Now that we have seen important design patterns and MapReduce algorithms for simpler problems, let's look at some more complex problems, starting with general joins.

Joins in MapReduce

- Data sets $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{|\mathrm{S}|}\right\}$ and $\mathrm{T}=\left\{\mathrm{t}_{1}, \ldots, \mathrm{t}_{|\mathrm{T}|}\right\}$
- Find all pairs $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ that satisfy some predicate
- Examples
- Pairs of similar or complementary function summaries
- Facebook and Twitter posts by same user or from same location
- Typical goal: minimize job completion time

Function-Join Pattern

- Find groups of summaries with certain properties of interest
- Similar trends, opposite trends, correlations
- Groups not known a priori, need to be discovered

Joining Large With Small

- Assume data set T is small enough to fit in memory
- Can run Map-only join
- Load T onto every mapper
- Map: join incoming S-tuple with T, output all matching pairs
- Can scan entire T (nested loop) or use index on T (index nested loop)
- Downside: need to copy T to all mappers
- Not so bad, since T is small

Distributed Cache

- Efficient way to copy files to all nodes processing a certain task
- Use it to send small T to all mappers
- Part of the job configuration
- Hadoop still needs to move the data to the worker nodes, so use this with care
- But it avoids copying the file for every task on the same node

Recall: Standard Equi-Join Algorithm

- Join condition: S.A=T.A
- $\operatorname{Map}(\mathrm{s})=(\mathrm{s} . \mathrm{A}, \mathrm{s}) ; \operatorname{Map}(\mathrm{t})=(\mathrm{t} . \mathrm{A}, \mathrm{t})$
- Reduce combines S -tuples and T -tuples with same key

Reducer-Centric Cost Model

- Difference between join implementations starts with Map output

Join Model

- Join-matrix $\mathrm{M}: \mathrm{M}(\mathrm{i}, \mathrm{j})=$ true, if and only if $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$ in join result
- Cover each true-valued cell by exactly one reducer

Problems With Standard Approach

- Degree of parallelism limited by number of distinct A-values
- Data skew
- If one A-value dominates, reducer processing that key will become bottleneck
- Does not generalize to other joins

Optimization Goal: Minimal Job Completion time

- Assume all reducers are similarly capable
- Processing time at reducer is approximately monotonic in input and output size
- Hence need to minimize max-reducer-input or max-reducer-output
- Join problem classification
- Input-size dominated: minimize max-reducer-input
- Output-size dominated: minimize max-reducer-output
- Input-output balanced: minimize combination of both

1-Bucket-Random: Map

- Input: tuple $x \in S \cup T$, matrix-to-reducer mapping lookup table

1. If $x \in S$ then
2. matrixRow $=$ random $(1,|S|)$

3. Forall regionID in lookup.getRegions(matrixRow)
4. Output (regionID, (x, " S "))
5. Else
6. matrixCol $=\operatorname{random}(1,|\mathrm{~T}|)$
7. Forall regionID in lookup.getRegions(matrixCol)
8. Output (regionID, (x, " T "))

1-Bucket-Random: Reduce

- Input: (ID, $\left[\left(\mathrm{x}_{1}\right.\right.$, origin $\left._{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{k}}\right.$, origin $\left.\left._{\mathrm{k}}\right)\right]$)

1. Stuples $=\varnothing$; Ttuples $=\varnothing$
2. Forall $\left(\mathrm{x}_{\mathrm{i}}\right.$, origin $\left._{\mathrm{i}}\right)$ in input list do
3. If origin ${ }_{i}=$ " S " then Stuples $=$ Stuples $\cup\left\{\mathrm{x}_{\mathrm{i}}\right\}$
4. Else Ttuples $=$ Ttuples $\cup\left\{\mathrm{x}_{\mathrm{i}}\right\}$
5. joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)
6. Output joinResult

Remaining Challenges

What is the best way to cover all true-valued cells?

And how do we know which matrix cells have value true?

Why Randomization?

- Avoids pre-processing step to assign row/column IDs to records
- Effectively removes output skew
- Input sizes very close to target
- Chernoff bound: due to large number of records per reducer, probability of receiving 10% or more over target is virtually zero
- Side-benefit: join matrix does not have to have $|S|$ by $|R|$ cells, could be much smaller!

