
1

What’s the relationship between databases
and MapReduce? Can we combine their
strengths?

What Do the Experts Say?

• Read what two DBMS luminaries thought
about MapReduce and how readers reacted
– http://databasecolumn.vertica.com/database-

innovation/mapreduce-a-major-step-backwards/

– http://databasecolumn.vertica.com/database-
innovation/mapreduce-ii/

– Links broken now, but a snapshot of their content
will be on Blackboard or Piazza

• Active research area in databases to combine
best of both worlds

2

DBMS Overview

• Some material obtained from Ramakrishnan/Gehrke book
• Relational databases have been around since the 1970s
• Parallel DBMS actively researched since 1980s
• Highly successful und ubiquitous

– Relational technology also found in data warehousing

• Declarative programming
– Specify WHAT you want, not HOW to get it
– Optimizer finds efficient query plan

• Data independence
– Write queries against logical schema
– Create views to create illusion of different logical schema

• Designed for managing and analyzing large data

3

Strengths of the Relational Model

• Simple data structure: relations
– “Flat” table with schema (attribute names and

types defining the columns), containing tuples
(rows)

– No nesting or pointers

• Example
– Students(sid, name, age, GPA)

– Reservations(sid, bookID, date)

– Books(bookID, topic, title)

4

Running Examples

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

BookID Topic Title

B10 DB Intro DB

B11 PL More PL

5

More Strengths

• Specially designed query language
• Comparably simple operators that can be

composed into complex queries
– Enables automatic query optimization

• Not Turing-complete, e.g., not designed for
complex calculations, but for easy efficient access
to large data

• Relational calculus: basis for SQL
• Relational algebra: useful for representing query

plans

6

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/

Relational Algebra

• Basic operations:
– Selection (): selects a subset of rows

– Projection (): selects a subset of columns

– Cross-product (): combines two relations

– Set-difference (): tuples in one relation but not the other

– Union (): set union

• Additional operations: intersection, join, division,
renaming (very useful)

• Algebra is closed, allowing composition
– Each operation works on relations and returns a relation

7

Selection

• 𝜎age>25(Students) SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

SID Name Age GPA

2 Bob 27 3.4

8

Projection

• 𝜋name,age(Students) SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

Name Age

Alice 18

Bob 27

Carla 20

Dan 20

9

Union, Intersection, Set-Difference

• Input relations have to be union-compatible

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

5 Erin 19 3.6

6 Frank 20 3.8

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

5 Erin 19 3.6

6 Frank 20 3.8 SID Name Age GPA

3 Carla 20 3.8

4 Dan 20 3.9

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

𝑆1 − 𝑆2 𝑆1 ∩ 𝑆2

𝑆1 ∪ 𝑆2

10

Cross-Product

• Pair each row from S with each row from
Reservations
– Rename those attributes occurring in both

11

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

(SID) Name Age GPA (SID) BookID Date

1 Alice 18 3.5 2 B10 01/17/12

1 Alice 18 3.5 3 B11 01/18/12

2 Bob 27 3.4 2 B10 01/17/12

2 Bob 27 3.4 3 B11 01/18/12

3 Carla 20 3.8 2 B10 01/17/12

3 Carla 20 3.8 3 B11 01/18/12

𝑆 × 𝑅

Joins

• Condition-join (aka theta-join)

– 𝑅 ⋈𝐶 𝑆 = 𝜎𝐶(𝑅 × 𝑆)

• Special cases
– Equi-join: only equalities in C, no duplication of join

columns

– Natural join: equi-join on all common attributes

12

SID Name Age GPA BookID Date

2 Bob 27 3.4 B10 01/17/12

3 Carla 20 3.8 B11 01/18/12

𝑅 ⋈𝑅.𝑆𝐼𝐷=𝑆.𝑆𝐼𝐷 𝑆

Example

• Find names of students who reserved a DB
book

• 𝜋name((𝜎topic=DB𝐵) ⋈ 𝑅 ⋈ 𝑆)

• 𝜋name(𝜋SID((𝜋BookID𝜎topic=DB𝐵) ⋈ 𝑅) ⋈ 𝑆)

• Which one will be more efficient?
– A query optimizer can find this automatically.

