
1

Let’s see how we can create complex
MapReduce workflows by programming in a
high-level language.

The Pig System

• Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, Andrew Tomkins: Pig
Latin: a not-so-foreign language for data
processing. SIGMOD Conference 2008: 1099-
1110

• Several slides courtesy Chris Olston and
Utkarsh Srivastava

• Open source project under the Apache
Hadoop umbrella

2

Overview

• Design goal: find sweet spot between
declarative style of SQL and low-level
procedural style of MapReduce

• Programmer creates Pig Latin program, using
high-level operators

• Pig Latin program is compiled to MapReduce
program to run on Hadoop

3

Why Not SQL or Plain MapReduce?

• SQL difficult to use and debug for many
programmers

• Programmer might not trust automatic optimizer
and prefers to hard-code best query plan

• Plain MapReduce lacks convenience of readily
available, reusable data manipulation operators
like selection, projection, join, sort

• Program semantics hidden in “opaque” Java code

– More difficult to optimize and maintain

4

Example Data Analysis Task

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Find the top 10 most visited pages in each category

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits Url Info

5

Data Flow
Load Visits

Group by url

Foreach url

generate count
Load Url Info

Join on url

Group by category

Foreach category

generate top10 urls

6

In Pig Latin

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

7

Pig Latin Notes

• No need to import data into database
– Pig Latin works directly with files

• Schemas are optional and can be assigned
dynamically
– Load ‘/data/visits’ as (user, url, time);

• Can call user-defined functions in every
construct like Load, Store, Group, Filter,
Foreach
– Foreach gCategories generate top(visitCounts,10);

8

Pig Latin Data Model

• Fully-nestable data model with:
– Atomic values, tuples, bags (lists), and maps

• More natural to programmers than flat tuples
– Can flatten nested structures using FLATTEN

• Avoids expensive joins, but more complex to
process

yahoo ,

finance

email

news

9

Pig Latin Operators: LOAD

• Reads data from file and optionally assigns
schema to each record

• Can use custom deserializer

queries = LOAD ‘query_log.txt’ USING myLoad()
AS (userID, queryString, timestamp);

10

Pig Latin Operators: FOREACH

• Applies processing to each record of a data set

• No dependence between the processing of
different records
– Allows efficient parallel implementation

• GENERATE creates output records for a given
input record

expanded_queries = FOREACH queries
GENERATE userId, expandQuery(queryString);

11

Pig Latin Operators: FILTER

• Remove records that do not pass filter
condition

• Can use user-defined function in filter
condition

real_queries =
 FILTER queries BY userId neq `bot‘;

12

Pig Latin Operators: COGROUP

• Group together records from one or more
data sets

13

queryString url rank

Lakers nba.com 1

Lakers espn.com 2

Kings nhl.com 1

Kings nba.com 2

queryString adSlot amount

Lakers top 50

Lakers side 20

Kings top 30

Kings side 10

Lakers,
(Lakers, nba.com, 1)
(Lakers, espn.com, 2)

(Lakers, top, 50)
(Lakers, side, 20)

Kings,
(Kings, nhl.com, 1)
(Kings, nba.com, 2)

(Kings, top, 30)
(Kings, side, 10)

,

,

COGROUP results BY queryString, revenue BY queryString

results

revenue

Pig Latin Operators: GROUP

• Special case of COGROUP, to group single data
set by selected fields

• Similar to GROUP BY in SQL, but does not
need to apply aggregate function to records in
each group

grouped_revenue = GROUP revenue BY
queryString;

14

Pig Latin Operators: JOIN

• Computes equi-join
join_result = JOIN results BY queryString, revenue
BY queryString;

• Just a syntactic shorthand for COGROUP followed

by flattening
temp_var = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH temp_var GENERATE
FLATTEN(results), FLATTEN(revenue);

15

Other Pig Latin Operators

• UNION: union of two or more bags

• CROSS: cross product of two or more bags

• ORDER: orders a bag by the specified field(s)

• DISTINCT: eliminates duplicate records in bag

• STORE: saves results to a file

• Nested bags within records can be processed
by nesting operators within a FOREACH
operator

16

Transform
to (user, Canonicalize(url), time)

Join
url = url

Group
by user

Transform
to (user, Average(pagerank) as avgPR)

Filter
avgPR > 0.5

Load
Pages(url, pagerank)

Load
Visits(user, url, time)

(Amy, 0.65)

(Amy, 0.65)
(Fred, 0.4)

(Amy, { (Amy, www.cnn.com, 8am, 0.9),
 (Amy, www.snails.com, 9am, 0.4) })
(Fred, { (Fred, www.snails.com, 11am, 0.4) })

(Amy, www.cnn.com, 8am, 0.9)
(Amy, www.snails.com, 9am, 0.4)
(Fred, www.snails.com, 11am, 0.4)

(Amy, cnn.com, 8am)
(Amy, http://www.snails.com, 9am)
(Fred, www.snails.com/index.html, 11am)

(Amy, www.cnn.com, 8am)
(Amy, www.snails.com, 9am)
(Fred, www.snails.com, 11am)

(www.cnn.com, 0.9)
(www.snails.com, 0.4)

Pig Latin workflow
and example records

17

MapReduce in Pig Latin

map_result = FOREACH input GENERATE
 FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE reduce(*);

• Map() is a UDF, where * indicates that the entire input
record is passed to map()

• $0 refers to first field, i.e., the intermediate key here

• Reduce() is another UDF

18

Implementation

cluster

Hadoop
Map-Reduce

Pig

SQL

automatic
rewrite +
optimize

or

or

user

19

execution
plan

Pig Compiler

Pig System

 cluster

parsed
program

Parser

user

cross-job
optimizer

Pig Latin
program

Map-Reduce

map-red.
jobs

MR Compiler
join

output

filter

X

f()

Y
20

Compilation into Map-Reduce
Load Visits

Group by url

Foreach url

generate count
Load Url Info

Join on url

Group by category

Foreach category

generate top10(urls)

Map1

Reduce1
Map2

Reduce2

Map3

Reduce3

Every group or join operation
forms a map-reduce boundary

Other operations
pipelined into map
and reduce phases

21

Is Pig a DBMS?

DBMS Pig

Bulk and random reads &

writes; indexes, transactions
Bulk reads & writes only

System controls data format

Must pre-declare schema
Pigs eat anything

System of constraints Sequence of steps

Custom functions second-

class to logic expressions

Easy to incorporate

custom functions

workload

data
representation

programming
style

customizable
processing

22

