Let us now look at implementing graph algorithms in MapReduce.

What is a Graph?

- $G=(V, E)$
-V : set of vertices (nodes)
-E : set of edges (links), $E \subseteq V \times V$
- Edges can be directed or undirected
- Graph might have cycles or not (acyclic graph)
- Nodes and edges can be annotated
- E.g., social network: node has demographic information like age; edge has type of relationship like friend or family

Why Graphs?

- Discussion is based on the book and slides by Jimmy Lin and Chris Dyer
- Analyze hyperlink structure of the Web
- Social networks
- Facebook friendships, Twitter followers, email flows, phone call patterns
- Transportation networks
- Roads, bus routes, flights
- Interactions between genes, proteins, etc.

More Graph Problems

- Bipartite graph matching
- Match nodes on "left" with nodes on "right" side
- E.g., match job seekers and employers, singles looking for dates, papers with reviewers
- Maximum flow
- Maximum traffic between source and sink
- E.g., optimize transportation networks
- Finding "special" nodes
- E.g., disease hubs, leader of a community, people with influence

Graph Representations

- Usually one of these two:
- Adjacency matrix
- Adjacency list

Adjacency Matrix

- Matrix M of size $|N|$ by $|N|$
- Entry M(i,j) contains weight of edge from node ito node j; 0 if no edge

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

Example source: Jimmy Lin

Properties

- Advantages
- Easy to manipulate with linear algebra
- $M \cdot M$: entry $(i, j)=$ number of two-step paths to go from node ito node j
- Operation on outlinks and inlinks corresponds to iteration over rows and columns
- Disadvantage
- Huge space overhead for sparse matrix
- E.g., Facebook friendship graph

Adjacency List

- Compact row-wise representation of matrix

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

Properties

- Advantages
- More space-efficient
- Still easy to compute over outlinks for each node
- Disadvantage
- Difficult to compute over inlinks for each node
- Note: remember inverse Web graph discussion

Parallel Breadth-First Search

- Case study: single-source shortest path problem
- Find the shortest path from a source node s to all other nodes in the graph
- For non-negative edge weights, Dijkstra's algorithm is the classic sequential solution
- Initialize distance $\mathrm{d}[\mathrm{s}]=0$, all others to ∞
- Maintain priority queue of nodes sorted by distance
- Remove first node u from queue and update $d[v]$ for each node v in adjacency list of u if (1) v is in queue and $(2) d[v]>d[u]+$ weight (u, v)

Dijkstra's Algorithm Example

Dijkstra's Algorithm Example

Dijkstra's Algorithm Example

Parallel Single-Source Shortest Path

- Priority queue is core element of Dijkstra's algorithm
- No global shared data structure in MapReduce
- Dijkstra's algorithm proceeds sequentially, node by node
- Taking non-min node could affect correctness of algorithm
- Solution: perform parallel breadth-first search

Parallel Breadth-First Search

- Start at source s
- In first round, find all nodes reachable in one hop from s
- In second round, find all nodes reachable in two hops from s, and so on
- Keep track of min distance for each node
- Also record corresponding path
- Iterations stop when no shorter path possible

Overall Algorithm

- Need driver program to control the iterations
- Initialization: SourceNode.distance $=0$, all others have distance= ∞
- When to stop iterating?
- If all edges have weight 1 , can stop as soon as no node has ∞ distance any more
- Can detect this with Hadoop counter
- Number of iterations depends on graph diameter
- In practice, many networks show the small-world phenomenon, e.g., six degrees of separation
$\operatorname{map}($ nid n , node N)
$\mathrm{d}=\mathrm{N}$. distance
emit(nid n, N
for all nid m in N.adjacencyList do
emit(nid $m, d+w(n, m)$) // Emit distances to reachable nodes
reduce(nid $m,[d 1, \mathrm{~d} 2, \ldots]$)
$d M i n=\infty ; M=\varnothing$
for all din [d1, d2,...] do
if isNode(d) then
M = d
else if $d<d M i n$ then
$d \operatorname{Min}=d$ M. distance $=\mathrm{dMin}$ emit(nid m, node M)
if $d M i n<M$. distance $\quad / /$ Needed to avoid overwriting of source node's distance
// N stores node's current min distance and adjacency list
// Pass along graph structure
// Recover graph structure // Look for min distance in list // Update node's shortest distance

