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Data Preprocessing 

Mirek Riedewald 
 

Some slides based on presentation by 
Jiawei Han and Micheline Kamber 

Motivation 

• Garbage-in, garbage-out 

– Cannot get good mining results from bad data 

• Need to understand data properties to select 
the right technique and parameter values 

• Data cleaning 

• Data formatting to match technique 

• Data manipulation to enable discovery of 
desired patterns 
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Data Records 

• Data sets are made up of data records 
• A data record represents an entity 
• Examples:  

– Sales database: customers, store items, sales 
– Medical database: patients, treatments 
– University database: students, professors, courses 

• Also called samples, examples, tuples, instances, 
data points, objects 

• Data records are described by attributes 
– Database row = data record; column = attribute 

3 

Attributes 

• Attribute (or dimension, feature, variable): a data 
field, representing a property of a data record 
– E.g., customerID, name, address 

• Types: 
– Nominal (aka categorical) 

• No ordering or meaningful distance measure 

– Ordinal 
• Ordered domain, but no meaningful distance measure 

– Numeric 
• Ordered domain, meaningful distance measure 
• Continuous versus discrete 
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Attribute Type Examples  

• Nominal: category, status, or “name of thing” 

– Hair_color = {black, brown, blond, red, auburn, grey, 
white} 

– Marital status, occupation, ID numbers, zip codes 

• Binary: nominal attribute with only 2 states 

– Gender, outcome of medical test (positive, negative) 

• Ordinal 

– Size = {small, medium, large}, grades, army rankings 
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Numeric Attribute Types  

• Interval 
– Measured on a scale of equal-sized units 

– Values have order, but no true zero-point 
• E.g., temperature in C or F, calendar dates 

• Ratio 
– Inherent zero-point 

– We can speak of values as being an order of 
magnitude larger than the unit of measurement (10m 
is twice as high as 5m). 
• E.g., temperature in Kelvin, length, counts, monetary 

quantities 
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Discrete vs. Continuous Attributes  

• Discrete Attribute 
– Has only a finite or countably infinite set of values 

– Nominal, binary, ordinal attributes are usually discrete 

– Integer numeric attributes 

• Continuous Attribute 
– Has real numbers as attribute values 

• E.g., temperature, height, or weight 

– Practically, real values can only be measured and 
represented using a finite number of digits 

– Typically represented as floating-point variables 
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Data Preprocessing Overview 

• Descriptive data summarization 

• Data cleaning  

• Correlations 

• Data transformation 

• Summary 
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Measuring the Central Tendency 

• Sample mean: 
 

• Weighted arithmetic mean: 
 
 
– Trimmed mean: set weights of extreme values to zero 

• Median 
– Middle value if odd number of values; average of the middle 

two values otherwise 

• Mode 
– Value that occurs most frequently in the data 
– E.g., unimodal or bimodal distribution 
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Measuring Data Dispersion: 
Boxplot 

• Quartiles: Q1 (25th percentile), Q3 (75th percentile) 
– Inter-quartile range: IQR = Q3 – Q1  
– For N records, the p-th percentile is the record at position 

(p/100)N+0.5 in increasing order 
• If not integer, round to nearest integer or compute weighted average 
• E.g., for N=32, p=25: 25/100*32+0.5 = 8.5, i.e., Q1 is average of 8-th and 9-th 

largest values 

• Boxplot: ends of the box are the quartiles, median is marked, 
whiskers extend to min/max 
– Often plots outliers individually: usually a value higher (or lower) than 

1.5IQR from Q3 (or Q1) 
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Measuring Data Dispersion: Variance 

• Sample variance (aka second central 
moment): 

 

 

• Standard deviation = square root of variance 

• Estimator of true population variance from a 
sample: 
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Histogram 

• Display of 
tabulated 
frequencies 

• Shows proportion 
of cases in each 
category 

• Area (not height!) 
of the bar denotes 
the value 
– Crucial distinction 

when the 
categories are not 
of uniform width! 
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Scatter plot 

• Visualizes relationship between two attributes, even a third (if categorical) 
– For each data record, plot selected attribute pair in the plane 
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Correlated Data 
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 Not Correlated Data 
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Data Preprocessing Overview 

• Descriptive data summarization 

• Data cleaning  

• Correlations 

• Data transformation 

• Summary 
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Why Data Cleaning? 

