
1

Now let’s look at important program “design
patterns” for MapReduce.

MapReduce Design Patterns

• This section is based on the book by Jimmy Lin
and Chris Dyer

• Programmer can control program execution
only through implementation of mapper,
reducer, combiner, and partitioner

• No explicit synchronization primitives

• So how can a programmer control execution
and data flow?

2

Taking Control of MapReduce

• Store and communicate partial results through
complex data structures for keys and values

• Run appropriate initialization code at beginning of task
and termination code at end of task

• Preserve state in mappers and reducers across multiple
input splits and intermediate keys, respectively

• Control sort order of intermediate keys to control
processing order at reducers

• Control set of keys assigned to a reducer

• Use “driver” program

3

(1) Local Aggregation

• Reduce size of intermediate results passed
from mappers to reducers

– Important for scalability: recall Amdahl’s Law

• Various options using combiner function and
ability to preserve mapper state across
multiple inputs

• For example, consider Word Count with the
document-based version of Map

4

Word Count Baseline Algorithm

• Problem: frequent terms are emitted many
times with count 1

5

map(docID a, doc d)
 for all term t in doc d do
 Emit(term t, count 1)

reduce(term t, counts [c1, c2,…])
 sum = 0
 for all count c in counts do
 sum += c
 Emit(term t, count sum);

Tally Counts Per Document

• Same Reduce function as before
• Limitation: Map only aggregates counts within a single

document
• Depending on split size and document size, a Map task

might receive many documents
• Can we aggregate across all documents in the same

Map task?

6

map(docID a, doc d)
 H = new hashMap
 for all term t in doc d do
 H{t} ++
 for all term t in H do
 Emit(term t, count H{t})

Tally Counts Across Documents

• Data structure H is a private member
of the Mapper class
– Local to a single task, i.e., does not

introduce task synchronization issues

• Initialize is called when the task starts,
i.e., before all map calls
– Configure() in old API
– Setup() in new API

• Close is called after the last document
from the Map task has been
processed
– Close() in old API
– Cleanup() in new API

7

Class Mapper {
 initialize() {
 H = new hashMap
 }

 map(docID a, doc d) {
 for all term t in doc d do
 H{t} ++
 }

 close() {
 for all term t in H do
 Emit(term t, count H{t})
 }
}

Design Pattern for Local Aggregation

• In-mapper combining
– Done by preserving state across map calls in the same task

• Advantages over using combiners
– Combiner does not guarantee if, when or how often it is

executed
– Combiner combines data after it was generated, in-

mapper combining avoids generating it!

• Drawbacks
– Introduces complexity and hence probability for bugs
– Higher memory consumption for managing state

• Might have to write memory-management code to page data to
disk

8

(2) Counting of Combinations

• Needed for computing correlations,
associations, confusion matrix (how many
times does a classifier confuse Yi with Yj)

• Co-occurrence matrix for a text corpus: how
many times do two terms appear near each
other

• Main idea: compute partial counts for some
combinations, then aggregate them
– At what granularity should Map work?

9

Pairs Design Pattern

• Can use combiner or in-mapper combining
• Good: easy to implement and understand
• Bad: huge intermediate-key space

– Quadratic in number of distinct terms

10

map(docID a, doc d)
 for all term w in doc d do
 for all term u NEAR w do
 Emit(pair (w, u), count 1)

reduce(pair p, counts [c1, c2,…])
 sum = 0
 for all count c in counts do
 sum += c
 Emit(pair p, count sum)

w v u

w

v

u

Stripes Design Pattern

• Can use combiner or in-mapper combining
• Good: much smaller intermediate-key space

– Linear in number of distinct terms

• Bad: more difficult to implement, Map needs to hold entire stripe in
memory

11

map(docID a, doc d)
 for all term w in doc d do
 H = new hashMap
 for all term u NEAR w do H{u} ++
 Emit(term w, stripe H)

reduce(term w, stripes [H1, H2,…])
 Hout = new hashMap
 for all stripe H in stripes do Hout = ElementWiseSum(Hout, H)
 Emit(term w, stripe Hout)

w v u

w

v

u

Note About Stripes Map Code

• Pairs’ Map code only needs a single sequential scan of the
document, keeping the current term w and a “sliding
window” of the nearby terms to its left and right

• Stripes can do the same, but then it does not aggregate
counts across multiple occurrences of the same term w in
document d, i.e., would mostly produce counts of 1 in the
hash map

• To aggregate across all occurrences of w in d, Stripes would
have to repeatedly scan the document, once for each
distinct term w in d
– Could create an index to find repeated occurrences of w faster

• Or use a two-dim. hash map H[w][u] in the Map function,
allowing a single-scan solution at higher memory cost

12

Pairs versus Stripes

• Without combiner or in-mapper combining,
Pairs could produce significantly more mapper
output

– ((w,u),1) per pair for Pairs, versus per-document
aggregates for Stripes

• …but it would need a lot less memory

– Pairs essentially needs no extra storage beyond
the current “window” of nearby words, while
Stripes has to store the hash map H

13

Pairs versus Stripes (cont.)

