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Now that we covered the basics of 
MapReduce, let’s look at some Hadoop 
specifics. 

Working With Hadoop 

• Mostly based on Tom White’s book “Hadoop: 
The Definitive Guide”, 3rd edition 

 

• Note: We will use the new 
org.apache.hadoop.mapreduce API, but… 

– Many existing programs might be written using 
the old API org.apache.hadoop.mapred 

– Some old libraries might only support the old API 
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Important Terminology 

• NameNode daemon 

– Corresponds to GFS Master 

– Runs on master node of the Hadoop Distributed File 
System (HDFS) 

– Directs DataNodes to perform their low-level I/O tasks 

• DataNode daemon 

– Corresponds to GFS chunkserver 

– Runs on each slave machine in the HDFS 

– Does the low-level I/O work 
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Important Terminology 

• Secondary NameNode daemon 
– One per cluster to monitor status of HDFS 

– Takes snapshots of HDFS metadata to facilitate 
recovery from NameNode failure 

• JobTracker daemon 
–  MapReduce master in Google paper 

– One per cluster, usually running on master node 

– Communicates with client application and controls 
MapReduce execution in TaskTrackers 
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Important Terminology 

• TaskTracker daemon 
– MapReduce worker in Google paper 
– One TaskTracker per slave node 
– Performs actual Map and Reduce execution 
– Can spawn multiple JVMs to do the work 

• Typical setup 
– NameNode and JobTracker run on cluster head node 
– DataNode and TaskTracker run on all other nodes 
– Secondary NameNode runs on dedicated machine or 

on cluster head node (usually not a good idea, but ok 
for small clusters) 
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Anatomy of MapReduce Job Run 
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Job Submission 

• Client submits MapReduce job through Job.submit() 
call 
– waitForCompletion() submits job and polls JobTracker 

about progress every sec, outputs to console if changed 

• Job submission process 
– Get new job ID from JobTracker 

– Determine input splits for job 

– Copy job resources (job JAR file, configuration file, 
computed input splits) to HDFS into directory named after 
the job ID 

– Informs JobTracker that job is ready for execution 
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Job Initialization 

• JobTracker puts ready job into internal queue 

• Job scheduler picks job from queue 

– Initializes it by creating job object 

– Creates list of tasks 

• One map task for each input split 

• Number of reduce tasks determined by 
mapred.reduce.tasks property in Job, which is set by 
setNumReduceTasks() 

• Tasks need to be assigned to worker nodes 
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Task Assignment 

• TaskTrackers send heartbeat to JobTracker 
– Indicate if ready to run new tasks 

– Number of “slots” for tasks depends on number of 
cores and memory size 

• JobTracker replies with new task 
– Chooses task from first job in priority-queue 

• Chooses map tasks before reduce tasks 

• Chooses map task whose input split location is closest to 
machine running the TaskTracker instance 
– Ideal case: data-local task 

– Could also use other scheduling policy 
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Task Execution 

• TaskTracker copies job JAR and other 
configuration data (e.g., distributed cache) 
from HDFS to local disk 

• Creates local working directory 

• Creates TaskRunner instance 

• TaskRunner launches new JVM (or reuses one 
from another task) to execute the JAR 
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Monitoring Job Progress 

• Tasks report progress to TaskTracker 

• TaskTracker includes task progress in 
heartbeat message to JobTracker 

• JobTracker computes global status of job 
progress 

• JobClient polls JobTracker regularly for status 

• Visible on console and Web UI 
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Handling Failures: Task 

• Error reported to TaskTracker and logged 

• Hanging task detected through timeout 

• JobTracker will automatically re-schedule 
failed tasks 
– Tries up to mapred.map.max.attempts many times 

(similar for reduce) 

– Job is aborted when task failure rate exceeds 
mapred.max.map.failures.percent (similar for 
reduce) 
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Handling Failures: TaskTracker and 
JobTracker 

• TaskTracker failure detected by JobTracker 
from missing heartbeat messages 

– JobTracker re-schedules map tasks and not 
completed reduce tasks from that TaskTracker 

• Hadoop cannot deal with JobTracker failure 

– Could use Google’s proposed JobTracker take-over 
idea, using ZooKeeper to make sure there is at 
most one JobTracker 
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Moving Data From Mappers to 
Reducers 

• Shuffle and sort phase = synchronization barrier 
between map and reduce phase 

• Often one of the most expensive parts of a 
MapReduce execution 

• Mappers need to separate output intended for 
different reducers 

• Reducers need to collect their data from all 
mappers and group it by key 

• Keys at each reducer are processed in order 
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Shuffle and Sort Overview 
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Illustration based on White’s book 