• Data in the real world is dirty 
– Incomplete: lacking attribute values, lacking certain 

attributes of interest, or containing only aggregate 
data 
• E.g., occupation=“ ” 

– Noisy: containing errors or outliers 
• E.g., Salary=“-10” 

– Inconsistent: containing discrepancies in codes or 
names 
• E.g., Age=“42” and Birthday=“03/07/1967” 

• E.g., was rating “1, 2, 3”, now rating “A, B, C” 
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Example: Bird Observation Data 

• Change of range boundaries over time, e.g., for temperature 
• Different units, e.g., meters versus feet for elevation 
• Addition or removal of attributes over the years 
• Missing entries, especially for habitat and weather 
• GIS data based on 30m cells or 1km cells 
• Location accuracy 

– ZIP code versus GPS coordinates 
– Walk along transect but report only single location 

• Inconsistent encoding of missing entries 
– 0, -9999, -3.4E+38—need context to decide 

• Varying observer experience and capabilities 
– Confusion of species, missed present species 

• Confusion about reporting protocol 
– Report max versus sum seen 
– Report only interesting species, not all 
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Hairy vs. Downy Woodpecker 
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How to Handle Missing Data? 

• Ignore the record 
– Usually done when class label is missing (for classification tasks) 

• Fill in manually 
– Tedious and often not clear what value to fill in 

• Fill in automatically with one of the following: 
– Global constant, e.g., “unknown” 

• “Unknown” could be mistaken as new concept by data mining 
algorithm 

– Attribute mean or mean for all records belonging to the same 
class 

– Most probable value: inference-based such as Bayesian formula 
or decision tree 
• Some methods, e.g., trees, can do this implicitly 
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How to Handle Noisy Data? 

• Noise = random error or variance in a measured 
variable 

• Typical approach: smoothing 
• Adjust values of a record by taking values of other 

“nearby” records into account 

• Many approaches 

• Recommendation: don’t do it unless you 
understand the nature of the noise 
• A good data mining technique should be able to deal 

with noise in the data 
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Data Preprocessing Overview 

• Descriptive data summarization 

• Data cleaning  
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• Data transformation 

• Summary 

21 

Covariance (Numerical Data) 

• Covariance computed for data samples (A1, B1), (A2, B2),…, (An, Bn): 
 
 
 
 

• If A and B are independent, then Cov(A, B) = 0, but the converse is 
not true 
– Two random variables may have covariance of 0, but are not 

independent 

• If Cov(A, B) > 0, then A and B tend to rise and fall together 
– The greater, the more so 

• If covariance is negative, then A tends to rise as B falls and vice 
versa 
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Covariance Example 

• Suppose two stocks A and B have the 
following values in one week: 
– A: (2, 3, 5, 4, 6) 

– B: (5, 8, 10, 11, 14) 

–  AVG(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4 

–  AVG(B) = (5 + 8 + 10 + 11 + 14) /5 = 48/5 = 9.6 

– Cov(A,B) = (25+38+510+411+614)/5 − 49.6 = 4 

• Cov(A,B) > 0, therefore A and B tend to rise 
and fall together 
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Correlation Analysis (Numerical Data) 

• Pearson’s product-moment correlation coefficient of random 
variables A and B: 

 
 

• Computed for two attributes A and B from data samples (A1, B1), 
(A2, B2),…, (An, Bn): 
 
 

 
Where      and      are the sample means, and sA and sB are the sample 

standard deviations of A and B (using the variance formula for sn). 

