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Abstract. Data cubes provide aggregate information to support the

analysis of the contents of data warehouses and databases. An important

tool to analyze data in data cubes is the range query. For range queries

that summarize large regions of massive data cubes, computing the query

result on-the-y can result in non-interactive response times. To speed

up range queries, values that summarize regions of the data cube are pre-

computed and stored. This faster response time results in more expensive

updates and/or space overhead. While the emphasis is typically on low

query and update costs, growing data collections increase the demand

for space-e�cient approaches. In this paper two techniques are presented

that have the same update and query costs as earlier approaches, without

introducing any space overhead.

1 Introduction

Data cubes are powerful tools to support the analysis of the contents of data

warehouses and databases. A data cube is similar to a multidimensional array.

Certain attributes of the database are chosen to be measure attributes. These

are the attributes whose values are of interest to an analyst. Other attributes are

selected as dimensions (also called functional attributes). The measure attributes

are aggregated according to the dimensions. A cell of the data cube is described

by a unique combination of dimension values. An example of a data cube based

on the TPC-H benchmark database [9] would have the total price of an order

as the measure attribute and the region of a customer and the order date as

the dimensions. Such a data cube provides the aggregated total orders for all

combinations of regions and dates. Queries issued by an analyst who wants to

examine how the customer behavior in di�erent regions changes over time (e.g.,

in order to evaluate the success of local advertising campaigns) do not need to

access and join the \raw" data in the di�erent tables. Instead the information is
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available and summarized from the data cube. Note that our data cube notion

di�ers from the terminology used in [5]. We do not augment the data cube

with pre-computed results of GROUP-BYs of subsets of the set of all dimension

attributes. Thus our data cube notion corresponds to the data cube core in [5].

Aggregate range queries are useful analysis tools on data cubes. Such a range

query aggregates the values of those cells that satisfy the range selection condi-

tion for all dimensions. For instance, a range query on our example data cube

could \Find the total amount of orders in California over the last four months".

Queries of this form are useful in discovering relationships between attributes in

the database.

Analyzing data online is a highly interactive process. Analysts expect fast

responses to their queries, ideally in the order of seconds at most. For massive

data sets, however, range queries that access and aggregate on-the-y the con-

tents of a large number of cells, will show slow response times. To speed up those

queries, the aggregates for sets of cells are pre-computed and stored in the data

cube. This leads to well-known tradeo�s. Storing additional pre-computed values

results in space overhead. Also, updates become more expensive when an up-

date to a single cell triggers updates to all pre-computed values that include this

cell in their aggregation. Di�erent applications tolerate di�erent update costs.

While what-if scenarios and stock trading applications require fast updates, for

other applications overnight batch processing of updates su�ces. But even batch

processing bene�ts from faster updates, since they reduce the size of the update

window and allow for more frequent updates and shorter inaccessibility of the

data. Ideally a data cube should support fast queries and fast updates at no

extra storage cost.

An elegant algorithm for computing range queries that return the sum of the

selected cells in data cubes is presented in [6]. We refer to it as the Pre�x Sum

technique (PS). The essential idea is to pre-compute the pre�x sums of the data

cube (see Fig. 2), which are used to answer ad hoc queries in constant time. Since

the pre�x sums replace the original values in the cells, the PS technique does

not require additional space. The approach is mainly hampered by its update

costs. In the worst case an update to a single cell requires recomputing the whole

array, which is of the same size as the original data cube.

To reduce the high update costs, while still guaranteeing a constant query

cost, the Relative Pre�x Sum technique (RPS) [3] controls the cascading updates.

This comes at the cost of a space overhead. In contrast, the Hierarchical Cubes

techniques (HC) [1] do not require additional space. HC generalize the idea of

RPS by allowing di�erent tradeo�s between update and query cost. The tradeo�

is selected by setting parameters that control the generation of the pre-computed

values. Consequently the query and update costs depend on those parameters as

well as the dimensionality and the size of the data cube. This makes a general

comparison of HC to the other techniques di�cult. For instance, while for some

data cubes one of the HC techniques might provide a parameter setting that

leads to a better query and update behavior than RPS, for other data cubes this

is not the case.
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The only technique that guarantees that query and update cost are both

sublinear in the domain size of the dimensions for any data cube is the Dy-

namic Data Cube (DDC) [2]. The space overhead of this technique, however, is

signi�cant.

