historic data is that the amount of data grows,
often rapidly, over time. Popular examples are massive data
streams as produced by phone call and network monitoring
devices, weather sensors all over the globe, and transaction
processing systems of large retailers. To make these huge
collections of detail data digestible for human analysts, sup-
port for efficient aggregation and summarization is vital. An
important tool for exploring data collections is the orthogo-
nal range aggregate query, for instance: “what is the overall
revenue of all stores in New York over the last month”. This
query selects ranges on some of the attributes and computes
aggregates over the selected data items. Similarly, roll-up
and drill-down queries [5] that aggregate on different levels
of granularity are often collections of related range queries.

In this paper we present a new framework for supporting
efficient aggregation on append-only data sets. Our work
concentrates on the important class of invertible operators
like SUM, COUNT, and average (when maintained as SUM and
COUNT). Essentially our construction makes the query and
update costs independent of the extent of the data in the
append-only dimension. Stated differently, no matter how
long the recorded history is, the query and update costs are
virtually unaffected.

We apply the methodology of the framework to MOLAP
data cubes which are maintained in multidimensional ar-
rays. Our construction involves a new technique for append-
only arrays in main memory and in secondary memory (hard

disk). It uses dynamic data structures for the currently ap-
pended time slice and gradually and adaptively changes the
values of historic data items to support faster queries.

One might wonder, if array-based techniques are practi-
cally relevant since many real data sets are sparse, especially
for high dimensionality. The answer is a clear yes! Business
reports often require a high-level view of the data, e.g., sales
data grouped by districts and product categories. Results
of environmental studies represent summarized data like the
ozone concentration on a latitude-longitude grid. Further-
more, aggregated (dense) summary information even plays
a vital role in the analysis process for very sparse data sets.
The aggregated information provides a quick overview of
the underlying base data. This allows the analyst to iden-
tify regions of interest where to drill down, avoiding costly
processing of irrelevant detail data. For example users of ge-
ographical map and image collections typically first browse
the contents based on latitude, longitude before being able
to construct educated queries that avoid zero-hit or million-
result answers. All these are examples for dense, high-level
views of underlying sparse detail data. Another example is
the data cube operator as proposed by Gray et al. [10] which
computes all possible 2¢ group-bys for a set of d grouping
attributes (all subsets of the set of d attributes are used
for grouping). Even for very sparse base data, the groups
with a small number of attributes are typically dense enough
to be efficiently maintained in array structures. Instead of
re-computing dense views from the huge base data from
scratch, our approach enables efficient incremental mainte-
nance.

The outline of the paper is as follows. In Section 2 we
present the general framework for aggregation over append-
only data sets. An instantiation of the framework for MO-
LAP data cubes is developed in Section 3. Section 4 shows
how we can apply our framework to a wide variety of appli-
cations by using multiversion data structures. We report the
results of an extensive experimental evaluation in Section 5.
Section 6 discusses related work. Concluding remarks and
open problems are presented in Section 7.

2. A GENERAL FRAMEWORK

In this section we develop a framework to support the
efficient incorporation of historical information as well as
answering aggregate queries. The framework is quite general
and does not assume any particular storage structure for
the underlying data, e.g., MOLAP or ROLAP data. This
section also introduces important terminology that will be
used throughout the paper.

2.1 Terminology

With D we denote a data set with d dimension attributes
d1,02,...,04 and a single measure attribute m. Note, that
our technique easily generalizes to data sets with multiple
measure attributes. Let (X%, v), X% = (z1,22,... ,24), Te-
fer to a point in D and its measure value v. A point ezxists
in the data set, iff its measure value is not NULL. A mul-
tidimensional range query specifies a range (L;,U;) in each
dimension §;, the selection possibly being a single value or
the entire domain. The query selects all data points X¢ that
satisfy L; < x; < U; for all dimensions J;.

The set D is append-only, iff one of its dimensions, say 41,
is a transaction time dimension (TT-dimension). Dimension
é1 is a TT-dimension, iff the following holds for updates to

D. If an update to point X¢ arrives at the data set before
another update to a point Y'¢, then 1 < y1, i.e., the earlier
update affects a point with a less or equal coordinate in
dimension 4.

A time value t € domain(d;) in the TT-dimension is an
occuring time value iff there is a point (z1, z2,... ,z4) in the
data set such that £; = ¢. This notion is important because
our technique only generates data structures for occuring
time values.

2.2 TheBasic Technique

For simplicity the technique is illustrated for a two-
dimensional data set D and the operator SUM. Let the di-
mensions be time and location. Transactions that commit
at a certain location and time update the value of the mea-
sure attribute (e.g., a sales amount). Records arrive in the
order the transactions commit, i.e., the time dimension is a
TT-dimension.

We can model D as a collection of one-dimensional “time
slices”, i.e., columns of location coordinates for each time
coordinate. Updates can either affect a point in the slice
with the greatest time coordinate, or append a new time
slice with a greater time and insert a new point there. Let
R; denote a data structure that supports range queries on a
one-dimensional data set whose dimension is location, e.g.,
a B-tree with location keys. For each occuring time value
t we construct an instance Ri(t) of Ri. Ri(t) maintains all
points X? = (z1,x2) of data set D whose time coordinate
x1 satisfies £1 < ¢t. Hence the instances of Ry contain cumu-
lative knowledge about the data points. Figure 1 shows an
example. The data set and its corresponding instances of R
are shown for each step while processing a sequence of up-
dates. Note that Ri(1) and R:(3) do not change any more
as soon as a point with greater time coordinate is appended.

This cumulative knowledge enables us to reduce a two-
dimensional range query to two one-dimensional range
queries as follows. For our example data set let the query
compute the sum over all points (z1,x2) that satisfy 2 <
1 < 4 and 3 < z2 < 5. We first perform the location
range query 3 < z2 < 5 on Ri1(4) which is the instance of
Ry with the greatest time value which is less than or equal
to the upper value of the selected time range. This query
returns 13 (cf. Figure 2), which is the sum over all points
whose time coordinate is less than or equal to 4 and whose
location coordinate is within the selected range. To answer
the actual range query, we have to remove all points whose
time coordinate is less than 2. Hence we also perform the
location range query on R;(1) and subtract the result from
the initial value, obtaining the correct result of 6.

Note that each single instance Ri(t) by itself can only an-
swer range queries that select half-open time ranges, i.e., “all
points in D whose time coordinate is less than or equal to ¢”.
We will use the term prefiz time query for this type of range
queries. Hence our technique reduces any two-dimensional
range aggregation query on D to two one-dimensional prefix
time queries. Note that the way the prefix time queries are
combined is reminiscent of the Prefix Sum technique of [12].
However, in contrast to prefix-sums which specify half-open
ranges in each dimension, a prefix time query only specifies
a half-open range in the append-only time dimension.