Cartesian Product Computation

- Start with cross-product $\mathrm{S} \times \mathrm{T}$
- Entire matrix needs to be covered by r reducer regions (= r reduce tasks)
- Lemma 1: use square-shaped regions!
- A reducer that covers c cells of join matrix M will receive at least $2 \cdot$ sqrt(c) input tuples

Optimal Cover for M

- Need to cover all $|S| \cdot|T|$ matrix cells
- Lower bound for max-reducer-output: $|\mathrm{S}| \cdot|\mathrm{T}| / \mathrm{r}$
- Lemma 1 implies lower bound for max-reducerinput: $2 \cdot \mathrm{sqrt}(|\mathrm{S}| \cdot|\mathrm{T}| / \mathrm{r})$
- Can we match these lower bounds?
- YES: Use r squares, each sqrt(|S|•|T|/r) cells wide/tall
- Can this be achieved for given $\mathrm{S}, \mathrm{T}, \mathrm{r}$?

Easy Case

- $|S|,|T|$ are both multiples of $\operatorname{sqrt}(|S| \cdot|T| / r)$
- Optimal!

Also Easy

- $|S|<|T| / r$
- Implies $|S|$ < sqrt(|S|•|T|/r)
- Lower bound for input not achievable
- Optimal: use rectangles of size $|\mathrm{S}|$ by $|\mathrm{T}| / \mathrm{r}$

Actual optimal region

Hard Case

- $|T| / r \leq|S| \leq|T|$ and at least one is not multiple of sqrt($|S| \cdot|T| / r)$

Solution For Hard Case

- "Inflate" squares until they just cover the matrix
- Worst case: only one square did fit initially, but leftover just too small to fit more rows or columns

Need to at most double side-length of optimal square

Near-Optimality For Cross-Product

- Every region has less than $4 \cdot s q r t(|S| \cdot|T| / r)$ input records
- Lower bound: $2 \cdot \operatorname{sqrt}(|S| \cdot|T| / r)$
- Every region contains less than $4 \cdot|\mathrm{~S}| \cdot|\mathrm{T}| / \mathrm{r}$ cells - Lower bound: $|\mathrm{S}| \cdot|\mathrm{T}| / \mathrm{r}$
- Summary: max-reducer-input and max-reduceroutput are within a factor of 2 and 4 of the lower bound, respectively
- Usually much better: if 10 by 10 squares fit initially, they are within a factor of 1.1 and 1.21 of lower bound!

From Cross-Product To Joins

- Near-optimality shown for cross-product
- Randomization of 1-Bucket-Random tends to distribute output very evenly over regions
- Join-specific mapping unlikely to improve max-reducer-output significantly
- 1-Bucket-Random wins for any output-size dominated join
- Join-specific mapping has to beat 1-BucketRandom on input cost: avoid covering empty matrix regions

Finding Empty Matrix Regions

- For a given matrix region, prove that it contains no join result
- Need statistics about S and T and a simple enough join predicate
- Histogram bucket: S.A > $8 \wedge$ T.A <7
- Join predicate: S.A = T.A
- Easy to show that bucket property implies negation of join predicate
- Not possible for "blackbox" join predicates

What Can We Do?

- Proving buckets to be empty is easy for many popular join types
- Equi-join: S.A = T.A
- Inequality-join: $S . A \leq T . A$
- Band-join: R.A - $\varepsilon_{1} \leq$ S.A \leq R.A $+\varepsilon_{2}$
- For statistics, use histograms
- Two 1-dimensional histograms: one on S the other on T
- Easy and cheap to compute

M-Bucket-I

M-Bucket-O

- Similar to M-Bucket-I, but tries to minimize max-reducer-Output
- Binary search over max-reducer-output values
- Problem: needs to estimate number of result cells in regions inside a histogram bucket
- Estimate can be poor, even for fine-grained histogram
- Input-size estimation much more accurate than output-size estimation