13

BookID Topic Title

B10 DB Intro DB

B11 PL More PL

Relational Calculus

• Basis of SQL query language
• Algebra was not declarative, but calculus is

– Many different algebra “implementations” possible
for a calculus expression

• Tuple relational calculus (TRC)
– Variables range over tuples

• Domain relational calculus (DRC)
– Variables ranges over attribute values

• Calculus expressions are called formulas
– Answer tuple = assignment of constants to variables

that make the formula evaluate to true

14

Domain Relational Calculus

• Query: 𝑥1, 𝑥2, … , 𝑥𝑛 𝑝(𝑥1, 𝑥2, … , 𝑥𝑛)}

• Answer = all tuples 𝑥1, 𝑥2, … , 𝑥𝑛 that make
formula 𝑝(𝑥1, 𝑥2, … , 𝑥𝑛) true

• All variables 𝑥1, 𝑥2, … , 𝑥𝑛 must be free, i.e.,
not bound by quantifier, in formula 𝑝 …

• No other variable in 𝑝 … is allowed to be
free

15

DRC Formulas

• Atomic formula (op is one of <, >, =, ≠, ≤, ≥)
– 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ Relation, or
– 𝑥 op 𝑦, or

– 𝑥 op const

• Formula (𝑝, 𝑞 are formulas)
– Atomic formula, or
– ¬𝑝, 𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞, or
– ∃𝑥(𝑝 𝑥) or ∀𝑥(𝑝 𝑥) where variable 𝑥 is free in

𝑝(𝑥)
• Quantifiers ∃𝑥 and ∀𝑥 bind variable x; free variables are not

bound

16

Example

• All students with GPA above 3.6

– 𝑆, 𝑁, 𝐴, 𝐺 𝑆, 𝑁, 𝐴, 𝐺 ∈ Students ∧ 𝐺 > 3.6}

• First condition: domain variables S, N, A, G have
to be attributes of the same student tuple

• Second condition: GPA selection

17

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

Example

• Students with GPA above 3.6 who reserved book B10

– 𝑆, 𝑁, 𝐴, 𝐺 𝑆, 𝑁, 𝐴, 𝐺 ∈ Students ∧ 𝐺 > 3.6
 ∧ ∃𝑆2, 𝐵, 𝐷(𝑆2, 𝐵, 𝐷 ∈ Reservations ∧ 𝑆 = 𝑆2
 ∧ 𝐵 = B10)}

• ∃𝑆2, 𝐵, 𝐷 is a shorthand for ∃𝑆2 ∃𝐵 ∃𝐷 …

• Exists clause is used to find a tuple in Reservations that
joins with the student tuple under consideration

18

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

Safe Queries and Expressive Power

• Possible to write calculus queries with infinite
number of answers—called unsafe queries

– 𝑆, 𝑁, 𝐴, 𝐺 ¬(𝑆, 𝑁, 𝐴, 𝐺 ∈ Students)}

• Safe query: returns same result, no matter the
attribute domains

• Every relational algebra query can be expressed
as a safe query in DRC/TRC, and vice versa

• Relational completeness: query language, e.g.,
SQL, can express every relational algebra query

19

Basic SQL Query

• Attribute-list: list of attributes from relation-list

• Relation-list: relation names, possibly with range-
variable after the name

• Condition: comparisons of attributes or attribute
against constant, using <, >, =, ≠, ≤, ≥

• DISTINCT: eliminate duplicates

SELECT [DISTINCT] attribute-list
FROM relation-list
WHERE condition

SELECT DISTINCT name
FROM Students S, Reservations R
WHERE S.SID = R.SID AND BookID = ‘B10’

20

Example

• Can use arithmetic expressions in attribute-list
and also in WHERE clause

• AS gives name to a result attribute
– Could also use “=“: age1 = S.age+1

• LIKE matches strings
– “_” matches any single character

– “%” matches 0 or more arbitrary characters

SELECT S.age, S.age+1 AS age1, 2*S.age AS age2
FROM Students S
WHERE S.name LIKE ‘J_%E’

21

Students Who Reserved DB or PL Book

• 𝑆, 𝑁, 𝐴, 𝐺 𝑆, 𝑁, 𝐴, 𝐺 ∈ Students ∧ 𝐺 > 3.6
∧ ∃𝑆2, 𝐵, 𝐷(𝑆2, 𝐵, 𝐷 ∈ Reservations ∧ 𝑆 = 𝑆2
 ∧ ∃𝐵2, 𝑂, 𝐼(𝐵2, 𝑂, 𝐼 ∈ Books ∧ 𝐵 = 𝐵2 ∧ (𝑂 = DB ∨ 𝑂 = PL))}

• What if we want those who reserved a DB and a PL book?