To perform an update, first the appropriate instance of R
is selected. Since the data set is append-only, this instance
is the one with the highest time coordinate. In the example

Development of the data set:

Update operation: update((1,4),7) update((3,2),9) update((3,4),5) update((3,4),-5) update((4,4),6)
5 5 5 5 5
s X X X X X X X
S 4 4 4 4 4
§ 3 7 3 7 3 7 5 3 7 3 7 6
= 2 2 X 2 X 2 X 2 X
1 1 9 1 ° 1 9 1 °
time 1 103 103 103 1 34
Corresponding instances of R1 after each update:
R1(1) R1(1) R1(3) R1(1) R1(3) R1(1) R1(3) R1(1) R1(3) RI1(4)

R1: index on location

bt

T

M AN

Figure 1: Data set and corresponding data structures

Aggregates:
Data set and query: Instances of R1:
R1(1) R1(3) R1(4)
4 2 4 2 4
7 97 9113
1234 \ /
-— Query on R1:
T 3<=location<=5

Query processing:

Query result on R1(4): 13) .
Query result on R1(1): 7 Final result: 13-7 =6

Figure 2: Translation of a two-dimensional range
query on D to two one-dimensional range queries on
the cumulative data set

in Figure 1 the next update will have time coordinate 4 or
greater. If an update affects a point with a time coordinate
that is greater than for the previous update, a new instance
of R is created by copying the latest one. In Figure 1 the
second update shows an example where the new instance
R1(3) is created. The copying can be quite expensive and
results in high redundancy for sparse data sets. We discuss
efficient approaches in the particular context of the under-
lying data models in Sections 3 and 4. Note, that updates
to points with historic time coordinates cause a cascade of
updates to all instances of R with greater time coordinates.
We discuss in Section 2.5 how to deal with such out-of-order
updates.

2.3 Formal Description and Analysis

Let D be a d-dimensional point data set where dimen-
sion §; is a TT-dimension. Let R;—1 denote an arbitrary
data structure for (d — 1)-dimensional data points that sup-
ports update and query operations as specified in Table 1.
Examples of recent data structures with specific support for
aggregate range queries can be found in [19, 16]. X! refers
to a data point, represented as a (d — 1)-dimensional vec-
tor of dimension values. The update operation changes the
measure value of point X¢~' by the value A. Insertions
and deletions of points are translated to the corresponding
update operation. The actual translation depends on the

aggregate operator, but is straightforward and hence not
discussed here.

For each occuring time instant ¢ € domain(d;) there is an
instance Rq—1(t) that maintains the (d—1)-dimensional pro-
jections of all points Y¢ € D where y1 < t. On the original
d-dimensional data set D we have to support updates and
queries as shown in Table 2. As before insert and delete op-
erations are translated to the corresponding updates. Given
Rg4_1, the operations on D can be implemented by perform-
ing corresponding operations on instances of R;_1 for the
appropriate times.

Recall, that the time coordinate x; of an updated point
X% has to be at least as large as the time coordinate,
say t, of the previous update. If x; is equal to ¢, the
update affects an existing instance (the latest, to be pre-
cise) Rq—1(t) of Rq—1. Hence the corresponding operation
updateg, ((z2,s,-..,Ta),A) is performed on Rq_1(t). If
an update has a time coordinate z; that is greater than ¢,
a new instance Rq_1(x1) is created by copying Rq—1(t) and
proceeding as described above. For now we simply assume
that there is a way of generating the copy in constant time.
In Sections 3.3 and 4 we will discuss possible solutions that
are equivalent to this constant-time copy process. Hence
in total the cost of an update to D is equal to the cost of
performing the update on the latest instance of Rq—_1.

Operation query,(L?,U?) is implemented as follows.
First the appropriate instances Rq_1(t;) and Rg_1(t,) are
selected. Time t; is the greatest occuring time coordi-
nate that is smaller than l; (lower query value in the TT-
dimension), ¢, is the smallest occuring time coordinate that
is greater than or equal to ui1 (upper query value in the
TT-dimension). With ¢, and ¢ we denote the result of
queryp, ((l2,1s, ... ,1a), (u2,us,... ,ua)) on Rg_1(t.) and

R4—1(t;), respectively. Hence, the result of query, (L9, U?)
is computed as ¢, — ¢;.- Consequently the cost of the d-
dimensional query on D is the sum of the costs of the two
(d — 1)-dimensional queries on instances of Rj_1.

So far, our analysis of update and query cost has not taken
into account the cost for finding the appropriate instances
of R;_1. We need a directory that maintains the correspon-
dence between time values and instances of Rg_1. One can
use standard one-dimensional data structures for this pur-
pose, e.g., a B-tree for a sparse or an array for a dense TT-
dimension. Since updates only affect the latest instance of

Operation Comments

updatep, (XTI A) adds A to the measure value of point X'

queryg, . (L1, U%1) | returns aggregate of the measure values of all points in the given bounding box
(L is the lower, U the upper corner of the rectangle)

Table 1: Operations supported by the (d — 1)-dimensional data structure R;_;

Operation Comments

update, (X% A) | adds A to the measure value of point X?

query,, (L%, U%) | returns aggregate of the measure values of all points in the given bounding box (boundary included)

Table 2: Operations to be implemented for D

Ri_1, we also maintain a pointer to this instance to guaran-
tee constant time lookups for updates. Note that the pointer
is easily maintained in constant time. For a range query we
have to perform two lookups of the directory. The cost of
a lookup is at most logarithmic in the number of occuring
time values.

Since the number of occuring time values can never exceed
the number of data points in D, a directory lookup costs at
most logn, where n denotes the number of data points in
D. Typically the cost of a query on an instance of Rq—1 (a
(d—1)-dimensional range query) will be greater than the di-
rectory search cost. Based on this assumption our technique
is optimal in the following sense. Query and update costs for
a d-dimensional append-only data set D are only by a con-
stant factor more expensive than on the (d — 1)-dimensional
projection that is obtained by removing the TT-dimension
d1. Hence, solving a d-dimensional aggregation problem is
essentially reduced to a (d — 1)-dimensional problem on a
projection of the data set. If the above assumption does not
hold, i.e., the directory search cost dominates the query cost
on R;_1, we would have a data structure that can answer
d-dimensional range queries at a cost which is logarithmic
in the number of data points—a truly great result by itself.

2.4 Dealing with Extent

For simplicity our framework was described for point data,
i.e., a data item is a d-dimensional point with a measure
value. In practice data items could be objects that have an
extent in multiple (if not all) dimensions. For instance, a
map or satellite image covers an area rather than a point.
Temporal databases often contain objects which have a cer-
tain life time, etc. Our framework covers all these cases.

If an object has extents in any subset of the dimensions
82, d3, ... ,04 (i-e., any dimension except the TT-dimension),
the solution is simple. One can pick any efficient (d — 1)-
dimensional data structure R;—1 that supports queries and
updates of objects with extent [24]. Then our construction
can be applied as described in Section 2.3, using the same
query and update transformations.

In the most general case objects could also have an extent
in the TT-dimension, i.e., their time “coordinate” is actually
an interval which for instance indicates when the object is
valid. Our approach as described so far could not answer
queries that look for objects whose time intervals intersect,
contain, or are contained in a certain query time interval.

We address this problem by using a reduction similar to
Zhang et al. [23]. Instead of a single instance Rq_1(t) for

time ¢ we use two instances Cgq_1(t) and Bg_1(t). Ca—1(t)
maintains all objects whose time interval contains t, while
Bg_1(t) maintains all objects whose time interval ends
strictly before t. We explain for the operator COUNT how
these structures are used to find the number of objects that
intersect a time interval (fiow,tup). The query is answered
based on the following observation. The number of objects
whose time intervals intersect the query interval is equal to
b(tup) + c(tup) — b(tiow). Expressions b(tup) and b(tiow) de-
note the number of objects whose time intervals end strictly
before tup, and tiow, respectively. The term c(typ) refers to
the number of objects whose time intervals contain ¢yp. The
reader might easily convince her/himself that this equation
is correct. Value b(typ) is obtained from Bg—_1(typ) where
tup denotes the greatest occuring time that is less than or
equal to tyup. Similarly, we find b(tiow) in Bg_1(fiow) Where
tiow is the greatest occuring time that is less than or equal
t0 tiow. C(tup) is obtained from Cy_1(fup).