• With combiner or in-mapper combining, Map
would produce about the same amount of
data in both cases
– Two-dimensional index Pairs[w][u] with per-task

counts for each pair (w,u) is the same as one-
dimensional index of one-dimensional indexes
(Stripes[w])[u]

• …and would also require about the same
amount of memory to store the two-
dimensional count data structure

14

Pairs versus Stripes (cont.)

• Does the number of keys matter?
– Assume we use the same number of tasks, then Pairs just

assigns more keys per task
– Master works with tasks, hence no conceptual difference

between Pairs and Stripes

• More fine-grained keys of Pairs allow more flexibility in
assigning keys to tasks
– Pairs can emulate Stripes’ row-wise key assignment to tasks
– Stripes cannot emulate all Pairs assignments, e.g.,

“checkerboard” pattern for two tasks

• Greater number of distinct keys per task in Pairs tends to
increase sorting cost, even if total data size is the same

15

Beyond Pairs and Stripes

• In general, it is not clear which approach is better

– Some experiments indicate stripes win for co-
occurrence matrix computation

• Pairs and Stripes are special cases of shapes for
covering the entire matrix

– Could use sub-stripes, or partition matrix horizontally
and vertically into more square-like shapes etc.

• Can also be applied to higher-dimensional arrays

• Will see interesting version of this idea for joins

16

(3) Relative Frequencies

• Important for data mining
• E.g., for each species and color, estimate the

probability of the color for that species
– Probability of Northern Cardinal being red:

P(color = red | species = N.C.)
• Count f(N.C.) = the frequency of observations for N.C.

(marginal)
• Count f(N.C., red) = the frequency of observations for red

N.C.’s (joint event)
• Estimate P(red | N.C.) as f(N.C., red) / f(N.C.)

• Similarly: normalize word co-occurrence vector
for word w

17

Bird Probabilities Using Stripes

• Use species as intermediate key
– One stripe per species, e.g., stripe[N.C.]
– (stripe[species])[color] stores f(species, color)

• Map: for each observation of (species S, color C)
in an observation event, increment (stripe[S])[C]
– Output (S, stripe[S])

• Reduce: for each species S, add all stripes for S
– Result: stripeSum[S] with total counts for each color

for S
– Can get f(S) by adding all color-counts in stripeSum[S]
– Emit (stripeSum[S])[C] / f(S) for each color C

18

Discussion, Part 1

• Stripe is great fit for relative frequency
computation

• All values for computing the final result are in
the stripe

• Any smaller unit would miss some of the joint
events needed for computing f(S), the
marginal for the species

– So, this would be a problem for the pairs pattern

19

Bird Probabilities Using Pairs

• Intermediate key is (species, color)

• Map produces partial counts for each species-
color combination in the input

• Reduce can compute f(species, color), the
total count of each species-color combination

• But: it cannot compute the marginal f(S)

– Reduce needs to sum f(S, color) for all colors for
species S

20

Pairs-Based Solution, Take 1

• Make sure all values f(S, color) for the same
species end up in the same reduce task

– Define custom partitioning function on species

• Maintain state across different keys in the same
reduce task: keep stripe[S] in memory as a
variable in the Reduce task

– This essentially simulates the stripes approach in the
reduce task, requiring to keep a stripe in memory

• Can we avoid keeping a stripe?

21

Discussion, Part 2

• Pairs-based algorithm would work fine if marginal
f(S) was known already

– A Reduce function call computes f(species, color) and
then outputs f(species, color) / f(species)

• We could compute the species marginals
f(species) in a separate MapReduce job first

• Better: fold this into a single MapReduce job

– Problem: easy to compute f(S) from all f(S, color), but
how do we compute f(S) before knowing f(S, color)?

22

Bird Probabilities Using Pairs, Take 2

• Map: for each observation event, emit ((species S, color C),
1) and ((species S, dummyColor), 1) for each species-color
combination encountered

• Use custom partitioner that partitions based on the species
component only

• Use custom key comparator such that (S, dummyColor) is
before all (S, C) for real colors C
– Reduce call for dummyColor happens first and computes f(S)

before any of the f(S, C)
• Reducer needs to keep f(S) for the duration of the entire task

– Reducer then computes f(S, C) for each C, outputting f(S, C) /
f(S)

• Only needs counter f(S), not the entire stripe, in memory

23

Pairs-Based Code

24

map(…, observation: (species S, color C))
 Emit((S, dummy), 1)
 Emit((S, C), 1)

Partitioner: partition by species

Key comparator for (species, color):
- Sort by species first
- Make sure color “dummy” comes
 before all real colors

Class Reducer {
 int marginal

 reduce((S, C), counts [c1, c2,…]) {
 if C = dummy // Compute marginal
 marginal = 0
 for all c in counts do
 marginal += c
 else // Real color
 colorCnt = 0
 for all c in counts do
 colorCnt += c
 Emit((S, C), colorCnt / marginal)
 }
}

Order Inversion Design Pattern

• Occurs surprisingly often during data analysis
• Solution 1: use complex data structures that bring the

right results together
– Array structure used by Stripes pattern

• Solution 2: turn synchronization into ordering problem
– Key sort order enforces computation order
– Partitioner for key space assigns appropriate partial results

to each reduce task
– Reducer maintains task-level state across Reduce

invocations
– Enables use of simpler data structures and less reducer

memory

25

(4) Secondary Sorting

• Recall the weather data: for simplicity assume
observations are (date, temperature)

• Goal: find max temperature for each year
– Reduce task should have all temperatures for a year:

year as intermediate key

– Temperatures in reduce input value list should be
sorted in decreasing order by temperature

• Year as key does not sort by temperature

• (Year, temperature) as key creates different
reduce calls for each temperature in a year

26

Can Hadoop Do The Sorting?

