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Now that we have seen important design 
patterns and MapReduce algorithms for 
simpler problems, let’s look at some more 
complex problems, starting with general joins. 

Joins in MapReduce 

• Data sets S={s1,..., s|S|} and T={t1,..., t|T|} 

• Find all pairs (si, tj) that satisfy some predicate 

• Examples 

– Pairs of similar or complementary function 
summaries 

– Facebook and Twitter posts by same user or from 
same location 

• Typical goal: minimize job completion time 
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Function-Join Pattern 

• Find groups of summaries with certain properties 
of interest 
– Similar trends, opposite trends, correlations 

– Groups not known a priori, need to be discovered 
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Existing Join Support 

• Hadoop has some built-in join support, but 
our goal is to design our own algorithms 

– Built-in support is limited 

– We want to understand important algorithm 
design principles 

• “Join” usually just means equi-join, but we 
also want to support other join predicates 

• Note: recall join discussion from earlier lecture 
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Joining Large With Small 

• Assume data set T is small enough to fit in 
memory 

• Can run Map-only join 
– Load T onto every mapper 

– Map: join incoming S-tuple with T, output all matching 
pairs 
• Can scan entire T (nested loop) or use index on T (index 

nested loop) 

• Downside: need to copy T to all mappers 
– Not so bad, since T is small 
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Distributed Cache 

• Efficient way to copy files to all nodes 
processing a certain task 

– Use it to send small T to all mappers 

• Part of the job configuration 

• Hadoop still needs to move the data to the 
worker nodes, so use this with care 

– But it avoids copying the file for every task on the 
same node 
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Recall: Standard Equi-Join Algorithm 

• Join condition: S.A=T.A 
• Map(s) = (s.A, s); Map(t) = (t.A, t) 
• Reduce combines S-tuples and T-tuples with same key 
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Problems With Standard Approach 

• Degree of parallelism limited by number of 
distinct A-values 

 

• Data skew 

– If one A-value dominates, reducer processing that 
key will become bottleneck 

 

• Does not generalize to other joins 
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Reducer-Centric Cost Model 

• Difference between join implementations starts 
with Map output 
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Optimization Goal: Minimal Job 
Completion time 

• Assume all reducers are similarly capable 

• Processing time at reducer is approximately 
monotonic in input and output size 

• Hence need to minimize max-reducer-input or 
max-reducer-output 

• Join problem classification 
– Input-size dominated: minimize max-reducer-input 

– Output-size dominated: minimize max-reducer-output 

– Input-output balanced: minimize combination of both 
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Join Model 

• Join-matrix M: M(i, j) = true, if and only if (si, tj) in join 
result 

• Cover each true-valued cell by exactly one reducer 
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Standard Equi-Join Alg.: Random Assignment: Balanced Algorithm: 



1-Bucket-Random: Map 

• Input: tuple xST, 
matrix-to-reducer mapping lookup table 

1. If xS then 
1. matrixRow = random( 1, |S| ) 

2. Forall regionID in lookup.getRegions( matrixRow ) 
1. Output ( regionID, (x, “S”) ) 

2. Else 
1. matrixCol = random( 1, |T| ) 

2. Forall regionID in lookup.getRegions( matrixCol ) 
1. Output ( regionID, (x, “T”) ) 
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1-Bucket-Random: Reduce 

• Input: ( ID, [(x1, origin1),..., (xk, origink)] ) 

1. Stuples = ; Ttuples =  

2. Forall (xi, origini) in input list do 

1. If origini = “S” then Stuples = Stuples  {xi} 

2. Else Ttuples = Ttuples  {xi} 

3. joinResult = MyFavoriteJoinAlg( Stuples, 
Ttuples ) 

4. Output joinResult 
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1-Bucket-Random Example 
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Why Randomization? 

• Avoids pre-processing step to assign row/column 
IDs to records 

• Effectively removes output skew 

• Input sizes very close to target 
– Chernoff bound: due to large number of records per 

reducer, probability of receiving 10% or more over 
target is virtually zero 

 

• Side-benefit: join matrix does not have to have 
|S| by |R| cells, could be much smaller! 
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Remaining Challenges 

 

What is the best way to cover all true-valued 
cells? 

 

And how do we know which matrix cells have 
value true? 
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Cartesian Product Computation 

• Start with cross-product ST 

– Entire matrix needs to be covered by r reducer 
regions (= r reduce tasks) 

 

• Lemma 1: use square-shaped regions! 