Other invertible aggregate operators and containment
queries are handled similarly. Using B;—1 and C4_1 we can
answer d-dimensional aggregate range queries on D with ob-
jects that have an extent in the T'T-dimension. The query
cost increases only slightly. A d-dimensional aggregate range
query now requires three instead of two (d — 1)-dimensional
queries (two accesses to Bg_1, one access to Cg—1). The up-
date cost approximately increases by the same ratio as the
following analysis shows. Let to and ¢; be start and endpoint
of the time interval of an object. At time to the insertion
of the object triggers an insertion to Cy—1(to). Then at
time ¢; the end of the interval triggers a delete operation in
Ci—1(t1) and an insert to B4_1(t1). The storage consump-
tion approximately doubles.

2.5 Dealing with Out-of-Order Updates

The discussion so far has relied on the fact that all updates
are append-only. In practice this might not be the case, e.g.,
when sales are registered late or when historic values are
corrected. A nice property of our approach is that it can
be extended such that the performance degrades gracefully
with an increasing percentage of out-of-order updates.

An out-of-order update by definition affects a historic time
slice. Due to the cumulative nature of our construction,
an update to point U¢ = (u1,us,... ,us) (i.e., with value
u1 in the TT-dimension) has to be propagated to all in-
stances Rq_1(t) with ¢ > wu;. Instead of applying these
potentially expensive updates instantly, we maintain them
in a general d-dimensional data structure G4 that supports

the operations in Table 2 without taking advantage of the
append-only property. Note that G4 and R;—1 are drawn
from the same “pool” of data structures, well-known ex-
amples being R-tree and X-tree. For an out-of-order update
updatep, (X9, A) Gy stores the d-dimensional point (X<, A).
Append-only updates are processed as discussed in Sec-
tion 2.3 without affecting G4. Queries first compute an ini-
tial result based on the algorithm presented in Section 2.3.
Then they are post-processed to take the effect of the out-
of-order updates into account. This is done by answering
the original range query using G4 and adding the obtained
result to the initial value.

Note that the number of points in G4 is equivalent to the
number of out-of-order updates and that the query and up-
date cost of G4 are the costs for a general d-dimensional
data set. Hence with an increasing percentage of out-of-
order updates, query and update costs converge to the cor-
responding costs on a general d-dimensional data set which
is not append-only. This gives us a technique that automat-
ically takes advantage of append-only updates and which
gracefully degrades to a general technique if the updates are
general.

One can reduce the query cost, especially for data sets
with a small percentage of out-of-order updates, by letting
an asynchronous background process apply updates that are
stored in G4 to the appropriate instances of Rq4_1, beginning
with the latest instance to avoid that the process “chases”
newly created time slices. Details are beyond the scope of
this paper.

3. APPLYING THE FRAMEWORK TO
MOLAP DATA CUBES

Having discussed the general framework, this section de-
velops an instance for MOLAP data cubes. The underlying
assumption is, that the data set is maintained in a multi-
dimensional array. We will explain our technique for the
aggregate operator SUM.

3.1 MOLAP Aggregation Techniques

There exists a variety of work that aims at speeding up
aggregate range queries for invertible operators on MOLAP
data cubes, e.g., [12, 4, 8, 20]. The common idea is to gen-
erate a certain tradeoff between query, update, and storage
cost by carefully selecting aggregates that are pre-computed
and materialized to reduce the amount of on-the-fly com-
putation. The technique by Riedewald et al. [20] general-
izes and improves on earlier work and provides a variety of
query-update cost tradeoffs. Since this technique allows the
combination of different aggregation techniques for the di-
mensions, it constitutes an ideal basis for implementing our
framework which requires the TT-dimension and the other
dimensions to be treated differently.

The main idea is as follows. For each dimension a (possi-
bly different) one-dimensional pre-aggregation technique is
selected. Such an aggregation technique replaces the values
in the cells of a one-dimensional array by sums over some
cells. By iterating through all dimensions and applying the
selected aggregation technique to all one-dimensional vec-
tors “along” that dimension, the original array containing
D is transformed to an array of the same size that contains
pre-computed aggregates instead of the original values. We
will summarize one-dimensional pre-aggregation techniques

On gi naJ array A: Range query q(2 6) Update: add -4 to A[1]:

1234567

1 5 0
ARTAATT) _ [1[1]a]1]1]1]

q=1+1+1+1+1=5

Prefix array P:
012 3 465 7 1 5 7 012 3 456 7
\1\2\3\4\5\6\7\8\ -3\4\5\6- [1[-2[-a[o]1]2[3]4]

q=7-2=5

Figure 3: Original array A and prefix array P

that are relevant for this work and then illustrate the tech-
nique. For details the interested reader is referred to [20].

Let A be a one-dimensional array with NV cells: A[0], A[1],

. ,A[N — 1]. The aggregate range query ¢(l/,u) computes
Ef:l Ali]. Clearly, a query accesses N cells in the worst
case. An update to A that changes the value in a cell affects
only this one cell. By replacing each value A[k] by the cor-
responding prefiz sum Plk] = ZLO Ali] we can generate a
prefix array P. This is referred to as the Prefix Sum Tech-
nique (PS) [12]. Using PS we can compute any query g(I, u)
as Plu] — P[l — 1] (setting P[—1] = 0 for notational conve-
nience). Hence, the query cost is reduced to at most two
cell accesses. On the other hand an update to A[i] would
affect all P[j] where j > 4, i.e., N cells in the worst case.
Figure 3 illustrates the different query and update behavior
for A and P. The cells that are accessed for processing a
query and an update are shaded. The selected cells in the
original data set are indicated with boxes.

Arrays A and P represent the two extremes of a variety of
tradeoffs between query and update costs. To balance query
and update costs [8] proposed a technique called Dynamic
Data Cube (DDC). We use a variation of this approach to
generate the pre-aggregated array D from A. The technique
stores the sum of all values A[], 0 <i < N —1,in D[N —1].
In D[(N—1)/2] the sum of all values A[j] in the left half, i.e.,
0 <j<(N—1)/2,is stored. Then the left and right subar-
ray (excluding D[(N —1)/2] and D[N — 1], respectively) are
processed recursively as follows. The middle of the subar-
ray contains the sum of the cells A[¢] in the left half of this
subarray, and so on. The recursive processing establishes a
hierarchy of the cells. Figure 4 shows an example where the
boxes in the DDC computation tree indicate the cells whose
values are added to obtain the corresponding value in D.
Any prefix sum P[k] can be computed by conceptually de-
scending the hierarchy until the node with index k is found.
On the path a node value contributes to P[k] iff the node’s
index is less than or equal to the query index. Hence at each
level at most one node is accessed resulting in a worst case
cost of log, IV cell accesses to compute any P[k] using D. As
described for PS array P, any general range query can be
reduced to two prefix queries, therefore the worst case query
cost using D is 2log, N. In the example in Figure 4 we ob-
tain ¢(2,6) = P[6] — P[1] = (D[3] + DI[5] + DI[6]) — D[1].
Similarly it can be shown that an update affects at most
log, N cells.