– AND instead of OR would not work
– Need to use INTERSECT
– Careful: intersection needs to be on unique students, i.e., SID

not just S.name

SELECT S.SID
FROM Students S, Reservations R, Books B
WHERE S.SID = R.SID AND R.bookID = B.bookID
 AND (B.topic = ‘DB’ OR B.topic = ‘PL’)

22

Nested Query with Correlation

• EXISTS tests is set is empty

• If sub-query depends on outside attributes, have
to re-compute for every value of them

• UNIQUE (instead of EXISTS): checks if there is at
most one reservation for the student
– Choice of attribute-list in sub-query affects UNIQUE

SELECT S.name
FROM Students S
WHERE EXISTS (SELECT *
 FROM Reservations R
 WHERE R.bookID = ‘B10’ AND S.SID = R.SID)

23

Aggregate Operators

• COUNT(*), COUNT([DISTINCT] A)

• SUM([DISTINCT] A)

• AVG([DISTINCT] A)

• MAX(A), MIN(A)

24

SELECT COUNT(*)
FROM Students

SELECT AVG(GPA)
FROM Students
WHERE age > 20

SELECT S.name
FROM Students S
WHERE S.GPA = (SELECT MAX(S2.GPA)
 FROM Students S2)

GROUP BY and HAVING

• Attribute-list contains attribute names and
terms with aggregate operations

– Attributes in attribute-list must appear in
grouping-list

– Reason: single attribute value per group!

25

SELECT [DISTINCT] attribute-list
FROM relation-list
WHERE condition
GROUP BY grouping-list
HAVING group-condition

Example

• Among all students with GPA > 3.4, find the
lowest GPA for each age group with at least 2
students

26

SELECT S.age, MIN(S.GPA) AS MinGPA
FROM Students S
WHERE S.GPA > 3.4
GROUP BY S.age
HAVING COUNT(*) >= 2

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

6 Frank 20 3.8

7 Gina 27 3.8

8 Hal 18 3.5

Evaluation

27

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

6 Frank 20 3.8

7 Gina 27 3.8

8 Hal 18 3.5

Age GPA

18 3.5

20 3.8

20 3.9

20 3.8

27 3.8

18 3.5

Age GPA

27 3.8

Age GPA

20 3.8

20 3.9

20 3.8

Age GPA

18 3.5

18 3.5

Age GPA

20 3.8

20 3.9

20 3.8

Age GPA

18 3.5

18 3.5

Age MinGPA

18 3.5

20 3.8

What Is a Query Plan?

• DAG of relational operators and their
implementations

– Use index vs. scan entire relation

– Data partitioning for divide-and-conquer strategy

• Pull interface: output “pulls” next tuple from
upstream operators

– Enables pipelining, avoids buffering

28

The System R Optimizer

• Most widely used optimizer style
• Transforms SQL query to initial plan (actually

multiple query blocks)
• Considers alternative plans by leveraging

relational algebra equivalences
• For each plan, combined CPU and I/O cost is

estimated
– Challenge: estimate size of intermediate results

• Search space too large, hence optimizer relies on
heuristics to enumerate candidate plans

29

Plans Involving Joins

• Avoid Cartesian products

• Joins can be executed in any order

– Exponential number of query plans

• Optimizer only considers left-deep plans

– Allows pipelining of intermediate results

– No need to materialize temporary relations

• Still many possible join orders…

30

Simple Example

Relational-algebra tree Possible query plan

⋈SID

R S

GPA>3.7  date=1/1/12

name

⋈SID

R S

GPA>3.7  date=1/1/12

name On-the-fly

On-the-fly

Block Nested Loops

File scan File scan

Cost: 1000+1000500 for join
plus zero I/O for on-the-fly

Total: ~500,000 I/O

31

Alternative Plan: Push Selections

• Scan R, write
Temp1: 1000+10
– Assume 100

reservation days

• Scan S, write
Temp2: 500+250
– Assume 50% have

GPA>3.7

• Join: 2210 +
22250 + 10+250

• Total: 3060 I/O Could lower cost further by also
pushing projections and using
other join implementation

date=1/1/12

R S

⋈SID

name On-the-fly

Sort-merge join

Scan, write to Temp1 GPA>3.7

Scan,
write to
Temp2

32

Another Alternative: With Indexes

• Index on R:
100K/100=1000
tuples on
1000/100=10
pages

• Join: for each R-
tuple, index
lookup on S:
10001.2

• Total: 1210 I/O

date=1/1/12

R

⋈SID

GPA>3.7 On-the-fly

Index Nested Loops
with pipelining

Use hash index, do
not write result to
Temp

S

name

Clustered hash index
on date

Hash index on SID

On-the-fly

Cannot push selection on GPA
before the join, because that
would prevent use of index