For massive data sets the space requirements of a technique become a decisive

factor. Space overhead not only leads to extra costs for storage devices, but also

causes additional propagations of updates and longer access times on the physical

devices.

In this paper we present two new space-e�cient data cube techniques { SRPS

and SDDC { based on RPS and DDC, respectively. Both techniques inherit the

update and query costs of their predecessors, but considerably reduce the space

requirements. More precisely, they have the same storage requirement as the

original data cube, thus do not introduce any space overhead. They are suitable

for data warehousing environments, especially decision support and OLAP appli-

cations. SRPS e�ciently supports applications where queries dominate. SDDC

balances the costs of queries and updates. Thus it is especially appropriate in

settings with frequent updates and enables users to analyze what-if scenarios.

In Sect. 2 we describe the SRPS and SDDC techniques. Both techniques are

compared to their predecessors RPS and DDC, respectively. Section 3 concludes

this article.

2 The SRPS and SDDC Techniques

In this section SRPS and SDDC are presented and compared to RPS and DDC,

respectively. The following notation will be used. Let A be a data cube of dimen-

sionality d, and let c = [c1; : : : ; cd] be a cell that contains the value A[c]. Without

loss of generality let the domain of each dimension attribute i be f0; 1; : : : ; n�1g.
e : f is a region of the data cube, more precisely the set of all cells c that satisfy

ei � ci � fi for all 1 � i � d (i.e., e : f is a hyper-rectangular region of the data

cube). Cell e is the anchor and cell f the endpoint of the region. Consequently

the entire data cube is anchored at [0; : : : ; 0] and ends at [n� 1; : : : ; n� 1]. The

set of the values in region e : f is denoted A[e] : A[f ], and op(A[e] : A[f ]) is the

result of applying the aggregate operator op to those values.

SRPS and SDDC make use of the inverse property of some aggregation op-

erators. They can be applied to any operator � for which there exists an inverse

operator 	 such that (a � b) 	 b = a (e.g., SUM, COUNT). For the SQL operator

SUM (sum of the values of the selected cells) each region's sum can be obtained

by adding and subtracting sums for appropriate regions that are anchored at

[0; : : : ; 0]. We will refer to a region that is anchored at [0; : : : ; 0] as a pre�x re-

gion; a query that selects such a region is a pre�x query. Note that according

to [6] any range sum can be computed by combining the range sums of up to

2d (which is a constant) pre�x regions. Thus the problem of computing the sum

for an arbitrary range is reduced to the problem of e�ciently computing pre�x

sum queries. We will therefore only describe how SRPS and SDDC solve this

problem.
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The SRPS and SDDC techniques are described for the aggregate operator

SUM. Other operators for which there exists an inverse operator can be handled

similarly. In our analysis query and update costs are expressed in terms of the

number of accessed cells of the data cube. The storage cost is measured in terms

of cells as well.

2.1 RPS: The Relative Pre�x Sum Technique

In this section we give an overview of the RPS technique [3]. A detailed correct

analysis for RPS for high-dimensional data cubes can be found in [4]. Like the

Pre�x Sum technique, RPS reduces the problem of summarizing any possible

range to the problem of summarizing and combining pre�x regions. The main

idea of RPS is to avoid the cascading updates of the Pre�x Sum technique by

dividing the data cube into smaller chunks of equal size, called overlay boxes.

The pre�x sums are computed and stored relative to the anchor cell of an overlay

box. The array with those relative pre�x sums has the same size as the original

data cube. Since the relative pre�x sums only provide aggregate information

about the cells inside the overlay box, an additional data structure { the overlay

array { is used. The overlay array provides sums for regions of cells outside the

overlay boxes. Together the overlay and the relative pre�x sum array guarantee a

worst case cost of 2d for pre�x queries, a worst case cost of 22d for general range

sum queries, and a worst case update cost of (2
p
n� 2)d. Compared to directly

storing the original data cube, the RPS technique incurs a space overhead of the

size of the overlay array. Depending on the parameters (dimensionality, size of

the data cube and the overlay boxes) this overhead ranges from a few percent

up to almost 100% of the data cube size in some settings.

2.2 SRPS: The Space-E�cient Relative Pre�x Sum Technique

Like the Relative Pre�x Sum method, SRPS provides constant-time queries with

an update complexity of O(nd=2), compared to an update cost of O(nd) for the

Pre�x Sum technique. SRPS improves on RPS by not incurring the additional

overlay array and thus removing the space overhead.