As proved in [20], multiple one-dimensional techniques
can be combined to compute pre-aggregated multidimen-
sional arrays. The strength of the approach is that the one-
dimensional techniques also provide a simple way of finding
all cells in a pre-computed array that have to be accessed
for a query or an update. The indices of accessed cells (and
possibly a factor like —1 depending on the pre-aggregation

DDC computation:

I 11s)

DDC array D:
1234

0 56 7
(1[2[1]4]1]2[1]8]

Range query: q(2,6)
01234567
8]

q=4+2+1-2=5

- 01234567

Update: add -4 to A[1]:
Conceptual hierarchy

Figure 4: DDC array D

technique) are computed for each dimension independently.
The solutions are combined by generating the cross prod-
uct over all result sets and multiplying the corresponding
factors.

3.2 Exploiting the Append-Only Property

As discussed in Section 2.3 our technique maintains each
time slice with time coordinate ¢ in a separate instance
Ry_1(t) of a (d—1)-dimensional data structure. Since we are
now dealing with arrays, Rq—1(t) is also an array whose cells
might contain pre-aggregated values as discussed in the pre-
vious section. The cumulative construction of the Rg_1(t) is
equivalent to using PS as the pre-aggregation technique for
the TT-dimension. Recall also, that updates only affect the
last instance. Hence, historic instances should be optimized
for query support, while the latest instance has to support
queries and updates efficiently. This makes PS the ideal
choice for all dimensions in historic instances, while DDC
is the best choice for dimensions §2, d3, ... ,04 in the lat-
est instance. Figure 5 illustrates this data structure. Since
the one-dimensional PS technique has a worst case query
cost of two cell accesses, any query on the historic part ac-
cesses at most 2¢ cells. The resulting query cost therefore
is independent of the domain sizes and the size of the query
region. A query on the latest instance of R4, costs at most
H?:Q(Zlog2 N;) cell accesses where N; is the domain size in
dimension §; (based on a query cost of 2log, N; in each di-
mension due to using DDC). For simplicity and w.l.o.g. we
will further on assume that all V; are equal to N. Hence the
worst case query cost in the latest instance is (2log, N)4~1.
Similarly, the update cost is bounded by (log, N)*~*.

Historic data Latest (i.e., current) instance:
. X
\§ (}é}
& / % §

[}

g 4 1A) next

= l Queries £ time

£ PEmE————— s

g g

b [©]
s}

2 =)

PS technique Updates
TT-dimension

Figure 5: Ideal combination of pre-aggregation tech-
niques for the append-only data set

If an update affects a point X?¢ whose time coordinate x;
is greater than the time coordinate ¢ of the latest instance
Rq_1(t), Rq—1(t) is copied to create a new instance Rq—1 (1)
(cf. Section 2.3). We will describe a technique for making

a copy in an efficient manner in the next section. Here we
focus on another problem. When Ry_1(z1) replaces Rq—1(t)
as the latest instance, R4—1(t) now belongs to the historic
data. Hence it should be transformed from using DDC to
using PS for dimensions &2, d3, ... ,04. The straightforward
solution is to perform the transformation as soon as Rq_1(t)
becomes historic. However, this would introduce a large
overhead (in the order of the size of a whole time slice)
to an update that creates a new instance. The benefit of
eagerly transforming all values is also questionable, since
queries might not access all cells.

We present a more elegant solution that does not require
an instantaneous transformation, but instead gradually lets
queries change the pre-aggregation scheme with a small
overhead per operation. We refer to the resulting data cube
as the Fvolving Data Cube (eCube). The main idea is to
allow both PS and DDC pre-aggregated values to coexist
in the historic instances of R4—1. More precisely, a cell of
a historic instance contains a measure value which is either
a pre-aggregated value based on using DDC in dimensions
82, 03, ... ,04, Or it is a pre-aggregated value based on using
PS in all these dimensions (note, that in dimension d; PS
is always used). To distinguish between the cases, a bit is
added and used as a flag.

eCube mixes PS and DDC in a single array and hence
can not use the standard DDC and PS query algorithms.
We developed a combination of the two algorithms that is
also defined based on the one-dimensional case. We discuss
a two-dimensional eCube example to give a flavor of the
approach. Figure 6 shows a time slice with the initial DDC
values (obtained for an original array that contained value
1 in each cell). The algorithm is shown for a prefiz range
query that selects range (L2, U?) = ((0,0), (2, 6)). First the
cell in the upper right corner is checked if it contains a PS
value. If yes, the algorithm could stop and return the value.
Here the value is DDC aggregated, therefore the algorithm
computes the addresses of all cells that would be accessed
by the DDC query algorithm (shaded in left array). Then it
uses the PS query algorithm to compute PS(2,6) from the
“neighboring” DDC cells PS(1,6), PS(2,5), and PS(1,5).
These PS values are computed recursively in the same way.
After computing a PS value, it replaces the former DDC
value in a cell. Subsequent queries can take advantage of
these PS values and save some if not all recursive calls. In
the example, if the next query computes the sum for range
((0,0)(2,3)) it returns after the first cell access. Note, that
the new eCube query algorithm accesses in the worst case
as many cells as DDC.

The above algorithm easily generalizes to instances with
(d — 1) dimensions. General range queries are answered as
follows. First the PS algorithm is used to reduce the general
range query to at most 2¢ prefiz queries. If the accessed cells
contain DDC values, the corresponding PS value is com-
puted recursively using the PS technique as described above.
Note, that the indexes for this recursive computation are re-
stricted to the sets of indexes the DDC technique returns for
a certain query. For instance in Figure 6 the value PS(2,5)
is computed from PS(1,5), PS(2,3), and PS(1,3) because
the DDC technique returned index sets {1,2} and {3, 5,6}
for the first and second dimension, respectively. Alternative
computations, e.g., based on PS(1,5), PS(2,4), and PS(1,4)
were therefore not considered.

The advantage of combining DDC and PS in the described

DDC pre-aggregated ~ Time slice after

time dlice executing the query:
(before query):
7 7816|832
6 61142114 D Query region in data set
5 5(2|12/18| 8
4 411121114 N Cell as accessed by DDC
3 31418 16
2|1]2]114 2|112]114 O cal with PS value
112]4/2]8 112]/4/2|8
ojli2 1}4 0|1]2]1|4
0123 0123

Steps while processing the query:

PS(2,6): valueis DDC => PS(2,6) = PS(1,6)+PS(2,5)-PS(1,5)+DDC(2,6)
PS(1,6): valueis DDC => PS(1,6) = PS(1,5)+DDC(1,6)
PS(1,5): valueis DDC => PS(1,5) = PS(1,3)+DDC(1,5)
PS(1,3): valueis DDC => PS(1,3) = DDC(1,3) = 8, mark as PS
Return: PS(1,5) = 8+4 = 12, mark as PS
Return: PS(1,6) = 12+2 = 14, mark as PS
PS(2,5): valueis DDC => PS(2,5) = PS(1,5)+PS(2,3)-PS(1,3)+DDC(2,5)
PS(1,5): marked as PS, value = 12
PS(2,3): valueis DDC => PS(2,3) = PS(1,3)+DDC(2,3)
PS(1,3): marked as PS, value =8
Return: PS(2,3) = 8+4 = 12, mark as PS
PS(1,3): marked as PS, value = 8
Return: PS(2,5) = 12+12-8+2 = 18, mark as PS
PS(1,5): marked as PS, value = 12
Return: PS(2,6) = 14+18-12+1 = 21, mark as PS

