Let’s see how we can create complex
MapReduce workflows by programming in a
high-level language.

i The Pig System

* Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, Andrew Tomkins: Pig
Latin: a not-so-foreign language for data
processing. SIGMOD Conference 2008: 1099-
1110

 Several slides courtesy Chris Olston and
Utkarsh Srivastava

* Open source project under the Apache
Hadoop umbrella

Overview

* Design goal: find sweet spot between
declarative style of SQL and low-level
procedural style of MapReduce

* Programmer creates Pig Latin program, using
high-level operators

* Pig Latin program is compiled to MapReduce
program to run on Hadoop

Why Not SQL or Plain MapReduce?

* SQL difficult to use and debug for many
programmers

* Programmer might not trust automatic optimizer
and prefers to hard-code best query plan

* Plain MapReduce lacks convenience of readily
available, reusable data manipulation operators
like selection, projection, join, sort

* Program semantics hidden in “opaque” Java code
— More difficult to optimize and maintain

Example Data Analysis Task

Find the top 10 most visited pages in each category

Visits Url Info
O e
Amy cnn.com 8:00 cnn.com News 0.9
Amy bbc.com 10:00 bbc.com News 0.8
Amy flickr.com 10:05 flickr.com Photos 0.7
Fred cnn.com 12:00 espn.com Sports 0.9

Data Flow

Foreach

top10 urls

In Pig Latin

visits = load ‘/data/visits” as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlinfo =load ‘/data/urlinfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlinfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Latin Notes

* No need to import data into database
— Pig Latin works directly with files

* Schemas are optional and can be assigned
dynamically
— Load ‘/data/visits’ as (user, url, time);

* Can call user-defined functions in every
construct like Load, Store, Group, Filter,
Foreach

— Foreach gCategories generate top(visitCounts,10);

Pig Latin Data Model

Fully-nestable data model with:
— Atomic values, tuples, bags (lists), and maps

finance
yahoo, email
news

* More natural to programmers than flat tuples
— Can flatten nested structures using FLATTEN

* Avoids expensive joins, but more complex to
process

Pig Latin Operators: LOAD

* Reads data from file and optionally assigns
schema to each record

¢ Can use custom deserializer

queries = LOAD ‘query_log.txt’” USING myLoad()
AS (userlID, queryString, timestamp);

Pig Latin Operators: FOREACH

Applies processing to each record of a data set
No dependence between the processing of
different records

— Allows efficient parallel implementation
GENERATE creates output records for a given
input record

expanded_queries = FOREACH queries
GENERATE userld, expandQuery(queryString);

Pig Latin Operators: FILTER

* Remove records that do not pass filter
condition

* Can use user-defined function in filter
condition

real_queries =
FILTER queries BY userld neq “bot’;

Pig Latin Operators: COGROUP

* Group together records from one or more
data sets

results

_m COGROUP results BY queryString, revenue BY queryString

Lakers nba.com 1
Lakers espn.com 2 p . N NEN
e oneom 1 e, | e en e
Kings nba.com 2 - /
revenue ([(Kings, nhl.com, 1) | [(Kings, top, 30) | |
[auerystring | adsiot | amount | KIngS: | (Kings, nba.com,2) [| (Kings, side, 10) |
Lakers top 50 ; : o o
Lakers side 20
Kings top 30
Kings side 10

Pig Latin Operators: GROUP

* Special case of COGROUP, to group single data
set by selected fields

* Similar to GROUP BY in SQL, but does not
need to apply aggregate function to records in
each group

grouped_revenue = GROUP revenue BY
queryString;

Pig Latin Operators: JOIN

* Computes equi-join
join_result = JOIN results BY queryString, revenue
BY queryString;

* Just a syntactic shorthand for COGROUP followed
by flattening

temp_var = COGROUP results BY queryString,

revenue BY queryString;

join_result = FOREACH temp_var GENERATE

FLATTEN(results), FLATTEN(revenue);

Other Pig Latin Operators

* UNION: union of two or more bags

* CROSS: cross product of two or more bags

* ORDER: orders a bag by the specified field(s)
* DISTINCT: eliminates duplicate records in bag
* STORE: saves results to a file

* Nested bags within records can be processed
by nesting operators within a FOREACH
operator

Load Load
Visits(user, url, time) Pages(url, pagerank)

wwsnails.com, 9am)
ails.com/index.html, 11am)

Transform
to (user, Canonicalize(url), time)

(Amy, www.cnn.com, 8am, 0.9)
(Amy, www.snails.com, 9am, 0.4)
(Fred, www.snails.com, 11am, 0.4)

(Amy, { (Amy, www.cnn.com, 8am, 0.9),
(Amy, www.snails.com, 9am, 0.4) })
(Fred, { (Fred, www.snails.com, 11am, 0.4) })

(Amy, 0.65)
(Fred, 0.4)

Pig Latin workflow
and example records

(Amy, 0.65)

MapReduce in Pig Latin

map_result = FOREACH input GENERATE
FLATTEN(map(*));

key_groups = GROUP map_result BY $0;
output = FOREACH key_groups GENERATE reduce(*);

* Map() is a UDF, where * indicates that the entire input
record is passed to map()

S0 refers to first field, i.e., the intermediate key here

* Reduce() is another UDF

_ Implementation

automatic
rewrite + -
optimize

Map-Reduce

cluster
sgsssaes
sessses

Pig Latin
program

cluster

Compilation into Map-Reduce

Load Visits

Foreach url

Load UrlInfo
generate count

loin on url
Reduce,

Ma
Other operations kJ Ps

pipelined into map
and reduce phases

Reduce;

Every group or join operation
forms a map-reduce boundary

Is Pig a DBMS?

DBMS Pig

Bulk and random reads &

Lo - Bulk reads & writes only
writes; indexes, transactions

System controls data format

Pigs eat anythin
Must pre-declare schema 9 vthing

System of constraints Sequence of steps

Custom functions second-
class to logic expressions

Easy to incorporate
custom functions