Description of the Technique. The data cube is completely partitioned into

a set of disjoint hyper-rectangles of equal size. We will refer to those hyper-

rectangles as boxes. For clarity and without loss of generality let the length of a

box in each dimension be k.

Let B be a box that is anchored at cell a = [a1; : : : ; ad]. Then box B contains

all cells c that satisfy ai � ci < ai + k for all 1 � i � d. The box cells on the

\upper left" surfaces, i.e., all those cells that agree with the anchor cell a in at

least one coordinate, are referred to as border cells. The other cells, i.e., those

cells c with ai + 1 � ci < ai + k for all 1 � i � d, are inner cells. Essentially

inner cells only store sums local to the box, while border cells include cells from

outside the box into their aggregation.
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Fig. 1. Computation of border values as the sum of the values of the cells in the shaded

area on array A
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Fig. 2. Pre�x Sum compared to SRPS

Any cell c in box B stores the value SUM(A[l1; l2; : : : ; ld] : A[c]) where

8i : 1 � i � d

�
li = 0 ; if ci = ai

li = ai + 1 ; if ai + 1 � ci < ai + k :

Note, that border cells for at least one dimension i satisfy ci = ai, while for
inner cells the second inequality (ai + 1 � ci < ai + k) holds for all dimensions.
We will use the term aggregation region for the described regions of cells. Border
cells aggregate hyper-rectangular regions of cells that stretch from the surface
of the box to the corresponding surface of the data cube. Inner cells c store
SUM(A[a1 + 1; a2 + 1; : : : ; ad + 1] : A[c]), which is the pre�x sum relative to cell
[a1+1; a2+1; : : : ; ad+1]. Figure 1 shows aggregation regions (shaded) for border
cells of a two-dimensional data cube. In the example in Fig. 2 the original data
cube and the corresponding SRPS cube are shown.

SRPS by de�nition does not cause any space overhead. All pre-computed
values \�t" into an array of the size of the data cube. Once the SRPS cube is
constructed, the original data cube can be discarded. All queries and updates are
directed to the SRPS cube. The space savings compared to the RPS technique
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Fig. 3. Querying and updating an SRPS cube

can be considerable. For RPS a pre�x array of size n
d
(i.e., size of the original

data cube) and an overlay array of size (n=k)
d
(k

d
� (k � 1)

d
) = n

d
(1� (

k�1

k
)
d
)

were stored. Thus SRPS saves storage of the size n
d
(1� (

k�1

k
)
d
).

Querying SRPS. As mentioned earlier, any range sum query can be an-

swered by combining the results of up to 2
d
appropriate pre�x queries. Let

q = [q1; : : : ; qd] be the endpoint of the pre�x region and a = [a1; : : : ; ad] be the

anchor of box B that contains q. Then the query region [0; : : : ; 0] : q can be

partitioned into non-overlapping regions which are identical to the aggregation

regions of the cells in the set fc = [c1; : : : ; cd]j8i : 1 � i � d^ ci 2 fai; qigg. This

set contains at most 2
d
cells. Intuitively they are obtained as the \projection" of

cell q to the surfaces of box B that contain the border cells (including cell q it-

self). Details about the partitioning are provided in [8]. Note, that the result for

a pre�x query can be obtained by adding values from a single box, which results

in a high locality of accesses. Since a pre�x query can be answered at a cost of 2
d
,

the overall worst case range query cost for SRPS becomes 2
d
� 2

d
= 2

2d
. Hence

the query cost is constant irrespective of n, the size of the dimension domains

of the data cube. Figure 3(a) shows an example for the partitioning of the query

region for a two-dimensional data cube. The shaded cells in Fig. 3(b) need to be

accessed in order to compute the pre�x range sum.

Updating SRPS. In general an update to a single cell a�ects all those cells

that store a pre-computed value that depends on that cell. Figure 3(c) shows an

example. An update to cell (5; 1) (marked with *) has to be propagated to each

of the shaded cells.