Figure 6: eCube query processing

way is that the resulting (d — 1)-dimensional data structure
for Rq_1 has the same worst case query cost of (2log, N)¢~1
as a DDC pre-aggregated array. However, at the same time
it supports PS and DDC values in the same structure and
transforms the values to PS. Hence the query cost gradually
converges towards the PS cost of 24! in the worst case.
Since only accessed cells are transformed, the actual trans-
formation does not incur any access overhead. At the same
time the technique automatically adapts to query patterns.
When multiple queries hit a certain region, the values are
changed to PS and thus considerably speed up all subse-
quent queries to the same region.

3.3 CopyinglInstancesof r, ; Efficiently

When an update affects a cell X¢ whose time coordinate is
greater than the time of the latest instance Rq—1(t), a new
instance R4—1(x1) has to be created by copying Rq—1(t).
The straightforward implementation would add O(N?™")
cell accesses to the original update cost. To avoid such
“copy-bursts” we propose a new strategy for in-memory ar-
rays which can be easily extended to support arrays in ex-
ternal memory (hard disk). The main idea is to amortize the
copy cost by distributing it over multiple operations. The
justification behind this approach is that arrays are only
used if the data set is not “too sparse”. Hence in the aver-
age there are several updates per time slice which can share
the copy cost.

For the sake of simplicity the technique is presented for
a two-dimensional array. As usual d; (time) is the TT-
dimension. Recall, that the PS technique is used for this di-
mension, while DDC is used for dimension 42, say location,
in the latest instance of Rg_1.

For each historic time slice a consecutive area that holds
the measure values of the N cells is allocated in memory.

Apart from that an array cache of size N is maintained.
This array contains the latest value for each location to-
gether with a time stamp. Figure 7 shows an example that
begins at an intermediate step after processing some earlier
updates. The time stamps in cache indicate the time of
the last update to that location coordinate. For instance,
initially location 0 was last updated to value 3 at time 0,
therefore cache contains the value 3 and time stamp 0 for
that location. This indicates that the historic instances for
time 0, 1, and 2 should all contain value 3 for location 0.
However, our lazy copy strategy does not guarantee that all
historic instances are complete.

Initial status: Historic data

3/5|6
§2[0]0
®1|3|4
So
012
Time vaue time stamp
Effect of updates:
update((3.2).2) 3[5]6 ~— DbDC
2/0/0 = update
1/3/4 propagation
o [[1]
0123
update((3,0).5) 3[5]6]11] ~— DpDC
210/0/1 update
134 ~—propagation
0 -~
0123

Figure 7: Update processing example

Updates are processed by first invoking the DDC update
algorithm to determine which cells in cache are affected.
Each affected cell is processed as follows. If its time stamp
is equal to the time coordinate of the update, only the value
is changed accordingly. If the time stamp is smaller, a new
version has to be created. To do so, first the old value is
copied to all historic time slices whose time coordinate is
greater than or equal to the time stamp. Then value and
time stamp in cache are updated. If an update affects a new
time slice, space for this slice is reserved in the part with the
historical data. Note, that the whole block of memory is only
marked as “reserved”, but not actually filled with any values.
In Figure 7 the first update appends a new point with time
3, therefore storage is reserved in the historic array. Since
location coordinate 2 is affected, the DDC pre-aggregation
triggers an update to row 3 as well (indicated by arrows).
In both rows the update time coordinate is greater than the
time stamp in cache, therefore the old values are copied to
time slice 2. All updated cells are shaded. The other update
is processed similarly.

Unfortunately updates to cells which were not updated
for a long time can trigger a large amount of write accesses
to historic time slices (e.g., second update in Figure 7). We
reduce these costs by using a copy-ahead mechanism. Recall,
that a single update to a DDC-pre-computed array might
affect between one and log, IV cells. In the example the first
update only affects two rows, while the second affects three
rows. It is reasonable to let cheaper updates perform some
extra work. More precisely, we first perform the update as
described above and keep track of its costs. If the update
cost is below a threshold, it additionally copies some other
values with old time stamps from cache to the corresponding

historic cells. The copy-ahead iterates over the cells until all
time stamps in cache are current.

We now discuss how a query is processed that selects
ranges L = (liow,lup) and T = (tiow,tup) in location and
time dimension, respectively. Recall that this query is re-
duced to two queries that select range L on time slice ¢1ow — 1
and typ, respectively. Based on the DDC algorithm the re-
quired cells in the corresponding time slices are determined.
For each selected cell it is first checked in cache what the
latest time stamp of this cell is. If the time stamp is greater
than tup (tiow), the value is obtained from time slice tup
(tiow) in the historic array. Otherwise the value in cache is
used. The correctness of this algorithm is straightforward.

3.4 The Complete Algorithms

Putting it together, we get the complete update and
query algorithms for a d-dimensional data set shown in Fig-
ures 8 and 9. As shown for the framework, a d-dimensional
query is reduced to two (d — 1)-dimensional queries. Since
both DDC and eCube guarantee a worst case query cost of
2¢=1(log, N)%~!, the overall worst case query cost for D is
2%(log, N)?~'. Updates are performed using the DDC up-
date algorithm on cache which guarantees a worst case cost
of (log, N)*~'. For now we assume that the overhead for
copying cells from cache to the historic instances (during
steps (3) and (4) in Figure 8) is in the order of the query
cost, i.e., does not affect the analysis. Consequently, as ana-
lyzed for the framework, we obtain a technique for maintain-
ing and querying a d-dimensional append-only array where
query and update cost are provably within a constant factor
of the respective costs on a (d — 1)-dimensional projection
of this array, i.e., where the TT-dimension is removed.

Algorithm Update

Input: cache, historic time slices hSlices,
update(X?, A), pointer to cell Z¢~! in cache,
time of last update tass

(1) If (z1 > tiast) reserve space for new time slice
with time z1 in memory and set tiast = Z1;
(2) affected = set of cells in cache that are affected
by the update to (z2,zs, ... ,zq) according to the
DDC algorithm;
(3) For all cells Y4 = (32,93, ... ,yq) in affected
If (cache[Y4~!].timeStamp == z;)
Perform update op on cache[Y?!];
Else // New time slice
Copy cache[Y? '].value to cell Y~ in all
historic time slices whose time coordinate
is > cache[Y?!].timeStamp;
Perform update op on cache[Y471];
Set cache[Y'? !].timeStamp to x1;
(4) While (current total cost of operation is low)
If (cache[Z%~'].timeStamp < 1)
Copy cache[Z% !].value to Z% ! in
hSlices[cache[Z¢ !].timeStamp];
Increment cache[Z% !].timeStamp;
Else set Z¢~" to next cell in cache;

Figure 8: Update algorithm

It remains to analyze the overhead added by copying cells
from cache to the historic instances of R4—1 during steps (3)