33

Parallel Databases

• Same SQL query, just replace the optimizer
– Take data location and network cost into account

– Optimize for latency or total cost

• Add new operators
– Exchange: behaves like an iterator, but receives input

via inter-process communication rather than iterator
procedure calls

– Split and Merge: create and join parallel dataflows

• Add new operator implementations
– Semi-join to reduce network communication cost

34

Distributed Query Optimization

• Start: calculus query on global relations

• Transform into algebraic query on global
relations

• Perform data localization, using fragment
schema, to generate algebraic query on
fragments

• Perform global optimization to create
distributed query execution plan

• Run on local sites in parallel

35

Pipeline Parallelism

• Computation of one operator proceeds in
parallel with another

• Model: output pulls from last operators, which
pulls from its inputs and so on

36

Data

Scan

Sort

Limited Benefits of Pipeline Parallelism

• Relational pipelines are usually not very long

– Ten or longer is rare

• Some operators are blocking and cannot be
pipelined

– Aggregates, sorting

• Execution cost of one operator might be much
larger than the others

– Limits speedup obtained by pipelining

37

Partitioned Parallelism

• Query performs batch-style computation on
many input tuples

38

Data

Scan

Sort

Data

Scan

Sort

Data

Scan

Sort

Merge

Partitioned data

Data Partitioning

• Round-robin
– Simple, but not helpful for associative access

• Hash partitioning
– Assign tuples to partition using hash function
– Good for associative access (equality-based)
– Not good for range queries

• Range partitioning
– Partition data into continuous ranges
– Good for range queries, parallel sort
– Risks data skew (uneven partitions) and execution

skew (uneven access pattern)

39

Distributed Transactions?

• Transactions were crucial for the success of
database systems

• Enable concurrent processing of multiple
queries, but programmers could write them as
if they executed in isolation

40

Transactions

• Transaction = user program, consisting of a
sequence of DB reads and writes

• Let users write programs under the illusion that
there is no concurrent access

• DBMS automatically takes care of scheduling
– Interleaves transactions, but ensures result is identical

to isolated execution

• Give programmer a simple mechanism for
declaring all-or-nothing execution of a block of
statements

41

ACID Properties

• Atomicity: Either all or none of the transaction’s
actions are executed
– Even when a crash occurs mid-way

• Consistency: Transaction run by itself must
preserve consistency of the database
– User’s responsibility

• Isolation: Transaction semantics do not depend
on other concurrently executed transactions

• Durability: Effects of successfully committed
transactions should persist, even when crashes
occur

42

Example

• Two bank accounts, A and B, owned by same user

• User transfers $100 from B to A

• Bank computes 1% interest on both

• Assume start state is A=500, B=500

• Correct serial executions: total interest = $10

– T1, T2: A=606, B=404

– T2, T1: A=605, B=405

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.01A, B=1.01B END

43

Interleaving Scenarios

• First: ok, equivalent to T1, T2 order
• Second: not ok

– A=606, B=505

• Abstract view shows the conflict

T1: A=A+100, B=B-100
T2: A=1.01A, B=1.01B

T1: A=A+100, B=B-100
T2: A=1.01A, B=1.01B

T1: R(A), W(A), R(B), W(B)
T2: R(B), W(B), R(A), W(A)

44

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the
actions of different transactions
– Easy for programmer, easy to achieve consistency
– Bad for performance

• Equivalent schedules: For any database state, the effect (on
the objects in the database) of executing the first schedule
is identical to the effect of executing the second schedule

• Serializable schedule: A schedule that is equivalent to some
serial execution of the transactions
– Retains advantages of serial schedule, but addresses

performance issue

• Note: If each transaction preserves consistency, every
serializable schedule preserves consistency

45

Anomalies: WR

• Reading uncommitted data (WR-conflict,
“dirty read”)