Dealing With Diverse Edge Weights

- "Detour" path can be shorter than "direct" connection, hence cannot stop as soon as all node distances are finite
- Stop when no node's shortest distance changes any more
- Can be detected with Hadoop counter
- Worst case: |N| iterations

MapReduce Algorithm Analysis

- Brute-force approach that performs many irrelevant computations
- Computes distances for nodes that still have infinity distance
- Repeats previous computations inside "search frontier"
- Dijkstra's algorithm only explores the search frontier, but needs the priority queue

Typical Graph Processing in MapReduce

- Graph represented by adjacency list per node, plus extra node data
- Map works on a single node u - Node u's local state and links only
- Node v in u's adjacency list is intermediate key - Passes results of computation along outgoing edges
- Reduce combines partial results for each destination node
- Map also passes graph itself to reducers
- Driver program controls execution of iterations

PageRank Introduction

- Popularized by Google for evaluating the quality of a Web page
- Based on random Web surfer model
- Web surfer can reach a page by jumping to it or by following the link from another page pointing to it
- Modeled as random process
- Intuition: important pages are linked from many other (important) pages
- Goal: find pages with greatest probability of access

PageRank Definition

- PageRank of page n :
$-P(n)=\alpha \frac{1}{|V|}+(1-\alpha) \sum_{m \in L(n)} \frac{P(m)}{C(m)}$
- |V| is number of pages (nodes)
$-\alpha$ is probability of random jump
$-L(n)$ is the set of pages linking to n
- $\mathrm{P}(\mathrm{m})$ is m's PageRank
$-C(m)$ is m's out-degree
- Definition is recursive
- Compute by iterating until convergence (fixpoint)

Computing PageRank

- Similar to BFS for shortest path
- Computing $P(n)$ only requires $P(m)$ and $C(m)$ for all pages linking to n
- During iteration, distribute $P(m)$ evenly over outlinks
- Then add contributions over all of n's inlinks
- Initialization: any probability distribution over the nodes

PageRank Example

Dangling Nodes

- Consider node x with no outgoing links
$-P(x)$ is not passed to any other node, hence gets "lost"
in the Map phase
Need to correct for the missing probability mass
in the Map phase
- Need to correct for the missing probability mass
- Model: assume dangling page links to all pages
- Mathematically equivalent to
$P(n)=\alpha \frac{1}{|V|}+(1-\alpha)\left(\frac{\delta}{|V|}+\sum_{m \in L(n)} \frac{P(m)}{C(m)}\right)$
$-\delta$: missing PageRank mass due to dangling nodes
- Mathematically equivalent to
e. insers ascina

MapReduce Code

$\operatorname{map}($ nid n , node N) // N stores node's current PageRank and adjacency list p = N.pageRank / |N.adjacencyList|
emit(nid n, N) // Pass along graph structure
for all nid m in N.adjacencyList do
emit(nid m, p) // Pass PageRank mass to neighbors
reduce(nid $m,[p 1, p 2, \ldots .]$.
$s=0 ; M=\varnothing$
for all p in $[p 1, p 2, \ldots$.$] do$
if isNode(p) then
$M=p$
// Recover graph structure
$\mathrm{s}+\mathrm{p}$
// Sum incoming PageRank contributions
M.pageRank $=\alpha /|\mathrm{V}|+(1-\alpha) \cdot \mathrm{s}$
emit(nid m, node M)

PageRank with Dangling Nodes

- Challenge: need δ, which is the sum over the current page ranks of dangling nodes
- MR-job1: compute δ
- MR-job2: compute new PageRank using δ
- Alternative computations?
- Order inversion pattern to make sure δ is available in all reduce tasks

Number of Iterations

- PageRank computation iterates until convergence
- PageRank of all nodes no longer changes (or is within small tolerance)
- Needs to be checked by driver
- Original PageRank paper: 52 iterations until convergence on graph with 322 million edges
- Highly dependent on data properties

General Graph Processing Issues

- Sequential algorithms often use global data structure for efficiency
- In MapReduce with adjacency list representation, information can only be passed locally to or from direct neighbors
- But can pre-compute other data structures, e.g., two-hop neighbors
- Presented algorithms have Map output of O(\#edges), which works well for sparse graphs

General Graph Processing Issues

- Partitioning of graph into chunks strongly affects effectiveness of combiners
- Often best to keep well-connected components together
- Numerical stability for large graphs
- PageRank of individual page might be so small that it underflows standard floating point representation
- Can work with logarithm-transformed numbers instead

