
1

Now that we have seen important design
patterns and MapReduce algorithms for
simpler problems, let’s look at some more
complex problems, starting with general joins.

Joins in MapReduce

• Data sets S={s1,..., s|S|} and T={t1,..., t|T|}

• Find all pairs (si, tj) that satisfy some predicate

• Examples

– Pairs of similar or complementary function
summaries

– Facebook and Twitter posts by same user or from
same location

• Typical goal: minimize job completion time

2

Function-Join Pattern

• Find groups of summaries with certain properties
of interest
– Similar trends, opposite trends, correlations

– Groups not known a priori, need to be discovered

3

Existing Join Support

• Hadoop has some built-in join support, but
our goal is to design our own algorithms

– Built-in support is limited

– We want to understand important algorithm
design principles

• “Join” usually just means equi-join, but we
also want to support other join predicates

• Note: recall join discussion from earlier lecture

4

Joining Large With Small

• Assume data set T is small enough to fit in
memory

• Can run Map-only join
– Load T onto every mapper

– Map: join incoming S-tuple with T, output all matching
pairs
• Can scan entire T (nested loop) or use index on T (index

nested loop)

• Downside: need to copy T to all mappers
– Not so bad, since T is small

5

Distributed Cache

• Efficient way to copy files to all nodes
processing a certain task

– Use it to send small T to all mappers

• Part of the job configuration

• Hadoop still needs to move the data to the
worker nodes, so use this with care

– But it avoids copying the file for every task on the
same node

6

DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

Recall: Standard Equi-Join Algorithm

• Join condition: S.A=T.A
• Map(s) = (s.A, s); Map(t) = (t.A, t)
• Reduce combines S-tuples and T-tuples with same key

7

s1,1

s1,1

1,(s1,1)

s5,1

s5,1

1,(s5,1)

1,(t3,1) t3,1
t3,1

t8,1

t8,1

1,(t8,1)

1,[(s5,1)(t3,1)(s1,1)(t8,1)]

(s5,t3)

(s1,t3)

(s1,t8)

(s5,t8)

s3,2

t1,2

s3,2

t1,2

2,[(s3,2)(t1,2)]

(s3,t1)

2,(t1,2)

2,(s3,2)

Problems With Standard Approach

• Degree of parallelism limited by number of
distinct A-values

• Data skew

– If one A-value dominates, reducer processing that
key will become bottleneck

• Does not generalize to other joins

8

Reducer-Centric Cost Model

• Difference between join implementations starts
with Map output

9

Join output

time=f(input size) time=f(output size)

output
Sort input
by key

Read
input algorithm

Send join
output

Receive Mapper Run join

Reducer
Mapper output

Optimization Goal: Minimal Job
Completion time

• Assume all reducers are similarly capable

• Processing time at reducer is approximately
monotonic in input and output size

• Hence need to minimize max-reducer-input or
max-reducer-output

• Join problem classification
– Input-size dominated: minimize max-reducer-input

– Output-size dominated: minimize max-reducer-output

– Input-output balanced: minimize combination of both

10

Join Model

• Join-matrix M: M(i, j) = true, if and only if (si, tj) in join
result

• Cover each true-valued cell by exactly one reducer

11

M(2,5)

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A = T.A

S
5 7 7 7 8 9

7

5

7

8

9

9

T

abs(S.A - T.A) < 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A >= T.A
M(2,1)

12

5

7

8

9

3

3

3

2

2

1

1

1

1

2 3

2
1

Input: S2,S3,S4,S6
T3,T4,T5,T6

Output: 4 tuples

Input: S2,S3,S5
T2,T4,T6

Output: 3 tuples

R3: key 3
Input: S1,S2,S3

T1,T2,T3
Output: 3 tuples

max-reducer-input = 8

R1: key 1

R2: key 2

max-reducer-output = 4

S1,S4
T1,T5
2 tuples

Input: S2,S3
T2,T3,T4

Output: 6 tuples

R3: key 9
Input: S5,S6

T6
Output: 2 tuples

R2: key 7

R1: keys 5,8

Output:

Input:

max-reducer-input = 5
max-reducer-output = 6

R1: key 1
Input: S1,S2,S3

T1,T2
Output: 3 tuples

Input: S2,S3
T3,T4

Output: 4 tuples

R3: key 3
Input: S4,S5,S6

T5,T6
Output: 3 tuples

max-reducer-input = 5
max-reducer-output = 4

R2: key 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T

key

Standard Equi-Join Alg.: Random Assignment: Balanced Algorithm:

1-Bucket-Random: Map

• Input: tuple xST,
matrix-to-reducer mapping lookup table

1. If xS then
1. matrixRow = random(1, |S|)

2. Forall regionID in lookup.getRegions(matrixRow)
1. Output (regionID, (x, “S”))

2. Else
1. matrixCol = random(1, |T|)

2. Forall regionID in lookup.getRegions(matrixCol)
1. Output (regionID, (x, “T”))

13

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

1-Bucket-Random: Reduce

• Input: (ID, [(x1, origin1),..., (xk, origink)])

1. Stuples = ; Ttuples =

2. Forall (xi, origini) in input list do

1. If origini = “S” then Stuples = Stuples {xi}

2. Else Ttuples = Ttuples {xi}

3. joinResult = MyFavoriteJoinAlg(Stuples,
Ttuples)

4. Output joinResult

14

1-Bucket-Random Example

15

Reduce:

5
1

2
1
5

6
2
2
3
6
4

Random
row/col

(2,T6),(3,T6)
(2,T5),(3,T5)
(1,T4),(3,T4)
(1,T3),(3,T3)
(1,T2),(3,T2)
(2,T1),(3,T1)
(1,S6),(2,S6)
(1,S5),(2,S5)
(3,S4)
(1,S3),(2,S3)
(3,S2)
(1,S1),(2,S1)

T6.A=9
T5.A=8
T4.A=7

T2.A=7
T1.A=5
S6.A=9
S5.A=9
S4.A=8
S3.A=7
S2.A=7
S1.A=5

T3.A=7

Input

tuple

Output

1 2

3

Reducer X: key 1

Input: S1, S3, S5 ,S6
T2, T3, T4

(S3,T2),(S3,T3),(S3,T4)Output:

Reducer Y: key 2

Input:

Output:

S1, S3, S5, S6
T1, T5, T6

(S1,T1),(S5,T6),(S6,T6)

Reducer Z: key 3

Input: S2, S4
T1, T2, T3, T4, T5, T6

(S2,T4),(S4,T5)

(S2,T2),(S2,T3),Output:

Map:

Row
Col

S

T

S.A=T.A

1 6

1

6

3

Why Randomization?

• Avoids pre-processing step to assign row/column
IDs to records

• Effectively removes output skew

• Input sizes very close to target
– Chernoff bound: due to large number of records per

reducer, probability of receiving 10% or more over
target is virtually zero

• Side-benefit: join matrix does not have to have
|S| by |R| cells, could be much smaller!

16

Remaining Challenges

What is the best way to cover all true-valued
cells?

And how do we know which matrix cells have
value true?

17

Cartesian Product Computation

• Start with cross-product ST

– Entire matrix needs to be covered by r reducer
regions (= r reduce tasks)

• Lemma 1: use square-shaped regions!

– A reducer that covers c cells of join matrix M will
receive at least 2sqrt(c) input tuples

18

Optimal Cover for M

• Need to cover all |S||T| matrix cells

– Lower bound for max-reducer-output: |S||T|/r

– Lemma 1 implies lower bound for max-reducer-
input: 2sqrt(|S||T|/r)

• Can we match these lower bounds?

– YES: Use r squares, each sqrt(|S||T|/r) cells
wide/tall

• Can this be achieved for given S, T, r?

19

Easy Case

• |S|, |T| are both multiples of sqrt(|S||T|/r)

• Optimal!