Extension: Memory-Awareness

- Input for region might exceed reducer memory
- Solutions
- Use I/O-based join implementation in Reduce, or
- Create more (and hence smaller) regions
- 1-Bucket-Random: use squares of side-length Mem/2
- M-Bucket-I: Instead of binary search on max-reducer-input, set it immediately to Mem
- Similar for M-Bucket-O

Experiments: Basic Setup

- 10-machine cluster
- Quad-core Xeon $2.4 \mathrm{GHz}, 8 \mathrm{MB}$ cache, 8GB RAM, two 250GB 7.2K RPM hard disks
- Hadoop 0.20.2
- One machine head node, other nine worker nodes
- One Map or Reduce task per core
- DFS block size of 64MB
- Data stored on all 10 machines

Skew Resistance: Equi-Join

- 1-Bucket-Random vs. standard equi-join algorithm
- Output-size dominated join
- Max-reducer-output determines runtime

Data Set	Output size (billion)	Output imbalance		Runtime (secs)	Output Imbalance		Runtime (secs)
Synth-0	25.00	1.0030	657	1.001	701		
Synth-0.4	24.99	1.0023	650	1.254	722		
Synth-0.6	24.98	1.0033	676	1.778	923		
Synth-0.8	24.95	1.0068	678	3.010	1482		
Synth-1	24.91	1.0089	667	5.312	2489		

Data Sets

- Cloud
- Cloud reports from ships and land stations
- 382 million records, 28 attributes, 28.8GB total size
- Cloud-5-1, Cloud-5-2
- Independent random samples from Cloud, each with 5 million records
- Synth- α
- Pair of data sets of 5 million records each
- Record is single integer between 1 and 1000
- Data set 1: uniformly generated
- Data set 2: Zipf distribution with parameter α - For $\alpha=0$, data is perfectly uniform

Not-So-Selective Band-Join

SELECT S.latitude, T.latitude
FROM Cloud-5-1 AS S, Cloud-5-2 AS T
WHERE ABS (S.latitude-T.latitude) <= 2

- 22 billion output vs. 10 million input records
- M-Bucket-O for different histogram granularities

M-Bucket-I Details

- M-Bucket-I for 1-bucket histogram is improved version of original 1-Bucket-Random
- 1-Bucket-Random might keep reducers idle
- Out-of-memory for 1-bucket and 100-bucket cases
- Used memory-aware version of algorithm
- Creates c.r regions for r reducers for smallest integer cthat allows in-memory processing
- Input duplication rate: total mapper output size vs. total mapper input size
- 31.22, 8.92, 1.93, 1.043, 1.00048, 1.00025 for histograms with $1,10,100,1000,10 \mathrm{~K}, 100 \mathrm{k}$, and 1 M buckets

M-Bucket-O Details

- M-Bucket-O for 1-bucket histogram is improved version of original 1-Bucket-Random
- Data set has 5951 distinct latitude values
- Input duplication rate: total mapper output size vs. total mapper input size
- 7.50, 4.14, 1.46, 1.053, 1.035 for histograms with $1,10,100,1000$, and 5951 buckets
M-Bucket-I on Cloud data set (input-size dominated join):

Step	Number of histogram buckets						
	1	10	100	1000	10,000	100,000	$1,000,000$
Quantiles	0	115	120	117	122	124	122
Histogram	0	140	145	147	157	167	604
Heuristic	74	9	0.8	1.5	17	118	111
Join	49,384	10,905	1157	595	548	540	536
Total	49,458	11169	1423	861	844	949	1373

M-Bucket-O on Cloud-5 data sets (output-size dominated join):

Step	Number of histogram buckets				
	1	10	100	1000	5951
Quantiles	0	4.5	4.5	4.8	4.9
Distogram	0	26.2	25.8	25.6	25.6
Heuristic	0.04	0.04	0.05	0.24	0.81
Join	1279	2483	1597	1369	1188
Total	1279	2514	1627	1399	1219

Summary

- Join model for creation and reasoning about parallel algorithms
- Near-optimal randomized algorithm for output-size dominated joins
- Improved heuristics for popular very selective joins

Future Directions

- Multi-way theta-joins
- Optimizer to select best implementation for given join problem
- Consider other optimization goals