– T2 reads value A written by T1 before T1
completed its changes

– If T1 later aborts, T2 worked with invalid data

• Example: T1 deposits check to A, T2 credits
interest to A

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

46

Problems With Dirty Reads

• Dirty read can result in unrecoverable
schedule

– T2 worked with invalid data and hence has to be
aborted as well

– But T2 already committed…

• Recoverable schedule: cannot allow T2 to
commit until T1 has committed

– Can still lead to cascading aborts

47

Anomalies: RW

• Unrepeatable read (RW conflict)

• T1 sees different values of A, even though it
did not change it

• Example: online book store
– Only one copy left; both T1 and T2 try to order it

– One will get an error message

– Could not have happened with serial execution

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

48

Anomalies: WW

• Overwriting uncommited data (WW conflict)

• T1’s B and T2’s A persist, which would not
happen with serial execution

• Example: two employees with same salary

– T1 sets both salaries to $4000, T2 to $4500

– Above schedule results in A=4500, B=4000

T1: W(A), W(B), C
T2: W(A), W(B), C

49

Preventing Anomalies Through Locking

• Block problematic concurrent actions, but
allow non-conflicting ones
– Many transactions can read the same data

concurrently

– If T1 affects accounts A and B, while T2 works on X
and Y, they can even perform updates
concurrently

• Lock the right DB objects using appropriate
locks to allow maximum concurrency without
suffering from anomalies

50

Locking Basics

• Before being able to read an object, transaction
needs to acquire a shared lock (S-lock) on it

• Before being able to modify an object,
transaction needs to acquire an exclusive lock (X-
lock) on it

• Multiple transactions can hold a shared lock on
the same object

• At most one transaction can hold an exclusive
lock on an object

51

Two-Phase Locking

• Phase 1: acquire locks

• Phase 2: release locks (cannot acquire new locks
any more)

• Ensures serializable schedule, but does not
necessarily prevent dirty reads

• Strict 2PL: all locks are released only when the
transaction is completed
– Prevents all anomalies shown earlier

• Problem: deadlocks

52

Deadlocks

• Ex: T1, T2 both want to read and write objects A and B
– T1 acquires X-lock on A; T2 acquires X-lock on B
– T1 wants to update B: waits for T2 to release its lock on B
– T2 wants to read A: waits for T1 to release its lock on A
– Strict 2PL does not allow either to release its locks before

the transaction completed. Deadlock!

• DBMS can detect this
– Cycle in waits-for graph (nodes = transactions, edges =

objects they are waiting for)
– Breaks deadlock by aborting one of the involved

transactions
• Which one to choose? Work performed is lost.

53

Aborting a Transaction

• All of T1’s actions have to be undone
– If another txn T2 has read an object last written by T1,

T2 must be aborted as well!
– Strict 2PL avoids such cascading aborts by releasing a

transaction’s locks only at commit time

• In order to undo the actions of an aborted
transaction, the DBMS maintains a log in which
every write is recorded
– This mechanism is also used to recover from system

crashes: all active txns at the time of the crash are
aborted when the system comes back up

54

The Phantom Problem

• Assume initially the youngest student is 20 years old
• T1 contains twice: SELECT MIN(age) FROM Students
• T2 inserts a new student with age 18
• Consider the following schedule:

– T1 runs query, T2 inserts new student, T1 runs query again
– T1 sees two different results, i.e., an unrepeatable read

• Would Strict 2PL prevent this?
– Assume T1 acquires S-lock on each existing Student tuple
– T2 inserts a new tuple, which is not locked by T1
– T2 releases its X-lock on the new student before T1 reads

Students again

• What went wrong?

55

What Should We Lock?

• T1 cannot lock a tuple that T2 will insert
• …but T1 could lock the entire Students table

– Now T2 cannot insert anything until T1 completed

• What if T1 computed a slightly different query:
– SELECT MIN(age) FROM Students WHERE GPA > 3.5

• Now locking the entire Students table seems excessive,
because inserting a new student with GPA  3.5 would
not create a problem
– T1 could lock the predicate [GPA > 3.5] on Students

• General challenge: DBMS needs to choose appropriate
granularity for locking

56

Performance Of Locking

• Locks force transactions to wait
• Abort and restart due to deadlock wastes the work

done by the aborted transaction
– In practice, deadlocks are rare, e.g., due to lock

downgrades approach
• Request X-lock initially, then downgrade to S-lock when it becomes

clear that only read access was needed

• More concurrent transactions => more lock contention
– Allowing more concurrent transactions initially increases

throughput, but at some point leads to thrashing
– Solution: limit max number of concurrent transactions
– Minimize lock contention by reducing time locks are held

and by avoiding hotspots (objects frequently accessed)

57

Distributed Transactions

• Transactions take longer to access remote objects
– Need to hold locks longer

– Greater probability for waiting and deadlocks

• What if the network partitions?
– Transaction cannot acquire/release some locks

• Even without partitions, the problem is hard
– Need to coordinate commit between multiple nodes

– What happens if some participating node crashes?