• Note: -1 ≤ rA,B ≤ 1 
• rA,B > 0: A and B positively correlated (the higher, the stronger the 

correlation) 
• rA,B < 0: negatively correlated 
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Correlation Analysis (Categorical Data) 

• 2 (chi-square) test 
 
 
 

• The larger the 2 value, the more likely the variables are 
related 

• The cells that contribute the most to the 2 value are those 
whose actual count is very different from the expected 
count 

• Correlation does not imply causality 
– # of hospitals and # of car-thefts in a city are correlated 
– Both are causally linked to the third variable: population 
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Chi-Square Example 

• Numbers in parenthesis are expected counts calculated 
based on the data distribution in the two categories 
 
 
 

• It shows that like_science_fiction and play_chess are 
correlated in the group 
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Play chess Not play chess Sum (row) 

Like science fiction 250 (90) 200 (360) 450 

Not like science fiction 50 (210) 1000 (840) 1050 

Sum(col.) 300 1200 1500 

93.507
840
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Why Data Transformation? 

• Make data more “mineable” 
– E.g., some patterns visible when using single time 

attribute (entire date-time combination), others only 
when making hour, day, month, year separate 
attributes 

– Some patterns only visible at right granularity of 
representation 

• Some methods require normalized data 
– E.g., all attributes in range [0.0, 1.0] 

• Reduce data size, both #attributes and #records 
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Normalization 

• Min-max normalization to [new_minA, new_maxA]: 
 
 
 

– E.g., normalize income range [$12,000, $98,000] to [0.0, 1.0]. Then $73,600 is mapped to 
 
 
 

 
• Z-score normalization (μ: mean, σ: standard deviation): 

 
 

– E.g., for μ = 54,000 and σ = 16,000, $73,600 is mapped to 

 
• Normalization by decimal scaling: 

 
 
where j is the smallest integer such that Max(|ν’|) < 1 
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Data Reduction 

• Why data reduction? 
– Mining cost often increases rapidly with data size and 

number of attributes 

• Goal: reduce data size, but produce (almost) the 
same results 

• Data reduction strategies 
– Dimensionality reduction 

– Data Compression 

– Numerosity reduction 

– Discretization 
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Dimensionality Reduction: Attribute 
Subset Selection 

• Feature selection (i.e., attribute subset selection): 
– Select a minimum set of attributes such that the mining 

result is still as good as (or even better than) when using 
all attributes 

• Heuristic methods (due to exponential number of 
choices): 
– Select independently based on some test 
– Step-wise forward selection 
– Step-wise backward elimination 
– Combining forward selection and backward elimination 
– Eliminate attributes that some trusted method did not use, 

e.g., a decision tree 
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Principal Component Analysis 

• Find projection that captures largest amount of 
variation in the data 
– Space defined by eigenvectors of the covariance 

matrix 

• Compression: use only first k eigenvectors 
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Data Reduction Method: Sampling 

• Select a small subset of a given data set 
• Reduces mining cost 

– Mining cost usually is super-linear in data size 
– Often makes difference between in-memory 

processing and need for expensive I/O 

• Choose a representative subset of the data 
– Simple random sampling may have poor performance 

in the presence of skew 
– Stratified sampling 

• E.g., sample more from small classes to avoid missing them 
in small uniform sample 
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Data Reduction: Discretization 

• Applied to continuous attributes 

• Reduces domain size 

• Makes the attribute discrete and hence 
enables use of techniques that only accept 
categorical attributes 

• Approach: 

– Divide the range of the attribute into intervals 

– Interval labels replace the original data 

39 

Data Preprocessing Overview 

• Descriptive data summarization 

• Data cleaning  

• Correlations 

• Data transformation 

• Summary 

40 

Summary 

• Data  preparation is a big issue for data mining 

• Descriptive data summarization is used to 
understand data properties 

• Data preparation includes 
– Data cleaning and integration 

– Data reduction and feature selection 

– Discretization 

• Many techniques and commercial tools, but 
still major challenge and active research area 
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