• We want to use year to partition the data, but
(year, temperature) for sorting

• General value-to-key conversion design
pattern
– To partition by X and then sort each X-group by Y,

make (X, Y) the key

– Define key comparator to order by composite key
(X, Y)

– Define partitioner and grouping comparator for (X,
Y) to consider only X for partitioning and grouping

27

Code for Secondary Sort

28

public class MaxTemperatureUsingSecondarySort
 extends Configured implements Tool {

 static class MaxTemperatureMapper
 extends Mapper<LongWritable, Text, IntPair, NullWritable> {

 private NcdcRecordParser parser = new NcdcRecordParser();

 @Override
 protected void map(LongWritable key, Text value,
 Context context) throws IOException, InterruptedException {

 parser.parse(value);
 if (parser.isValidTemperature()) {
 context.write(new IntPair(parser.getYearInt(), parser.getAirTemperature()),
 NullWritable.get());
 }
 }
 }

No value is output, because the year and temperature are in the key.

29

 static class MaxTemperatureReducer
 extends Reducer<IntPair, NullWritable, IntPair, NullWritable> {

 @Override
 protected void reduce(IntPair key, Iterable<NullWritable> values,
 Context context) throws IOException, InterruptedException {

 context.write(key, NullWritable.get());
 }
 }

The reducer only emits the first key, which due to secondary sorting, is the
(year, temperature) pair with the maximum temperature for that year.

To get all temperatures for the year, we would have to emit temperatures as values
in the map function.

30

 public static class FirstPartitioner extends Partitioner<IntPair, NullWritable> {

 public int getPartition(IntPair key, NullWritable value, int numPartitions) {

 // multiply by 127 to perform some mixing
 return Math.abs(key.getFirst() * 127) % numPartitions;
 }
 }

Make sure all records for the same year end up in the same partition.

31

 // Controls how keys are sorted before they are passed to the reducer
 public static class KeyComparator extends WritableComparator {
 protected KeyComparator() {
 super(IntPair.class, true);
 }
 public int compare(WritableComparable w1, WritableComparable w2) {
 IntPair ip1 = (IntPair) w1; IntPair ip2 = (IntPair) w2;
 int cmp = IntPair.compare(ip1.getFirst(), ip2.getFirst());
 if (cmp != 0) {
 return cmp;
 }
 return -IntPair.compare(ip1.getSecond(), ip2.getSecond()); //reverse
 } }

// Controls which keys are grouped into a single call of the reduce function
public static class GroupComparator extends WritableComparator {
 protected GroupComparator() {
 super(IntPair.class, true);
 }
 public int compare(WritableComparable w1, WritableComparable w2) {
 IntPair ip1 = (IntPair) w1; IntPair ip2 = (IntPair) w2;

 return IntPair.compare(ip1.getFirst(), ip2.getFirst());
 } } 32

 @Override
 public int run(String[] args) throws Exception {
 Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
 if (job == null) {
 return -1;
 }

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setPartitionerClass(FirstPartitioner.class);
 job.setSortComparatorClass(KeyComparator.class);
 job.setGroupingComparatorClass(GroupComparator.class);
 job.setReducerClass(MaxTemperatureReducer.class);
 job.setOutputKeyClass(IntPair.class);
 job.setOutputValueClass(NullWritable.class);

 return job.waitForCompletion(true) ? 0 : 1;
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new MaxTemperatureUsingSecondarySort(), args);
 System.exit(exitCode);
 }
}

Design Pattern Summary

• In-mapper combining: do work of combiner in
mapper

• Pairs and stripes: for keeping track of joint
events

• Order inversion: convert sequencing of
computation into sorting problem

• Value-to-key conversion: scalable solution for
secondary sorting, without writing sort code

33

Tools for Synchronization

• Cleverly-constructed data structures for key
and values to bring data together

• Preserving state in mappers and reducers,
together with capability to add initialization
and termination code for entire task

• Sort order of intermediate keys to control
order in which reducers process keys

• Custom partitioner to control which reducer
processes which keys

34

Issues and Tradeoffs

• Number of key-value pairs
– Object creation overhead
– Time for sorting and shuffling pairs across the network

• Size of each key-value pair
– (De-)serialization overhead

• Local aggregation
– Opportunities to perform local aggregation vary
– Combiners can make a big difference
– Combiners vs. in-mapper combining
– RAM vs. disk vs. network

35