– A reducer that covers c cells of join matrix M will 
receive at least 2sqrt(c) input tuples 
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Optimal Cover for M 

• Need to cover all |S||T| matrix cells 

– Lower bound for max-reducer-output: |S||T|/r 

– Lemma 1 implies lower bound for max-reducer-
input: 2sqrt(|S||T|/r) 

• Can we match these lower bounds? 

– YES: Use r squares, each sqrt(|S||T|/r) cells 
wide/tall 

 

• Can this be achieved for given S, T, r? 
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Easy Case 

• |S|, |T| are both multiples of sqrt(|S||T|/r) 

• Optimal! 

20 

Optimal square region 

S 

T 

Join matrix (cross-product) 

Also Easy 

• |S| < |T|/r 
– Implies |S| < sqrt(|S||T|/r) 
– Lower bound for input not achievable 

• Optimal: use rectangles of size |S| by |T|/r 
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“Idealistic” square region 
S 

T 

Actual optimal region 
S 

T 

Hard Case 

• |T|/r  |S|  |T| and at least one is not 
multiple of sqrt(|S||T|/r) 
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Optimal square region 

S 

T 

9 regions: 
- 6 fit 
- 3 do not fit 

Solution For Hard Case 

• “Inflate” squares until they just cover the 
matrix 
– Worst case: only one square did fit initially, but 

leftover just too small to fit more rows or columns 
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Need to at most double side-length of optimal square 

Near-Optimality For Cross-Product 

• Every region has less than 4sqrt(|S||T|/r) input 
records 
– Lower bound: 2sqrt(|S||T|/r) 

• Every region contains less than 4|S||T|/r cells 
– Lower bound: |S||T|/r 

• Summary: max-reducer-input and max-reducer-
output are within a factor of 2 and 4 of the lower 
bound, respectively 
– Usually much better: if 10 by 10 squares fit initially, 

they are within a factor of 1.1 and 1.21 of lower 
bound! 
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From Cross-Product To Joins 

• Near-optimality shown for cross-product 

• Randomization of 1-Bucket-Random tends to 
distribute output very evenly over regions 
– Join-specific mapping unlikely to improve max-

reducer-output significantly 

– 1-Bucket-Random wins for any output-size dominated 
join 

• Join-specific mapping has to beat 1-Bucket-
Random on input cost: avoid covering empty 
matrix regions 
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Finding Empty Matrix Regions 

• For a given matrix region, prove that it 
contains no join result 

• Need statistics about S and T and a simple 
enough join predicate 
– Histogram bucket: S.A > 8  T.A < 7 

– Join predicate: S.A = T.A 

– Easy to show that bucket property implies 
negation of join predicate 

• Not possible for “blackbox” join predicates 
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Approximate Join Matrix 
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True join matrix Histogram boundaries 

Candidate cells to be covered by algorithm 

What Can We Do? 

• Proving buckets to be empty is easy for many 
popular join types 
– Equi-join: S.A = T.A 

– Inequality-join: S.A  T.A 

– Band-join: R.A - 1  S.A  R.A + 2 

• For statistics, use histograms 
– Two 1-dimensional histograms: one on S the other 

on T 

– Easy and cheap to compute 
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M-Bucket-I 

• Uses Multiple-bucket histograms to minimize 
max-reducer-Input 

• First identifies candidate cells, then tries to cover 
all candidate cells with r regions 

– Binary search over max-reducer-input values 

• Min: 2sqrt(#candidateCells / r); max: |S|+|T| 

– Works on block of consecutive rows 

• Find “best” block (most candidate cells covered per region) 

• Continue with next block, until all candidate cells covered, or 
running out of regions 
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M-Bucket-I Illustration 
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MaxInput = 3 

Block: row 1 

Score: 1 

Block: rows 1-2 

Score: 1.5 

Best: 

And so on. 



M-Bucket-O 

• Similar to M-Bucket-I, but tries to minimize 
max-reducer-Output 

• Binary search over max-reducer-output values 

• Problem: needs to estimate number of result 
cells in regions inside a histogram bucket 
– Estimate can be poor, even for fine-grained 

histogram 

– Input-size estimation much more accurate than 
output-size estimation 
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Extension: Memory-Awareness 

• Input for region might exceed reducer memory 

• Solutions 
– Use I/O-based join implementation in Reduce, or 

– Create more (and hence smaller) regions 

• 1-Bucket-Random: use squares of side-length 
Mem/2 

• M-Bucket-I: Instead of binary search on max-
reducer-input, set it immediately to Mem 