• Standard protocol: 2PC (2-phase commit)

58

2PC Basics

• Commit-request phase
– Coordinator asks all participants to prepare for

commit

– Participants vote YES or NO to commit request

• Commit phase
– Based on participants’ votes, coordinator decides to

commit (if all voted YES) or abort

– Coordinator notifies participants about decision

– Participants apply corresponding action (commit or
abort) locally

59

2PC Problems

• 2PC = blocking protocol

– Nodes cannot make a decision without hearing
from coordinator, e.g., might hold on to locks
forever if coordinator is down and they answered
YES to first request

• Expensive for many-worker transactions

• Some issues were addressed by later 2PC
modifications, but the basic problems remain

60

NoSQL to the Rescue?

• Examples: MongoDB, CouchDB, HBase, Google’s
BigTable, Amazon’s Dynamo

• Many driven by performance challenges
– Inherent tradeoff: consistency, availability, and

tolerance to network partitions (Eric Brewer, UC
Berkeley)
• Maintaining consistent state across 100s of machines

requires expensive agreement
• Failures reduce availability, unless consistency is weakened

• Solutions: weaker consistency guarantees, limited
functionality, or tailored solution for specific
workload

61

SQL Bigtable

• Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A Distributed
Storage System for Structured Data. OSDI'06:
Seventh Symposium on Operating System
Design and Implementation, Seattle, WA,
November, 2006

62

HBase

• Open-source implementation of BigTable

• Part of the Hadoop ecosystem

• Supports fast “random” reads and writes in Big
Data

• Scales by adding more nodes
– Scales to billions of rows, millions of columns

• Does not support SQL

• No transactions, but row-level atomicity
– Explicit row locks can be set by client application

63

Data Model

• Data stored in tables

• Tables consist of rows and columns

– Each table cell is versioned, e.g., html content of
www.neu.edu on different dates

– Cell content = un-interpreted array of bytes

• Row keys (=primary key) are byte arrays

– Can use any serializable type

• Table is stored sorted by row key: byte-ordered

– Choose key wisely according to query workload

64

65
Source: HBase: The Definitive Guide, by Lars George

HBase Characteristics

• All data accesses by row key or scanning

• No real indexes
– Fast loading of data

– No secondary indexes, but some projects exist for
adding them

• No support for joins
– Store wide de-normalized table

• When adding a node, some regions will be
moved to it automatically

66

http://www.neu.edu/

Column Families

• Columns are grouped into column families
– E.g., temperature family contains columns

temperature:air and temperature:dew_point

• Column families are stable
– Specified as part of schema definition

• Individual columns can be added or removed
easily

• All column family members are stored and
managed together

67

Data Storage

• Table automatically partitioned into regions
– Range of row keys

• Region managed by RegionServer, stored in HDFS or S3 etc.
• Small table -> single partition -> single-node database until it splits

68

Source:
Hadoop: The Definitive Guide,
by Tom White

Accessing HBase

• Clients connect to ZooKeeper to find Master

• Learn about RegionServer holding the requested
data from Master

• Contact RegionServer for the actual data directly

– Client caches region information it has learned for
future accesses

• Write-ahead logging to HDFS ensures durability
even if RegionServer crashes

– Simplified DBMS-style redo of committed writes

69

HBase Clients

• Java program, e.g., from MapReduce

• Avro

• REST

• Thrift

• Source for following examples: Hadoop: The
Definitive Guide, by Tom White

70

• Creates table test with column family data

• Uses default table schema

71

public class ExampleClient {
 public static void main(String[] args) throws IOException {
 Configuration config = HBaseConfiguration.create();

 // Create table
 HBaseAdmin admin = new HBaseAdmin(config);
 HTableDescriptor htd = new HTableDescriptor("test");
 HColumnDescriptor hcd = new HColumnDescriptor("data");
 htd.addFamily(hcd);
 admin.createTable(htd);
 byte [] tablename = htd.getName();
 HTableDescriptor [] tables = admin.listTables();
 if (tables.length != 1 && Bytes.equals(tablename, tables[0].getName())) {
 throw new IOException("Failed create of table");
 }