20

Optimal square region

S

T

Join matrix (cross-product)

Also Easy

• |S| < |T|/r
– Implies |S| < sqrt(|S||T|/r)
– Lower bound for input not achievable

• Optimal: use rectangles of size |S| by |T|/r

21

“Idealistic” square region
S

T

Actual optimal region
S

T

Hard Case

• |T|/r |S| |T| and at least one is not
multiple of sqrt(|S||T|/r)

22

Optimal square region

S

T

9 regions:
- 6 fit
- 3 do not fit

Solution For Hard Case

• “Inflate” squares until they just cover the
matrix
– Worst case: only one square did fit initially, but

leftover just too small to fit more rows or columns

23

Need to at most double side-length of optimal square

Near-Optimality For Cross-Product

• Every region has less than 4sqrt(|S||T|/r) input
records
– Lower bound: 2sqrt(|S||T|/r)

• Every region contains less than 4|S||T|/r cells
– Lower bound: |S||T|/r

• Summary: max-reducer-input and max-reducer-
output are within a factor of 2 and 4 of the lower
bound, respectively
– Usually much better: if 10 by 10 squares fit initially,

they are within a factor of 1.1 and 1.21 of lower
bound!

24

From Cross-Product To Joins

• Near-optimality shown for cross-product

• Randomization of 1-Bucket-Random tends to
distribute output very evenly over regions
– Join-specific mapping unlikely to improve max-

reducer-output significantly

– 1-Bucket-Random wins for any output-size dominated
join

• Join-specific mapping has to beat 1-Bucket-
Random on input cost: avoid covering empty
matrix regions

25

Finding Empty Matrix Regions

• For a given matrix region, prove that it
contains no join result

• Need statistics about S and T and a simple
enough join predicate
– Histogram bucket: S.A > 8 T.A < 7

– Join predicate: S.A = T.A

– Easy to show that bucket property implies
negation of join predicate

• Not possible for “blackbox” join predicates

26

Approximate Join Matrix

27

True join matrix Histogram boundaries

Candidate cells to be covered by algorithm

What Can We Do?

• Proving buckets to be empty is easy for many
popular join types
– Equi-join: S.A = T.A

– Inequality-join: S.A T.A

– Band-join: R.A - 1 S.A R.A + 2

• For statistics, use histograms
– Two 1-dimensional histograms: one on S the other

on T

– Easy and cheap to compute

28

M-Bucket-I

• Uses Multiple-bucket histograms to minimize
max-reducer-Input

• First identifies candidate cells, then tries to cover
all candidate cells with r regions

– Binary search over max-reducer-input values

• Min: 2sqrt(#candidateCells / r); max: |S|+|T|

– Works on block of consecutive rows

• Find “best” block (most candidate cells covered per region)

• Continue with next block, until all candidate cells covered, or
running out of regions

29

M-Bucket-I Illustration

30

MaxInput = 3

Block: row 1

Score: 1

Block: rows 1-2

Score: 1.5

Best:

And so on.

M-Bucket-O

• Similar to M-Bucket-I, but tries to minimize
max-reducer-Output

• Binary search over max-reducer-output values

• Problem: needs to estimate number of result
cells in regions inside a histogram bucket
– Estimate can be poor, even for fine-grained

histogram

– Input-size estimation much more accurate than
output-size estimation

31

Extension: Memory-Awareness

• Input for region might exceed reducer memory

• Solutions
– Use I/O-based join implementation in Reduce, or

– Create more (and hence smaller) regions

• 1-Bucket-Random: use squares of side-length
Mem/2

• M-Bucket-I: Instead of binary search on max-
reducer-input, set it immediately to Mem

• Similar for M-Bucket-O

32

Experiments: Basic Setup

• 10-machine cluster

– Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM,
two 250GB 7.2K RPM hard disks

