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Comments 

• Programming model might appear very limited 

• But, map and reduce can do anything with their 
input 

– Could implement a Turing machine inside… 

– …which could compute anything, but… 

– …would not result in a good parallel implementation. 

• Challenge: find best MapReduce implementation 
for a given problem 
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Basic MapReduce Program Design 

• Tasks that can be performed independently on a 
data object, large number of them: Map 

• Tasks that require combining of multiple data 
objects: Reduce 

• Sometimes it is easier to start program design 
with Map, sometimes with Reduce 

• Select keys and values such that the right objects 
end up together in the same Reduce invocation 

• Might have to partition a complex task into 
multiple MapReduce sub-tasks 
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Choosing M and R 

• M = number of map tasks, R = number of reduce tasks 
• Larger M, R: creates smaller tasks, enabling easier load 

balancing and faster recovery (many small tasks from 
failed machine) 

• Limitation: O(M+R) scheduling decisions and O(MR) in-
memory state at master 
– Very small tasks not worth the startup cost 

• Recommendation: 
– Choose M so that split size is  approximately 64 MB 
– Choose R a small multiple of the number of workers; 

alternatively choose R a little smaller than #workers to 
finish reduce phase in one “wave” 
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Grep 

• Find all lines matching some pattern 

• No need to combine anything 

– Reduce is not needed, i.e., just identity function 

• Map takes line and outputs it if it matches the 
pattern 

• Map could also take an entire document and emit 
all matching lines 

– Not a good idea if there is a single large document, 
but works well if there are many documents 
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Reverse Web-Link Graph 

• For each URL, find all pages (URLs) pointing to it 
(incoming links) 

• Problem: Web page has only outgoing links 

• Need all (anySource, P) links for each page P 
– Suggests Reduce with P as the key, source as value 

• Map: for page source, create all (target, source) 
pairs for each link to a target found in page 

• Reduce: since target is key, will receive all sources 
pointing to that target 
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Inverted Index 

• For each word, create list of documents 
(document IDs) containing it 

• Same as reverse Web-link graph problem 
– “Source URL” is now “document ID” 

– “Target URL” is now “word” 

• Can augment this to create list of (document 
ID, position) pairs for each word 
– Map emits (word, (document ID, position)) while 

parsing a document 
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Distributed Sorting 

• Can Map do pre-sorting and Reduce the 
merging? 

– Use set of input records as Map input 

– Map pre-sorts it and single reducer merges them 

– Does not scale! 

• We need to get multiple reducers involved 

– What should we use as the intermediate key? 
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Distributed Sorting, Revisited 

• Quicksort-style partitioning 

• For simplicity, consider case with 2 machines 

– Goal: each machine sorts about half of the data 

• Assuming we can find the median record, 
assign all smaller records to machine 1, all 
others to machine 2 

• Sort locally on each machine, then 
“concatenate” output 
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Partitioning Sort in MapReduce 

• Consider 2 reducers for simplicity 
• Run MapReduce job to find approximate median of 

data 
– Hadoop also offers InputSampler 

• Writes the keys that define the partitions, to be used by 
TotalOrderPartitioner 

• Runs on client and downloads input data splits, hence only useful 
if data is sampled from few splits, i.e., splits themselves should 
contain random data samples 

• Map outputs (sortKey, record) for an input record 
• All sortKey < median are assigned to reduce task 1, all 

others to reduce task 2, using a partitioner 
• Reduce sorts its assigned set of records 
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Partitioning Sort in MapReduce 

• MapReduce has class Partitioner<KEY, VALUE> 
– Method int getPartition(KEY key, VALUE value, int 

numPartitions) allows assigning keys to partitions 

• Example for numPartitions = 2 
– Partition 1 gets all numbers less than median 

– Partition 2 gets all larger numbers 

• What about concatenating the output? 
– Not necessary, except for many small files (big files are 

broken up anyway) 

• Generalizes obviously to more reducers 
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MapReduce and Key Sorting 

• MapReduce environment guarantees that for 
each reduce task the assigned set of intermediate 
keys is processed in key order 

– After receiving all (key2, val2) pairs from mappers, 
reducer sorts them by key2, then calls Reduce on each 
(key2, list(val2)) group in order 