72

 HTable table = new HTable(config, tablename);

 // Add new row named row1 to the table
 byte [] row1 = Bytes.toBytes("row1");
 Put p1 = new Put(row1);

 // Put value value1 into column data:1
 byte [] databytes = Bytes.toBytes("data");
 p1.add(databytes, Bytes.toBytes("1"), Bytes.toBytes("value1"));
 table.put(p1);

 // Read the contents of row row1
 Get g = new Get(row1);
 Result result = table.get(g);
 System.out.println("Get: " + result);

 // Scan the entire table
 Scan scan = new Scan();
 ResultScanner scanner = table.getScanner(scan);
 try {
 for (Result scannerResult: scanner) {
 System.out.println("Scan: " + scannerResult);
 }
 } finally { scanner.close(); }

 // Drop the table
 admin.disableTable(tablename);
 admin.deleteTable(tablename);
 }
}

Filters

73
Source: HBase: The Definitive Guide, by Lars George

HBase and MapReduce

• Use org.apache.hadoop.hbase.mapreduce

• TableInputFormat makes sure each map task
receives a single region

• TableOutputFormat allows reduce to write to
an HBase table

• Look at the weather example in the Tom
White book

74

Hive

• Initially developed by Facebook

• SQL-style data analysis on top of MapReduce
– Write query in HiveQL

– Automatically translated to plain MapReduce

• Integrates well with SQL tools, e.g., ODBC and
JDBC

• Examples from Hadoop: The Definitive Guide,
by Tom White

75 76
Source: Hadoop: The Definitive Guide, by Tom White

Hive vs. Relational DBMS

• Schema verified at query time

– DBMS: schema enforced at data load time

• No updates or deletes, but insert is possible

• Rudimentary, but expanding, indexing support

– Compact index: HDFS block numbers for each
value

– Bitmap index: compressed sets of rows where
some value appears

77

Hive vs. Relational DBMS (cont.)

• Table- and partition-level locking

– Locks managed by ZooKeeper

• Complex types ARRAY, MAP, and STRUCT

• Ongoing integration with HBase

78

Hive Storage

• Can use local file system, HDFS, S3 and so on

• Managed table: Hive copies files into its warehouse
directory

• External table: location outside warehouse directory

• Row-oriented data layout: row 1, row 2, row 3

• Column-oriented layout: col 1 of some rows, col 2 of
some rows, col 1 of next rows, col 2 of next rows

79

CREATE TABLE records (year STRING, temperature INT, quality INT)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\t';

LOAD DATA INPATH 'input/ncdc/micro-tab/sample.txt'
OVERWRITE INTO TABLE records;

Partitions

• Tables divided into partitions

– Based on partition column(s), e.g., date

– Partition attribute values determine directory
structure

• Attributes used for partitioning do not appear
in table schema any more

80

CREATE TABLE logs (ts BIGINT, line STRING)
PARTITIONED BY (dt STRING, country STRING);

Buckets

• Re-orders data in table

– “Groups by” some attribute

– Can sort within each group

• Very useful for equi-join

– Hash-join style implementation

81

CREATE TABLE bucketed_users (id INT, name STRING)
CLUSTERED BY (id) SORTED BY (id ASC) INTO 4 BUCKETS;

Hive Query

• Plain SQL

• Executed as MapReduce job

82

SELECT year, MAX(temperature)
FROM records
WHERE temperature != 9999
 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9)
GROUP BY year;

Joins in Hive

• Inner join, outer join, semi join

• Hive uses rule-based optimizer

• Cost-based optimizer might be added in the
future

83

SELECT sales.*, things.*
FROM sales JOIN things ON (sales.id = things.id);

SELECT sales.*, things.*
FROM sales LEFT OUTER JOIN things ON (sales.id = things.id);

SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
Same as: SELECT * FROM things WHERE things.id IN (SELECT id from sales);

Advanced Features

• Subqueries
– Limited compared to DBMS: only in FROM clause

• Views
– Defined by HiveQL query

• User-defined functions: written in Java
• User-defined aggregate functions

– Init() to reset internal state
– Iterate() to update state
– terminatePartial() to get partial result
– Merge() to combine partial results
– Terminate() to generate final result

84