NCDC Weather Data Example 

• Raw data has lines like these (year, temperature in 
bold) 
– 0067011990999991950051507004+68750+023550FM-

12+038299999V0203301N00671220001CN9999999N9+00
001+99999999999 

– 0043011990999991950051512004+68750+023550FM-
12+038299999V0203201N00671220001CN9999999N9+00
221+99999999999 

• Goal: find max temperature for each year 
– Map: emit (year, temp) for each year 
– Reduce: compute max over temp from (year, (temp, 

temp,…)) list 
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Map 

• Hadoop’s Mapper class 
– Org.apache.hadoop.mapreduce.Mapper 

• Type parameters: input key type, input value type, 
output key type, and output value type 
– Input key: line’s offset in file (irrelevant) 
– Input value: line from NCDC file 
– Output key: year 
– Output value: temperature 

• Data types are optimized for network serialization 
– Found in org.apache.hadoop.io package 

• Work is done by the map() method 
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Map() Method 

• Input: input key type, input value type (and a 
Context) 
– Line of text from NCDC file 

– Converted to Java String type, then parsed to get 
year and temperature 

• Output: written using Context 
– Uses output key and value types 

• Only write (year, temp) pair if the temperature 
is present and quality indicator reading is OK 
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import java.io.IOException; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Mapper; 
 
public class MaxTemperatureMapper 
  extends Mapper<LongWritable, Text, Text, IntWritable> { 
 
  private static final int MISSING = 9999; 
   
  @Override 
  public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { 
     
    String line = value.toString(); 
    String year = line.substring(15, 19); 
    int airTemperature; 
    if (line.charAt(87) == '+') {    // parseInt doesn't like leading plus signs 
      airTemperature = Integer.parseInt(line.substring(88, 92)); 
    } else { 
      airTemperature = Integer.parseInt(line.substring(87, 92)); 
    } 
    String quality = line.substring(92, 93); 
 
    if (airTemperature != MISSING && quality.matches("[01459]")) { 
      context.write(new Text(year), new IntWritable(airTemperature)); 
    } 
  } 
} 

Reduce 

• Implements 
org.apache.hadoop.mapreduce.Reducer 

• Input key and value types must match Mapper 
output key and value types 

• Work is done by reduce() method 
– Input values passed as Iterable list 

– Goes over all temperatures to find the max 

– Result pair is written by using the Context 
• Writes result to HDFS, Hadoop’s distributed file system 
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import java.io.IOException; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Reducer; 
 
public class MaxTemperatureReducer 
  extends Reducer<Text, IntWritable, Text, IntWritable> { 
   
  @Override 
  public void reduce(Text key, Iterable<IntWritable> values, Context context) 
      throws IOException, InterruptedException { 
     
    int maxValue = Integer.MIN_VALUE; 
    for (IntWritable value : values) { 
      maxValue = Math.max(maxValue, value.get()); 
    } 
    context.write(key, new IntWritable(maxValue)); 
  } 
} 

Job Configuration 

• Job object forms the job specification and gives control for running 
the job 

• Specify data input path using addInputPath() 
– Can be single file, directory (to use all files there), or file pattern 
– Can be called multiple times to add multiple paths 

• Specify output path using setOutputPath() 
– Single output path, which is a directory for all output files 

• Set mapper and reducer class to be used 
• Set output key and value classes for map and reduce functions 

– For reducer: setOutputKeyClass(), setOutputValueClass() 
– For mapper (omit if same as reducer): setMapOutputKeyClass(), 

setMapOutputValueClass() 

• Can set input types similarly (default is TextInputFormat) 
• Method waitForCompletion() submits job and waits for it to finish 
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import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
 
public class MaxTemperature { 
 
  public static void main(String[] args) throws Exception { 
    if (args.length != 2) { 
      System.err.println("Usage: MaxTemperature <input path> <output path>"); 
      System.exit(-1); 
    } 
     
    Job job = new Job(); 
    job.setJarByClass(MaxTemperature.class); 
    job.setJobName("Max temperature"); 
 
    FileInputFormat.addInputPath(job, new Path(args[0])); 
    FileOutputFormat.setOutputPath(job, new Path(args[1])); 
     
    job.setMapperClass(MaxTemperatureMapper.class); 
    job.setReducerClass(MaxTemperatureReducer.class); 
 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
     
    System.exit(job.waitForCompletion(true) ? 0 : 1); 
  } 
} 

Extension: Combiner Functions 

• Recall earlier discussion about combiner function 
– Pre-reduces mapper output before transfer to 

reducers 

– Does not change program semantics 

• Usually (almost) same as reduce function, but has 
to have same output type as Map 

• Works only for some reduce functions that can be 
incrementally computed 
– MAX(5, 4, 1, 2) = MAX(MAX(5, 1), MAX(4, 2)) 