Algorithm Query

Input: cache, historic time slices, query(L%, U?),
pointer to cell Z4~! in cache,
time of last update tias¢

(1) result(U¢) =

eCubeQuery(((l2,l3,... ,la),(u2, us, ... ,uq)), u1);
(2) result(L%) =
eCubeQuery(((l2,l3,... ,la),(u2, us, ... ,uq)), b —1);

(3) return result(U?) - result(L%);

Function eCubeQuery
Input: query range described by L¢~! and U%~!, time ¢

(1) Get PS coefficients to compute range query and
combine them to obtain relevant cells;

(2) Recursively compute PS value for each relevant cell;
/* The computation is based on the eCube alg.
and replaces the DDC values by the corresponding
PS values in all accessed cells */

(3) Combine the results according to the PS algorithm
and return total result;

Figure 9: Range query algorithm

and (4) of the update algorithm. Our goal is to guarantee
that no cell in cache has a time stamp that is by more than
a small constant smaller than the latest update time stamp.
Let the original data set have an average density of 6, 0 <
6 < 1. This implies that on the average there are at least 0
update operations per cell. Hence, if we perform an average
of 1/6 copy operations per update, then after performing
all updates, all time stamps in cache are expected to be up
to date. Arrays are only efficient if the underlying data set
is not too sparse, i.e., has a minimum density min. Hence
the average copy overhead is bounded by a constant 1/0min.
Such average bounds guarantee an amortized constant copy
cost per operation, but can not avoid higher costs for single
updates if the density of different time slices varies widely.
Our experiments, however, indicate that even such variances
can be handled well.

3.5 External Memory Algorithm

If the array is too large to fit completely in main memory,
the historic data (cf. Figure 5) has to be maintained on
disk. We have developed an I/O-optimized version of our
technique. A discussion is omitted due to space constraints.
For details please refer to the full version of the paper [21].

4. USING MULTIVERSION STRUCTURES

Section 3 presented an instantiation of our framework for
MOLAP data cubes. The main challenge is to find a tech-
nique for efficiently maintaining multiple instances of the
(d — 1)-dimensional data structure Rq—; (cf. Section 2.3).
Simply copying the latest instance R4—1(t) when an update
appends a new point X¢ with z1 > t would add an over-
head to this update which is linear in the size of Rq_1(t).
Also, if only a few updates affect points with time x1, the
simple technique will create a large amount of redundancy.
For MOLAP arrays this is not a problem since arrays are
used for fairly dense data sets. In the following we discuss
solutions for sparse data.

A problem similar to maintaining instances of R4—1 occurs

when a data structure is made partially persistent. Data
structures are typically ephemeral or single-version in the
sense that making a change to the structure destroys the
old version, leaving only the new one [6]. For instance, af-
ter changing the value in an array cell, the former value is
lost. If any of the versions can be queried, the structure is
partially persistent or multiversion. For example, a multi-
version array allows a query against both the array before
or after the update. Further on we will use the terms single-
version and multiversion. Making a single-version structure
to become multiversion requires building a data structure
that can efficiently represent all versions simultaneously.

The instances R4—1(t) of Rq—1 represent some of the ver-
sions of the (d — 1)-dimensional projection (projecting the
TT-dimension out) of the original data set D. In the exam-
ple in Figure 1, after the last update the instances Ri(1),
R1(3), and Ri(4) capture the state of the one-dimensional
data set (dimension is location) after the first, fourth, and
fifth update, respectively. A multiversion structure for Rz
would allow queries against each of these versions, and the
remaining intermediate versions as well. In that sense the
multiversion construction is actually more powerful than
what we need for our framework. Stated differently, we
can implement the framework described in Section 2.3 by
making Rg4_1 multiversion.

Being able to take advantage of the multiversion construc-
tion, our technique can draw from a rich body of related
research. Driscoll et al. [6] and Brodal [3] propose tech-
niques for making any directed graph whose nodes have
bounded size and in-degree multiversion. Their construc-
tion can be applied to virtually all index structures. Up-
dates and queries are in the worst case by a constant factor
more expensive on the multiversion structure than on the
corresponding version of the single-version data structure.
The storage requirement is linear in the number of updates.

These techniques are optimal for in-memory structures,
but, as Becker et al. [1] point out, are not efficient for block-
wise I/O operations. Their multiversion B-tree addresses
the issue and offers the same worst case bounds for queries
and updates as a standard B-tree, i.e., is asymptotically
optimal. Similarly the Multiversion SB-tree [23] technique
of Zhang et al. guarantees that aggregate range queries and
updates on a two-dimensional append-only data set can be
performed at the same asymptotic costs as on a general one-
dimensional data set. Note that their technique constitutes
an instance of our framework for data sets of time intervals.
Other access structures, e.g., the R-tree and its variants can
be made multiversion in a similar way [15, 22] and provide
better query and update costs than the corresponding single-
version tree with an additional time dimension.

Some of the multiversion constructions guarantee that the
multiversion feature essentially comes “for free” [1, 3, 23],
making it an ideal tool for our framework. Unfortunately,
to the best of our knowledge there is no multiversion ar-
ray where each cell in each version can be accessed in con-
stant time and where updates to the current version incur
constant worst case cost as well. This motivated our new
approach (cf. Section 3).

5. EXPERIMENTS

We performed an extensive experimental evaluation of
our MOLAP aggregation technique. In Section 3.4 query
and update cost were already shown to be at most twice as

big as or equivalent to the corresponding cost on a (d — 1)-
dimensional time slice of the d-dimensional array. This anal-
ysis assumed that the cost of making copies of instances of
R4-1 could be amortized over multiple update operations.
The main goal was to validate this assumption.

Here we discuss experiments for three selected data sets
(see Table 3). Experiments with other data, e.g., synthetic
uniform and gaussian data sets, and real data sets, lead to
the same conclusions. The selected data sets are sparse,
and especially weather4 and weather6 would be expected
to cause difficulties for array based techniques due to their
dimensionality. Recall also, that the cost bounds of the pre-
aggregation techniques (cf. Section 3.1) grow exponentially
with increasing dimensionality. Note, that weather4 and
weather6 were obtained from the same data set [11] and
were selected such that they have approximately the same
total number of cells (note the granularities of latitude and
longitude in the sets). The reason for the different num-
ber of non-empty cells is that both data sets are actually
projections of a 20-dimensional original data set.

The query cost was measured for different sets of ran-
domly generated range queries. Here we discuss results for
two query sets skew and uni. If not stated otherwise, uni
was used. The multidimensional range queries of uni are
generated as follows. First for each dimension one of the
query predicates min < z < A (prefix range), A <z < B
(general range), z = A (point query), and min < z < max
(complete domain) is selected with probability 0.1, 0.7, 0.1,
and 0.1 respectively. Then the values of A and B are se-
lected randomly from the corresponding domain. This se-
lection favors general ranges and generates a wide spectrum
of different selectivities. The queries of skew are constructed
in the same way, however, 80% of them concentrate in an
area that is 0.5¢ times the size of the complete data space.