• Can leverage this guarantee for partitioning sort 

– Reduce simply emits the records unchanged 

– No need for user sort code in Reduce function! 
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package org.apache.hadoop.examples; 
import java.io.IOException; import java.net.URI; import java.util.*; 
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; 
import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableComparable; 
import org.apache.hadoop.mapred.*; 
import org.apache.hadoop.mapred.lib.IdentityMapper; import org.apache.hadoop.mapred.lib.IdentityReducer; 
import org.apache.hadoop.mapred.lib.InputSampler; import org.apache.hadoop.mapred.lib.TotalOrderPartitioner; 
import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; 
/** 
 * This is the trivial map/reduce program that does absolutely nothing 
 * other than use the framework to fragment and sort the input values. 
 * 
 * To run: bin/hadoop jar build/hadoop-examples.jar sort 
 *            [-m <i>maps</i>] [-r <i>reduces</i>] 
 *            [-inFormat <i>input format class</i>]  
 *            [-outFormat <i>output format class</i>]  
 *            [-outKey <i>output key class</i>]  
 *            [-outValue <i>output value class</i>]  
 *            [-totalOrder <i>pcnt</i> <i>num samples</i> <i>max splits</i>] 
 *            <i>in-dir</i> <i>out-dir</i>  
 */ 
public class Sort<K,V> extends Configured implements Tool { 
  private RunningJob jobResult = null; 
 
  static int printUsage() { 
    System.out.println("sort [-m <maps>] [-r <reduces>] " + 
                       "[-inFormat <input format class>] " + 
                       "[-outFormat <output format class>] " +  
                       "[-outKey <output key class>] " + 
                       "[-outValue <output value class>] " + 
                       "[-totalOrder <pcnt> <num samples> <max splits>] " + 
                       "<input> <output>"); 
    ToolRunner.printGenericCommandUsage(System.out); 
    return -1; 
} 

Sort Code in Hadoop 1.0.3 Distribution; 
part 1: boilerplate code 
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Sort Code in Hadoop 1.0.3 Distribution; 
part 2: Map and Reduce definition 

  /** 
   * The main driver for sort program. 
   * Invoke this method to submit the map/reduce job. 
   * @throws IOException When there is communication problems with the  
   *                     job tracker. 
   */ 
  public int run(String[] args) throws Exception { 
 
    JobConf jobConf = new JobConf(getConf(), Sort.class); 
    jobConf.setJobName("sorter"); 
 
    jobConf.setMapperClass(IdentityMapper.class);         
    jobConf.setReducerClass(IdentityReducer.class); 
 
    JobClient client = new JobClient(jobConf); 
    ClusterStatus cluster = client.getClusterStatus(); 
    int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9); 
    String sort_reduces = jobConf.get("test.sort.reduces_per_host"); 
    if (sort_reduces != null) { 
       num_reduces = cluster.getTaskTrackers() * Integer.parseInt(sort_reduces); 
    } 
    Class<? extends InputFormat> inputFormatClass = SequenceFileInputFormat.class; 
    Class<? extends OutputFormat> outputFormatClass = SequenceFileOutputFormat.class; 
    Class<? extends WritableComparable> outputKeyClass = BytesWritable.class; 
    Class<? extends Writable> outputValueClass = BytesWritable.class; 
    List<String> otherArgs = new ArrayList<String>(); 
    InputSampler.Sampler<K,V> sampler = null; 
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Sort Code in Hadoop 1.0.3 Distribution; 
part 3: more boilerplate code 

    for(int i=0; i < args.length; ++i) { 
      try { 
        if ("-m".equals(args[i])) { 
          jobConf.setNumMapTasks(Integer.parseInt(args[++i])); 
        } else if ("-r".equals(args[i])) { 
          num_reduces = Integer.parseInt(args[++i]); 
        } else if ("-inFormat".equals(args[i])) { 
          inputFormatClass =  
            Class.forName(args[++i]).asSubclass(InputFormat.class); 
        } else if ("-outFormat".equals(args[i])) { 
          outputFormatClass =  
            Class.forName(args[++i]).asSubclass(OutputFormat.class); 
        } else if ("-outKey".equals(args[i])) { 
          outputKeyClass =  
            Class.forName(args[++i]).asSubclass(WritableComparable.class); 
        } else if ("-outValue".equals(args[i])) { 
          outputValueClass =  
            Class.forName(args[++i]).asSubclass(Writable.class); 
        } else if ("-totalOrder".equals(args[i])) { 
          double pcnt = Double.parseDouble(args[++i]); 
          int numSamples = Integer.parseInt(args[++i]); 
          int maxSplits = Integer.parseInt(args[++i]); 
          if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE; 
          sampler = 
            new InputSampler.RandomSampler<K,V>(pcnt, numSamples, maxSplits); 
        } else { 
          otherArgs.add(args[i]); 
        } 
      } catch (NumberFormatException except) { 
        System.out.println("ERROR: Integer expected instead of " + args[i]); 
        return printUsage(); 
      } catch (ArrayIndexOutOfBoundsException except) { 
        System.out.println("ERROR: Required parameter missing from " + args[i-1]); 
        return printUsage(); // exits 
      } 
    } 
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Sort Code in Hadoop 1.0.3 Distribution; 
part 4: job settings, sampling to get 
pivot elements, run job command 

