Now that we have seen important design patterns and MapReduce algorithms for simpler problems, let's look at some more complex problems, starting with general joins.

Joins in MapReduce

- Data sets S={s₁,..., s_{|S|}} and T={t₁,..., t_{|T|}}
- Find all pairs (s_i, t_i) that satisfy some predicate
- Examples
 - Pairs of similar or complementary function summaries
 - Facebook and Twitter posts by same user or from same location
- Typical goal: minimize job completion time

Existing Join Support

- Hadoop has some built-in join support, but our goal is to design our own algorithms
 - Built-in support is limited
 - We want to understand important algorithm design principles
- "Join" usually just means equi-join, but we also want to support other join predicates
- Note: recall join discussion from earlier lecture

Joining Large With Small

- Assume data set T is small enough to fit in memory
- Can run Map-only join
 - Load T onto every mapper
 - Map: join incoming S-tuple with T, output all matching pairs
 - Can scan entire T (nested loop) or use index on T (index nested loop)
- Downside: need to copy T to all mappers
 - Not so bad, since T is small

Distributed Cache

- Efficient way to copy files to all nodes processing a certain task
 - Use it to send small T to all mappers
- Part of the job configuration
- Hadoop still needs to move the data to the worker nodes, so use this with care
 - But it avoids copying the file for every task on the same node

- Processing time at reducer is approximately monotonic in input and output size
- Hence need to minimize max-reducer-input or max-reducer-output
- Join problem classification
 - Input-size dominated: minimize max-reducer-input
 - Output-size dominated: minimize max-reducer-output
 - Input-output balanced: minimize combination of both

1-Bucket-Random: Map

- Input: tuple x∈S∪T,
- matrix-to-reducer mapping *lookup* table 1. If $x \in S$ then
- matrixRow = random(1, |S|)
 Forall regionID in lookup.getRegions(matrixRow)
 Output (regionID, (x, "S"))
- 2. Else
 - 1. matrixCol = random(1, |T|)
 - Forall regionID in lookup.getRegions(matrixCol)
 Output (regionID, (x, "T"))

1-Bucket-Random: Reduce

- Input: (ID, [(x₁, origin₁),..., (x_k, origin_k)])
- 1. Stuples = \emptyset ; Ttuples = \emptyset
- 2. Forall (x_i, origin_i) in input list do
 - 1. If $\text{origin}_i = "S"$ then Stuples = Stuples $\cup \{x_i\}$
 - 2. Else Ttuples = Ttuples $\cup \{x_i\}$
- joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)
- 4. Output joinResult

Remaining Challenges

What is the best way to cover all true-valued cells?

And how do we know which matrix cells have value *true*?

Cartesian Product Computation

- Start with cross-product S×T
 - Entire matrix needs to be covered by r reducer regions (= r reduce tasks)
- Lemma 1: use square-shaped regions!
 - A reducer that covers c cells of join matrix M will receive at least 2·sqrt(c) input tuples

- YES: Use r squares, each sqrt(|S|·|T|/r) cells wide/tall
- Can this be achieved for given S, T, r?

From Cross-Product To Joins

- Near-optimality shown for cross-product
- Randomization of 1-Bucket-Random tends to distribute output very evenly over regions
 - Join-specific mapping unlikely to improve maxreducer-output significantly
 - 1-Bucket-Random wins for any output-size dominated join
- Join-specific mapping has to beat 1-Bucket-Random on input cost: avoid covering empty matrix regions

Finding Empty Matrix Regions

- For a given matrix region, prove that it contains no join result
- Need statistics about S and T and a simple enough join predicate
 - Histogram bucket: S.A > 8 \wedge T.A < 7
 - Join predicate: S.A = T.A
 - Easy to show that bucket property implies negation of join predicate
- Not possible for "blackbox" join predicates

M-Bucket-O

- Similar to M-Bucket-I, but tries to minimize max-reducer-Output
- Binary search over max-reducer-output values
- Problem: needs to estimate number of result cells in regions inside a histogram bucket
 - Estimate can be poor, even for fine-grained histogram
 - Input-size estimation much more accurate than output-size estimation