In a first set of experiments we analyzed the efficiency
of the eCube query algorithm. Recall, that eCube com-
bines DDC and PS query techniques to be able to deal
with arrays that contain DDC and PS aggregated values.
A major feature of eCube is that it gradually changes a
DDC pre-aggregated array with polylogarithmic query costs
to PS which has constant bound query costs (2¢ for a d-
dimensional data set). Figures 10 and 11 show the results
for the time slices of weather4. Results for other data sets
were similar (cf. [21]). The eCube algorithm has a clear ten-
dency of decreasing query costs the more queries are pro-
cessed. On the skewed query set a faster convergence is
observed since queries are skewed towards a region of the
data set, i.e., the benefit of changing to PS pays off earlier.
As expected, the cost of DDC and PS varies around the
same average over time since these techniques do not alter
cell values. The values in the graph are the rolling aver-
ages over groups of 50 queries to improve the presentation.
Note, that all algorithms access a very small percentage of
the array, even when comparing to the number of non-empty
cells. An interesting observation is that eCube in the begin-
ning has higher query costs than DDC even though both
techniques guarantee the same worst case costs. The reason
is that eCube always reduces a general range query to two
prefix queries, while DDC’s direct approach avoids accesses
to cells that are added by the first, and then subtracted
by the second prefix query (cf. Section 3.1). This makes a
small difference in each dimension which is amplified with
increasing dimensionality.

Name Description

weather4 | COUNT data cube for cloud data [11]; 4 dimensions (latitude and longitude at granularity of degrees,
total cloud cover, time of measurement); 143,648,037 cells; 1,048,679 non-empty cells (density 0.0073)

weather6 | SUM data cube for cloud data [11]; 6 dimensions (latitude and longitude at granularity of 10 degrees,
total cloud cover, lower cloud amount, middle cloud amount, time of measurement);
139,826,700 cells; 549,010 non-empty cells (density 0.0039)

gauss3

SUM data cube for a data set with 60 dense clusters generated with a gaussian distribution; 3 dimensions
(each with a domain of size 271); 19,902,511 cells; 950,633 non-empty cells (density 0.048)

Table 3: Data sets

DDC —
eCube -
PS - |

140 |
120 -

100 |-

60 [

Average number of cell accesses

40

20

L L L
5000 10 20000 25000

000 15000
Number of queries

Figure 10: Query cost versus number of executed
queries (weather4, uni queries)

180

DDC —
eCube
PS

160 |-

140 |

80 |

60 [

Average number of cell accesses

a0 b e

20 |

L L L
20000 25000

50‘00 10000 15000
Number of queries
Figure 11: Query cost versus number of executed
queries (weather4, skew queries)

The analysis of the update costs in Section 3.4 was based
on the assumption that it is possible to amortize the copy
costs over multiple operations. Figures 12 and 13 com-
pare the cost of updates for an ideal case where copies are
available instantly and “for free” and for our real algorithm
as discussed in Section 3.4. For each update the cost was
recorded. The figures show these costs of the single oper-
ations in sorted order. The area between the two curves
is equivalent to the total copy cost. As can be seen in the
graphs, most copies were performed by the cheapest oper-
ations, while updates that were already expensive did little
extra work. As a consequence, for instance more than 90%
of the updates on weather6 cost less than 900 with and
without including copy costs.

The results in Table 4 complement Figures 12 and 13.

3500 -

free copying —
incl. copying -~

3000 : E
2500 : E
2000 E

1500 i 4

Cost of that update

1000 - R

s0f B

:
0 100000 200000 300000 400000 500000 600000
Update number (sorted by cost)

Figure 12: Update cost quantiles with and without
copy cost (weather6)

400

T T
free copying —
incl. copying -

350 - HE |
300 [PoA
250 |- [

200 |- -

Cost of that update

150 -

100

50 |

ot I I I I I I I I I
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Update number (sorted by cost)

Figure 13: Update cost quantiles with and without
copy cost (gauss3)

After each update we measured how many historic instances
of R;_1 were not completely copied yet. For the in-memory
algorithm (cf. Figure 8) the number of incompletely copied
instances is an upper bound on the number of forced copies
during an update (step (3)). Hence, as the results indicate,
the additional copy cost in step (3) is bounded by a small
constant as predicted in Section 3.4. Note, that the extremal
values in Table 4 occur in the beginning of the algorithm.
After a short time the most frequent value is reached and
maintained. The maximum value 5 for gauss3 is caused by
the variance in the number of updates per time slice (because
of the clusters). Nevertheless, most of the time only one
historic time slice is incomplete. The disk based technique
(cf. Section 3.5) copies cells page-wise to disk. The page
size was set to 8K and at most one page access per update

was allowed. This was more than enough to copy cells of
historic instances of R4—1 without ever having more than
one historic instance which was not completely copied. The
reason is that a page fits 2048 cells (since only the measure
values of 4 bytes size each are stored), i.e., a single page
write copies 2048 cells.

Data set Min | Max Most
frequent
weather4 (in-memory) 0 2 2
weather4 (disk) 0 1 1
weather6 (in-memory) 0 2 2
weather6 (disk) 0 1 1
gauss3 (in-memory) 0 5 1
gauss3 (disk) 0 1 1

Table 4: Number of incomplete historic instances of
R4_1 after each update

Arrays are very efficient for maintaining dense in-memory
data sets since each cell’s value can be accessed in constant
time. However, typically they are not the structure of choice
for supporting aggregation on sparse data sets which reside
on disk. Our experiments show, that even for sparse data the
number of page accesses is much lower than for a bulk-loaded
R*-tree. The bulk loaded tree is based on the algorithm
presented in [2]. We used a page size of 8K which favors
the R*-tree (the smaller the pages, the better for the array
which is designed for single cell accesses) and only counted
the number of leaf accesses for the R*-tree, assuming that
all internal nodes could fit in main memory. Apart from
that no further caching was used for both techniques. We
measured the number of page accesses for the R*-tree and
an array that was pre-aggregated using the standard DDC
technique (cf. Section 3.1). The cells within a time slice
were stored in simple row-major order. We performed 10000
uni range queries on weather6 and report the cost of each
single query in Figure 14 in the order of increasing cost.
The figure indicates that the index has considerably higher
query costs, the average costs being 275.65 and 59.17 for
the R*-tree and the array, respectively. The disadvantage
of the DDC technique is that its pre-aggregation leads to a
storage increase by a factor up to 20 compared to the index.
Increasing dimensionality and sparseness at some point will
favor the R*-tree index. For more results see [21].

In conclusion the experiments show that our approach
using eCube efficiently integrates append-only data. Once
data is incorporated the query cost decreases rapidly, ap-
proaching constant overhead. Furthermore we showed that
this approach outperforms traditional multidimensional in-
dex structures, even when they are bulk loaded and hence
optimized for queries.

6. RELATED WORK

Note, that our notion of append-only data is closely re-
lated to temporal databases, where the transaction time of
a fact “is the time when the fact is current in the database
and may be retrieved” [7]. Transaction times are consistent
with the serialization order of the transactions. It is impos-
sible to change the past and tuples are only logically deleted.
Hence, a temporal data set that has a transaction time at-
tribute is an append-only data set. The other important

2000

DDC
Bulk loaded R*-tree ----- |
1800 4

1600 - d
1400 - I
1200 | i
1000 -

800 -

/0 cost of the query

600 -

400

200

e T ! L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Query number (sorted by cost)

Figure 14: Comparison of I/O cost for DDC array
and bulk-loaded R*-tree (weather6)

concept in temporal databases is valid time. The wvalid time
of a fact “is the time when the fact is true in the modeled
reality” [7]. Bitemporal databases support both, valid and
transaction time. Our framework is applicable to any data
set with transaction time, i.e., also bitemporal databases.
Kumar et al. [15] also suggest the multiversion methodology
for constructing efficient bitemporal access methods. How-
ever, their construction is not optimized for aggregation. A
range selected in the TT-dimension would require a query on
each time slice whose time coordinate is within that range
(instead of accessing at most two time slices as guaranteed
by our framework).