• Hadoop 0.20.2

– One machine head node, other nine worker nodes

– One Map or Reduce task per core

– DFS block size of 64MB

– Data stored on all 10 machines

33

Data Sets

• Cloud
– Cloud reports from ships and land stations
– 382 million records, 28 attributes, 28.8GB total size

• Cloud-5-1, Cloud-5-2
– Independent random samples from Cloud, each with 5

million records

• Synth-
– Pair of data sets of 5 million records each
– Record is single integer between 1 and 1000
– Data set 1: uniformly generated
– Data set 2: Zipf distribution with parameter

• For =0, data is perfectly uniform

34

Skew Resistance: Equi-Join

• 1-Bucket-Random vs. standard equi-join algorithm

• Output-size dominated join
– Max-reducer-output determines runtime

35

1-Bucket-Random Standard algorithm

Data Set Output size
(billion)

Output imbalance Runtime
(secs)

Output Imbalance Runtime
(secs)

Synth-0 25.00 1.0030 657 1.001 701

Synth-0.4 24.99 1.0023 650 1.254 722

Synth-0.6 24.98 1.0033 676 1.778 923

Synth-0.8 24.95 1.0068 678 3.010 1482

Synth-1 24.91 1.0089 667 5.312 2489

Selective Band-Join

SELECT S.date, S.longitude,

S.latitude, T.latitude

FROM Cloud AS S, Cloud AS T

WHERE S.date = T.date

AND S.longitude = T.longitude AND

ABS(S.latitude - T.latitude) <= 10

• 390M output vs. 764M input records

• M-Bucket-I for different histogram granularities

36

M-Bucket-I Results

37

Runtime for MapReduce only!

10-run averages
(stdev < 15%)

M-Bucket-I Details

• M-Bucket-I for 1-bucket histogram is improved version
of original 1-Bucket-Random
– 1-Bucket-Random might keep reducers idle

• Out-of-memory for 1-bucket and 100-bucket cases
– Used memory-aware version of algorithm

– Creates cr regions for r reducers for smallest integer c that
allows in-memory processing

• Input duplication rate: total mapper output size vs.
total mapper input size
– 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms

with 1, 10, 100, 1000, 10K, 100k, and 1M buckets

38

Not-So-Selective Band-Join

SELECT S.latitude, T.latitude

FROM Cloud-5-1 AS S, Cloud-5-2 AS T

WHERE ABS(S.latitude-T.latitude) <= 2

• 22 billion output vs. 10 million input records

• M-Bucket-O for different histogram
granularities

39

M-Bucket-O Results

40

Runtime for MapReduce only!

10-run averages
(stdev < 4%)

M-Bucket-O Details

• M-Bucket-O for 1-bucket histogram is
improved version of original 1-Bucket-Random

• Data set has 5951 distinct latitude values

• Input duplication rate: total mapper output
size vs. total mapper input size

– 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with
1, 10, 100, 1000, and 5951 buckets

41 42

Step Number of histogram buckets

1 10 100 1000 10,000 100,000 1,000,000

Quantiles 0 115 120 117 122 124 122

Histogram 0 140 145 147 157 167 604

Heuristic 74 9 0.8 1.5 17 118 111

Join 49,384 10,905 1157 595 548 540 536

Total 49,458 11169 1423 861 844 949 1373

Step Number of histogram buckets

1 10 100 1000 5951

Quantiles 0 4.5 4.5 4.8 4.9

Histogram 0 26.2 25.8 25.6 25.6

Heuristic 0.04 0.04 0.05 0.24 0.81

Join 1279 2483 1597 1369 1188

Total 1279 2514 1627 1399 1219

M-Bucket-I on Cloud data set (input-size dominated join):

M-Bucket-O on Cloud-5 data sets (output-size dominated join):

Detailed cost breakdown

Summary

• Join model for creation and reasoning about
parallel algorithms

• Near-optimal randomized algorithm for
output-size dominated joins

• Improved heuristics for popular very selective
joins

43

Future Directions

• Multi-way theta-joins

• Optimizer to select best implementation for
given join problem

• Consider other optimization goals

44