– Same for SUM, MIN, COUNT, AVG (=SUM/COUNT) 
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public class MaxTemperatureWithCombiner { 
 
  public static void main(String[] args) throws Exception { 
    if (args.length != 2) { 
      System.err.println("Usage: MaxTemperatureWithCombiner <input path> " + "<output path>"); 
      System.exit(-1); 
    } 
     
    Job job = new Job(); 
    job.setJarByClass(MaxTemperatureWithCombiner.class); 
    job.setJobName("Max temperature"); 
 
    FileInputFormat.addInputPath(job, new Path(args[0])); 
    FileOutputFormat.setOutputPath(job, new Path(args[1])); 
     
    job.setMapperClass(MaxTemperatureMapper.class); 
    job.setCombinerClass(MaxTemperatureReducer.class); 
    job.setReducerClass(MaxTemperatureReducer.class); 
 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
     
    System.exit(job.waitForCompletion(true) ? 0 : 1); 
  } 
} 

Note: combiner here is identical 
to reducer class. 

Extension: Custom Partitioner 

• Partitioner determines which keys are 
assigned to which reduce task 

• Default HashPartitioner essentially assigns 
keys randomly 

• Create custom partitioner by implementing 
your own getPartition() method of Partitioner 
in org.apache.hadoop.mapreduce 
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MapReduce Development Steps 

1. Write Map and Reduce functions 
– Create unit tests 

2. Write driver program to run a job 
– Can run from IDE with small data subset for testing 
– If test fails, use IDE for debugging 
– Update unit tests and Map/Reduce if necessary 

3. Once program works on small test set, run it on 
full data set 
– If there are problems, update tests and code 

accordingly 

4. Fine-tune code, do some profiling 
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Local (Standalone) Mode 

• Runs same MapReduce user program as 
cluster version, but does it sequentially 

• Does not use any of the Hadoop daemons 

• Works directly with local file system 

– No HDFS, hence no need to copy data to/from 
HDFS 

• Great for development, testing, initial 
debugging 
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Pseudo-Distributed Mode 

• Still runs on single machine, but now 
simulates a real Hadoop cluster 

– Simulates multiple nodes 

– Runs all daemons 

– Uses HDFS 

• Main purpose: more advanced testing and 
debugging 

• You can also set this up on your laptop 
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Extension: MapFile 

• Sorted file of (key, value) pairs with an index 
for lookups by key 

• Must append new entries in order 
– Can create MapFile by sorting SequenceFile 

• Can get value for specific key by calling 
MapFile’s get() method 
– Found by performing binary search on index 

• Method getClosest() finds closest match to 
search key 
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Extension: Counters 

• Useful to get statistics about the MapReduce 
job, e.g., how many records were discarded in 
Map 

• Difficult to implement from scratch 

– Mappers and reducers need to communicate to 
compute a global counter 

• Hadoop has built-in support for counters 

• See ch. 8 in Tom White’s book for details 
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Hadoop Job Tuning 

• Choose appropriate number of mappers and 
reducers 

• Define combiners whenever possible 
– But see also later discussion about local aggregation 

• Consider Map output compression 
• Optimize the expensive shuffle phase (between 

mappers and reducers) by setting its tuning 
parameters 

• Profiling distributed MapReduce jobs is 
challenging. 
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Hadoop and Other Programming 
Languages 

• Hadoop Streaming API to write map and 
reduce functions in languages other than Java 

– Any language that can read from standard input 
and write to standard output 

 

• Hadoop Pipes API for using C++ 

– Uses sockets to communicate with Hadoop’s task 
trackers 
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Multiple MapReduce Steps 

• Example: find average max temp for every day 
of the year and every weather station 

– Find max temp for each combination of station 
and day/month/year 

– Compute average for each combination of station 
and day/month 

• Can be done in two MapReduce jobs 

– Could also combine it into single job, which would 
be faster 
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Running a MapReduce Workflow 

• Linear chain of jobs 

– To run job2 after job1, create JobConf’s conf1 and 
conf2 in main function 

– Call JobClient.runJob(conf1); JobClient.runJob(conf2); 

– Catch exceptions to re-start failed jobs in pipeline 

• More complex workflows 

– Use JobControl from 
org.apache.hadoop.mapred.jobcontrol 

– We will see soon how to use Pig for this 
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MapReduce Coding Summary 

• Decompose problem into appropriate workflow 
of MapReduce jobs 

• For each job, implement the following 
– Job configuration 
– Map function 
– Reduce function 
– Combiner function (optional) 
– Partition function (optional) 

• Might have to create custom data types as well 
– WritableComparable for keys 
– Writable for values 
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