Extension: Memory-Awareness

- Input for region might exceed reducer memory
- Solutions
 - Use I/O-based join implementation in Reduce, or
 - Create more (and hence smaller) regions
- 1-Bucket-Random: use squares of side-length Mem/2
- M-Bucket-I: Instead of binary search on maxreducer-input, set it immediately to Mem
- Similar for M-Bucket-O

Experiments: Basic Setup

- 10-machine cluster
 - Quad-core Xeon 2.4GHz, 8MB cache, 8GB RAM, two 250GB 7.2K RPM hard disks
- Hadoop 0.20.2
 - One machine head node, other nine worker nodes
 - One Map or Reduce task per core
 - DFS block size of 64MB
 - Data stored on all 10 machines

Data Sets

- Cloud
 - Cloud reports from ships and land stations
 - 382 million records, 28 attributes, 28.8GB total size
- Cloud-5-1, Cloud-5-2

 Independent random samples from Cloud, each with 5 million records

 Synth-α
 - Pair of data sets of 5 million records each
 - Record is single integer between 1 and 1000 $\,$
 - Data set 1: uniformly generated
 - Data set 2: Zipf distribution with parameter α . For $\alpha \mbox{=0}$, data is perfectly uniform

Skew Resistance: Equi-Join

- 1-Bucket-Random vs. standard equi-join algorithm
- Output-size dominated join

 Max-reducer-output determines runtime 	9
---	---

		1-Bucket-Random Standard algorithm			
Data Set	Output size (billion)	Output imbalance	Runtime (secs)	Output Imbalance	Runtime (secs)
Synth-0	25.00	1.0030	657	1.001	701
Synth-0.4	24.99	1.0023	650	1.254	722
Synth-0.6	24.98	1.0033	676	1.778	923
Synth-0.8	24.95	1.0068	678	3.010	1482
Synth-1	24.91	1.0089	667	5.312	2489

• M-Bucket-I for different histogram granularities

Not-So-Selective Band-Join

SELECT S.latitude, T.latitude
FROM Cloud-5-1 AS S, Cloud-5-2 AS T
WHERE ABS(S.latitude-T.latitude) <= 2</pre>

- 22 billion output vs. 10 million input records
- M-Bucket-O for different histogram granularities

M-Bucket-O Details

- M-Bucket-O for 1-bucket histogram is improved version of original 1-Bucket-Random
- Data set has 5951 distinct latitude values
- Input duplication rate: total mapper output size vs. total mapper input size
 - 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with 1, 10, 100, 1000, and 5951 buckets

Step	Number of histogram buckets							
	1	10	100	1000	10,000	100,000	1,000,000	
Quantiles	0	115	120	117	122	124	122	
Histogram	0	140	145	147	157	167	604	
Heuristic	74	9	0.8	1.5	17	118	111	
Join	49,384	10,905	1157	595	548	540	536	
Total	49,458	11169	1423	861	844	949	1373	
	on Cloud-		ts (outp	ut-size	dominate		1373	
M-Bucket-O	on Cloud-	5 data se	ts (outp	ut-size	dominate	d join):		kdow
M-Bucket-O	on Cloud- Nu	5 data se imber of l	ts (outp histogra	ut-size m buck	dominate ets	d join):	1373 ed cost brea	kdow
M-Bucket-O Step	on Cloud- Nu 1	5 data se imber of l 10	ts (outp histogra 100	ut-size m buck 1000	dominate ets 5951	d join):		kdow
M-Bucket-O Step Quantiles	on Cloud- Nu 1 0	5 data se imber of l 10 4.5	ts (outp histogra 100 4.5	ut-size m buck 1000 4.8	dominate ets 5951 4.9	d join):		kdow
M-Bucket-O Step Quantiles Histogram	on Cloud- Nu 1 0 0	5 data se imber of 1 10 4.5 26.2	ts (outp histogra 100 4.5 25.8	ut-size m buck 1000 4.8 25.6	dominate ets 5951 4.9 25.6	d join):		kdow

Summary

- Join model for creation and reasoning about parallel algorithms
- Near-optimal randomized algorithm for output-size dominated joins
- Improved heuristics for popular very selective joins

Future Directions

- Multi-way theta-joins
- Optimizer to select best implementation for given join problem
- Consider other optimization goals