• Similar for M-Bucket-O 
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Experiments: Basic Setup 

• 10-machine cluster 

– Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM, 
two 250GB 7.2K RPM hard disks 

• Hadoop 0.20.2 

– One machine head node, other nine worker nodes 

– One Map or Reduce task per core 

– DFS block size of 64MB 

– Data stored on all 10 machines 
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Data Sets 

• Cloud 
– Cloud reports from ships and land stations 
– 382 million records, 28 attributes, 28.8GB total size 

• Cloud-5-1, Cloud-5-2 
– Independent random samples from Cloud, each with 5 

million records 

• Synth- 
– Pair of data sets of 5 million records each 
– Record is single integer between 1 and 1000 
– Data set 1: uniformly generated 
– Data set 2: Zipf distribution with parameter  

• For =0, data is perfectly uniform 
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Skew Resistance: Equi-Join 

• 1-Bucket-Random vs. standard equi-join algorithm 

• Output-size dominated join 
– Max-reducer-output determines runtime 
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1-Bucket-Random Standard algorithm 

Data Set Output size 
(billion) 

Output imbalance Runtime 
(secs) 

Output Imbalance Runtime 
(secs) 

Synth-0 25.00 1.0030 657 1.001 701 

Synth-0.4 24.99 1.0023 650 1.254 722 

Synth-0.6 24.98 1.0033 676 1.778 923 

Synth-0.8 24.95 1.0068 678 3.010 1482 

Synth-1 24.91 1.0089 667 5.312 2489 

Selective Band-Join 

SELECT S.date, S.longitude, 

S.latitude, T.latitude 

FROM Cloud AS S, Cloud AS T 

WHERE S.date = T.date 

AND S.longitude = T.longitude AND 

ABS(S.latitude - T.latitude) <= 10 

 

• 390M output vs. 764M input records 

• M-Bucket-I for different histogram granularities 

36 



M-Bucket-I Results 
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Runtime for MapReduce only! 

10-run averages 
(stdev < 15%) 

M-Bucket-I Details 

• M-Bucket-I for 1-bucket histogram is improved version 
of original 1-Bucket-Random 
– 1-Bucket-Random might keep reducers idle 

• Out-of-memory for 1-bucket and 100-bucket cases 
– Used memory-aware version of algorithm 

– Creates cr regions for r reducers for smallest integer c that 
allows in-memory processing 

• Input duplication rate: total mapper output size vs. 
total mapper input size 
– 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms 

with 1, 10, 100, 1000, 10K, 100k, and 1M buckets 
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Not-So-Selective Band-Join 

SELECT S.latitude, T.latitude 

FROM Cloud-5-1 AS S, Cloud-5-2 AS T 

WHERE ABS(S.latitude-T.latitude) <= 2 

 

• 22 billion output vs. 10 million input records 

• M-Bucket-O for different histogram 
granularities 
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M-Bucket-O Results 
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Runtime for MapReduce only! 

10-run averages 
(stdev < 4%) 

M-Bucket-O Details 

• M-Bucket-O for 1-bucket histogram is 
improved version of original 1-Bucket-Random 

 

• Data set has 5951 distinct latitude values 

• Input duplication rate: total mapper output 
size vs. total mapper input size 

– 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with 
1, 10, 100, 1000, and 5951 buckets 
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Step Number of histogram buckets 

1 10 100 1000 10,000 100,000 1,000,000 

Quantiles 0 115 120 117 122 124 122 

Histogram 0 140 145 147 157 167 604 

Heuristic 74 9 0.8 1.5 17 118 111 

Join 49,384 10,905 1157 595 548 540 536 

Total 49,458 11169 1423 861 844 949 1373 

Step Number of histogram buckets 

1 10 100 1000 5951 

Quantiles 0 4.5 4.5 4.8 4.9 

Histogram 0 26.2 25.8 25.6 25.6 

Heuristic 0.04 0.04 0.05 0.24 0.81 

Join 1279 2483 1597 1369 1188 

Total 1279 2514 1627 1399 1219 

M-Bucket-I on Cloud data set (input-size dominated join): 

M-Bucket-O on Cloud-5 data sets (output-size dominated join): 

Detailed cost breakdown 



Summary 

• Join model for creation and reasoning about 
parallel algorithms 

• Near-optimal randomized algorithm for 
output-size dominated joins 

• Improved heuristics for popular very selective 
joins 
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Future Directions 

• Multi-way theta-joins 

• Optimizer to select best implementation for 
given join problem 

• Consider other optimization goals 
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