The temporal aggregation algorithm proposed by Zhang
et al. [23] represents an instance of our framework for two-
dimensional append-only data sets that consist of time in-
tervals. Previous work on temporal aggregation [9, 14, 17]
mainly focussed on queries that aggregate over the whole
range in all non-temporal dimensions.

O’Neill and Burton [18] present a technique for functional
arrays where multiple versions of array cell values are main-
tained. Like our cache (cf. Section 3.3) data structure, their
scheme is motivated by the fat node method proposed in [6].
Functional arrays are more general than a multiversion ar-
ray since they also allow updates to historic time slices and
hence require more complex algortihms. None of those tech-
niques can guarantee constant single cell accesses and up-
dates. Access to secondary memory is not considered.

The data cube operator [10] has an interesting relation
to our MOLAP aggregation technique. Both the DDC pre-
aggregation technique as presented here and the PS tech-
nique generate arrays whose surface cells correspond to the
tuples of the group-bys (cuboids) of the data cube. More
precisely, the cells contain prefix-sums over the data cube
tuples. Hence, our MOLAP technique is a new way of com-
puting and incrementally maintaining a data structure that
supports efficient range queries on the data cube for append-
only data sets.

7. CONCLUSIONS

We presented a new framework for the efficient mainte-
nance and aggregation over append-only data sets which
play an important role in real applications like data ware-
houses. Our technique makes the query cost independent of
the size of the selected range in the time dimension. This
is of high importance since the data set grows along this

dimension. Both the framework in general and our MO-
LAP instantiation in particular provide efficient means of
incrementally maintaining data cubes for append-only data
streams (cf. weather data sets in Section 5). Our framework
essentially allows adding a TT-dimension and including it
in aggregation queries for free.

As a by-product our technique simplifies the task of retir-
ing old data, called data aging. Data warehouses distinguish
between current detail data, old detail data and summarized
data at different levels [13]. While current detail data and
summarized data are frequently used, access to older detail
data is rare. To deal with the accumulation of huge amounts
of data, an aging process moves old detail data to (slower)
mass storage. Our technique automatically clusters data
based on the time coordinate. This greatly simplifies data
aging. In addition to that, aggregates of retired detail data
can be retained without additional computation costs at the
time of the retirement.

By using existing multiversion data structures our ap-
proach can be applied to a wide range of applications. How-
ever, as discussed in Section 4, these structures are more
powerful than necessary for our framework. An interesting
direction of future research is to examine how much of this
unnecessary functionality could be traded for better perfor-
mance within our framework. We also intend to develop
new data structures that support disk-based aggregation on
sparse data sets.

8. REFERENCES

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
b-tree. VLDB Journal, 5(4):264-275, 1996.

[2] S. Berchtold, C. B6hm, and H.-P. Kriegel. Improving
the query performance of high-dimensional index
structures by bulk-load operations. In Proc. Int. Conf.
on Egxtending Database Technology (EDBT), pages
216-230, 1998.

[3] G. S. Brodal. Partially persistent data structures of
bounded degree with constant update time. Nordic
Journal of Computing, 3(3):238-255, 1996.

[4] C.-Y. Chan and Y. E. Ioannidis. Hierarchical cubes
for range-sum queries. In Proc. Int. Conf. on Very
Large Databases (VLDB), pages 675-686, 1999.
Extended version published as Technical Report,
Univ. of Wisconsin, 1999.

[5] S. Chaudhuri and U. Dayal. An overview of data
warehousing and olap technology. SIGMOD Record,
26(1):65-74, 1997.

[6] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of
Computer and System Sciences (JCSS), 38(1):86-124,
1989.

[7] C. S. Jensen et al. Temporal Databases - Research and
Practice, volume 1399 of LNCS, chapter The
Consensus Glossary of Temporal Database Concepts,
pages 367-405. Springer Verlag, 1998.

[8] S. Geffner, D. Agrawal, and A. El Abbadi. The
dynamic data cube. In Proc. Int. Conf. on Ezxtending
Database Technology (EDBT), pages 237-253, 2000.

[9] J. Gendrano, B. C. Huang, J. M. Rodrigue, B. Moon,
and R. T. Snodgrass. Parallel algorithms for
computing temporal aggregates. In Proc. Int. Conf. on

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

Data Engineering (ICDE), pages 418-427, 1999.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and

H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. Data Mining and Knowledge Discovery,
pages 29-53, 1997.

C. J. Hahn, S. G. Warren, and J. London. Edited
synoptic cloud reports from ships and land stations
over the globe, 1982-1991, 1996. Data available at
http://cdiac.esd.ornl.gov/ftp/ndp026b.

C. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in OLAP data cubes. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
73-88, 1997.

W. H. Inmon. What is a data warehouse? White
Paper, 2000. Available at
http://www.billinmon.com/cif/edw/edw_content.html.
N. Kline and R. T. Snodgrass. Computing temporal
aggregates. In Proc. Int. Conf. on Data Engineering
(ICDE), pages 222-231, 1995.

A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing
access methods for bitemporal databases. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 10(1):1-20, 1998.

I. Lazaridis and S. Mehrotra. Progressive approximate
aggregate queries with a multi-resolution tree
structure. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 401-412, 2001.

B. Moon, I. Lopez, and V. Immanuel. Scalable
algorithms for large temporal aggregation. In Proc.
Int. Conf. on Data Engineering (ICDE), pages
145-154, 2000.

M. E. O'Neil and W. F. Burton. A new method for
functional arrays. Journal of Functional Programming,
7(5):487-514, 1997.

M. Riedewald, D. Agrawal, and A. El Abbadi. pCube:
Update-efficient online aggregation with progressive
feedback and error bounds. In Proc. Int. Conf. on
Scientific and Statistical Database Management
(SSDBM), pages 95-108, 2000.

M. Riedewald, D. Agrawal, and A. El Abbadi. Flexible
data cubes for online aggregation. In Proc. Int. Conf.
on Database Theory (ICDT), pages 159-173, 2001.

M. Riedewald, D. Agrawal, and A. El Abbadi.
Efficient integration and aggregation of historical
information. Technical Report 2002-07, University of
California, Santa Barbara, 2002.

Y. Tao and D. Papadias. MV3R-tree: A
spatio-temporal access method for timestamp and
interval queries. In Proc. Int. Conf. on Very Large
Databases (VLDB), pages 431-440, 2001.

D. Zhang, A. Markowetz, V. J. Tsotras,

D. Gunopulos, and B. Seeger. Efficient computation of
temporal aggregates with range predicates. In Proc.
Symp. on Principles of Database Systems (PODS),
pages 237-245, 2001.

D. Zhang, V. J. Tsotras, and D. Gunopulos. Efficient
aggregation over objects with extent. In Proc. Int.
Conf. on Ezxtending Database Technology (EDBT),
2002. To appear.