To keep the description simple, we assume that k, the side-length of each box,

evenly divides n, the side-length of the data cube. Clearly the number of cells

that are a�ected by an update to a cell u is equal to the number of aggregation

regions that contain u. From the de�nition of the aggregation regions it follows

that at most (n=k + k � 2)
d
aggregation regions contain cell u. This bound is

tight; it is met when cell u = [1; 1; : : : ; 1] is updated. Note, that the aggregation

29Space-Efficient Data Cubes for Dynamic Environments



regions that contain the updated cell are well de�ned. The cells that need to

be updated are the endpoints of those regions. Details of the analysis are not

provided here due to space limitations and can be found in [8].

The update costs are minimal for k =
p
n, resulting in a worst case update

cost of (2
p
n� 2)

d
= O(nd=2). Changing k does not a�ect the worst case query

costs.
1
Consequently, choosing k =

p
n results in the optimal SRPS cube.

2.3 DDC: The Dynamic Data Cube Technique

In this section an overview of the Dynamic Data Cube technique [2] is given. As

in PS, RPS, and SRPS the answer to an arbitrary range sum query is obtained

by combining the results of the corresponding pre�x queries.

The basic DDC technique makes use of non-intersecting boxes which store

pre-computed values that only summarize the cells in the box. Those values are

stored in the \lower right" surfaces of the box (border cells) and summarize the

cells in a region that has the anchor of the box as its anchor and the surface cell

as the endpoint. The boxes are organized into a tree that recursively partitions

the original data cube. The root node encompasses the entire data cube. It forms

children by dividing its range in each dimension in half. Each of the children are

in turn subdivided into children, and so on.

The values in the border cells are cumulative. Thus an update to the anchor

cell of a box has to be propagated to all border cells in the box. To reduce

the update cost [2] introduces the B
c
tree. B

c
trees are standard B-trees whose

non-leaf nodes are augmented by an auxiliary value that stores the sum of the

leafs in the left sub-tree. By taking advantage of these auxiliary values, B
c
trees

provide balanced query and update costs of logm for any one-dimensional array

of size m that stores cumulative values. By storing the (one-dimensional) border

cell arrays in B
c
trees, update and query costs of O(log

2
n) can be achieved

for two-dimensional data cubes. For data cubes with d > 2 dimensions the

(d� 1)-dimensional surfaces that contain the border cells are recursively stored

as (d � 1)-dimensional data cubes. Thus DDC with B
c
trees and the recursive

technique for storing the border values guarantees the polylogarithmic update

and query costs of O(log
d
n).

2.4 SDDC: The Space-E�cient Dynamic Data Cube Technique

Like the Dynamic Data Cube, SDDC balances query and update costs to

O(log
d
n). Those bounds are maintained at much lower storage costs. For clarity,

we will �rst describe a simpler basic approach that has higher update costs, and

then SDDC with the polylogarithmic costs.

1 The only exception occurs for k = 1, when SRPS collapses to the Pre�x Sum tech-

nique.
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The Basic SDDC. To construct the SDDC cube, the data cube is �rst parti-

tioned into boxes using the same technique as SRPS, except for two di�erences.

First, the side-length of a box is set to k = n=2, i.e., the data cube is partitioned

into 2d boxes of equal size. Second, while the aggregation regions of the border

cells remain the same, the inner cells do not store relative pre�x sums any more.

Instead a recursive approach is taken. For each box the region that contains all

inner cells of that box (which is a hyper-cube of side-length n=2 � 1) is parti-

tioned into 2d non-intersecting boxes of equal size. Their regions of inner cells

are then in turn partitioned into 2d boxes, and so on. Conceptually the boxes

of the basic SDDC form a tree where each node corresponds to a box. The root

node encompasses the entire data cube. The children of a node are those smaller

boxes that partition the regions of the inner cells of the node. They store the

corresponding border cell values. At the leaf level nodes simply store the value

of the single cell that corresponds to the node. Since the side-length of a node is

less than half the side-length of its parent, the tree height can not exceed log
2
n.

Figure 4 presents a data cube and the corresponding basic SDDC.

Instead of dividing the region of the inner cells in each dimension in half, one

could alternatively choose other partitionings into boxes. Partitions with exi-

ble split positions in the di�erent dimensions can be used to identify similarity

regions, which could be exploited by operations that can take advantage of low

variance distributions (i.e., for data compression).

Due to how the boxes are created, the complete basic SDDC �ts into the

space of the original data cube (with nd cells). The storage savings compared to

the basic DDC approach are considerable. In [8] we show that the basic DDC

requires more than twice the space of the original data cube. Thus our new basic

SDDC technique reduces the space overhead by more than the size of the original

data cube!

To �nd the sum for any pre�x region, the tree is descended and the ap-

propriate border values are added. On a tree level the query is answered as

described for SRPS. The only di�erence is that instead of accessing an inner

cell, the query recursively accesses the corresponding child node (see [8] for de-

tails). In the example in Fig. 4 the cells that are accessed in order to compute

SUM(A[0; 0] : A[7; 8]) are shaded; cell [7; 8] is hatched. Since the partitioning of
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the data cube is non-overlapping, at most one box per level contains the end-

point of the query region. For each such box at most 2d� 1 border cells have to

be accessed (analysis identical to SRPS). Since the tree has at most log
2
n levels,

the cost for any pre�x query is less or equal than (2d � 1) log
2
n = O(logn).

Updates on the basic SDDC are very expensive in the worst case. Consider

an update to cell [1; 1; : : : ; 1]. This update already a�ects O(nd�1) border cells

in the root node (see [8] for details).

SDDC with Improved Updates. The problem the basic SDDC faces regard-

ing updates is similar to the update problem for the basic DDC technique. To

reduce the update costs, we can apply the same technique as for DDC, i.e., using

Bc trees for balanced update and query costs on two-dimensional data cubes,

and storing the border values of higher-dimensional data cubes recursively (see

Sect. 2.3). However, Bc trees and the recursive approach introduce unnecessary

redundancy. We follow a similar approach, but remove the additional storage

requirements.

Recall that the values of the border cells in the same surface are cumulative,

which results in the high worst case update costs. To reduce the costs for one-

dimensional arrays of border cells we use an elegant technique that embeds a

tree into the array. The main idea is to �rst replace the cumulative values by the

corresponding di�erences of the values of neighboring cells and then to apply

the basic SDDC technique to this array of di�erences. Queries and updates are

processed as described for the basic SDDC technique, resulting in a worst case

cost of logn for both operations. Thus the Bc tree is replaced by a data structure

which does not add any space overhead compared to storing the original array.

The DDC technique stores (d � 1)-dimensional surfaces of border cells re-

cursively as (d� 1)-dimensional data cubes. Since the surfaces are overlapping,

redundancy is introduced. SDDC removes this redundancy by ensuring that val-

ues in the overlapping regions are stored only once. The idea is to embed the

recursively computed values into the space of exactly those values they replace.

Note that improving on the Bc trees and the recursive technique for stor-

ing the values of the border cells further increases the space savings of SDDC

compared to DDC. Due to the improvements, SDDC has the same storage con-

sumption as the original data cube. Its query and update costs are O(log
d
n),

which is sublinear in the side-length of the data cube. A more detailed descrip-

tion of the technique can be found in [8].

3 Conclusion

Aggregate range queries are useful tools for analyzing information that is stored

in data cubes. For massive data sets, however, accessing and aggregating the

relevant data on-the-y can result in slow responses that negatively a�ect the

analysis process. In this paper two new techniques were discussed that speed

up range queries by storing pre-aggregated information, while still supporting
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e�cient updates. Using SRPS or SDDC cubes instead of the original data cube

provides e�cient queries and updates without introducing any space overhead.

To be more precise, we developed one technique (SRPS) that guarantees

that any aggregate range query is answered in constant time and that no update

results in costs higher than the square root of the data cube size. We presented

another technique (SDDC), that improved the only existing technique which

provides provably polylogarithmic worst case query and update costs for any

data cube. Our technique guarantees the same query and update costs, while

reducing the space overhead by an amount of space that is greater than the size

of the original data cube.

Thus our new techniques e�ciently support online aggregation for massive

data sets. Reducing the space requirements not only saves storage costs, but at

the same time reduces the real access and update times. This is not reected in

our cost formulas that are only based on cell accesses. Real access costs, how-

ever, also depend on cache sizes and I/O times for external storage devices. For

real query and update costs, smaller space consumption can be very bene�cial.

Similar to all methods that are based on pre�x sums, our approaches are par-

ticularly suited for dense data sets. We are currently developing techniques for

sparse high-dimensional data cubes [7]. Also, to compare our techniques to previ-

ous approaches in more detail, further theoretical and experimental evaluations

are needed.
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