    // Set user-supplied (possibly default) job configs 
    jobConf.setNumReduceTasks(num_reduces); 
    jobConf.setInputFormat(inputFormatClass); 
    jobConf.setOutputFormat(outputFormatClass); 
    jobConf.setOutputKeyClass(outputKeyClass); 
    jobConf.setOutputValueClass(outputValueClass); 
 
    // Make sure there are exactly 2 parameters left. 
    if (otherArgs.size() != 2) { 
      System.out.println("ERROR: Wrong number of parameters: " + otherArgs.size() + " instead of 2."); 
      return printUsage(); 
    } 
    FileInputFormat.setInputPaths(jobConf, otherArgs.get(0)); 
    FileOutputFormat.setOutputPath(jobConf, new Path(otherArgs.get(1))); 
 
    if (sampler != null) { 
      System.out.println("Sampling input to effect total-order sort..."); 
      jobConf.setPartitionerClass(TotalOrderPartitioner.class); 
      Path inputDir = FileInputFormat.getInputPaths(jobConf)[0]; 
      inputDir = inputDir.makeQualified(inputDir.getFileSystem(jobConf)); 
      Path partitionFile = new Path(inputDir, "_sortPartitioning"); 
      TotalOrderPartitioner.setPartitionFile(jobConf, partitionFile); 
      InputSampler.<K,V>writePartitionFile(jobConf, sampler); 
      URI partitionUri = new URI(partitionFile.toString() + "#" + "_sortPartitioning"); 
      DistributedCache.addCacheFile(partitionUri, jobConf); 
      DistributedCache.createSymlink(jobConf); 
    } 
 
    System.out.println("Running on " + cluster.getTaskTrackers() + " nodes to sort from " + FileInputFormat.getInputPaths(jobConf)[0] + 
        " into " + FileOutputFormat.getOutputPath(jobConf) + " with " + num_reduces + " reduces."); 
    Date startTime = new Date(); System.out.println("Job started: " + startTime); 
    jobResult = JobClient.runJob(jobConf); 
    Date end_time = new Date(); System.out.println("Job ended: " + end_time);  
    System.out.println("The job took " + (end_time.getTime() - startTime.getTime()) /1000 + " seconds."); 
    return 0; 
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Sort Code in Hadoop 1.0.3 Distribution; 
part 5: main function 

  public static void main(String[] args) throws Exception { 
    int res = ToolRunner.run(new Configuration(), new Sort(), args); 
    System.exit(res); 
  } 
 
  /** 
   * Get the last job that was run using this instance. 
   * @return the results of the last job that was run 
   */ 
  public RunningJob getResult() { 
    return jobResult; 
  } 
} 
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Google Paper Experiments 

• 1800 machine cluster 

– 2 GHz Xeon, 4 GB memory, two 160 GB IDE disks, 
gigabit Ethernet link 

– Less than 1 msec roundtrip time 

• Grep workload 

– Scan 1010 100-byte records, search for rare 3-
character pattern, occurring in 92,337 records 

– M=15,000 (64 MB splits), R=1 
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Grep Progress Over Time 

• Rate at which input is scanned as more mappers are added 
• Drops as tasks finish, done after 80 sec 
• 1 min startup overhead beforehand 

– Propagation of program to workers 
– Delays due to distributed file system for opening input files and getting 

information for locality optimization 
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Sort 

• Sort 1010 100-byte records (~1 TB of data) 

• Less than 50 lines user code 

• M=15,000 (64 MB splits), R=4000 

• Use key distribution information for intelligent 
partitioning 

• Entire computation takes 891 sec 
– 1283 sec without backup task optimization (few slow 

machines delay completion) 

– 933 sec if 200 out of 1746 workers are killed several 
minutes into computation 

MapReduce at Google (2004) 

• Machine learning algorithms, clustering 
• Data extraction for reports of popular queries 
• Extraction of page properties, e.g., geographical location 
• Graph computations 
• Google indexing system for Web search (>20 TB of data) 

– Sequence of 5-10 MapReduce operations 
– Smaller simpler code: from 3800 LOC to 700 LOC for one 

computation phase 
– Easier to change code 
– Easier to operate, because MapReduce library takes care of 

failures 
– Easy to improve performance by adding more machines 
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Summary 

• Programming model that hides details of 
parallelization, fault tolerance, locality 
optimization, and load balancing 

• Simple model, but fits many common problems 
– User writes Map and Reduce function 
– Can also provide combine and partition functions 

• Implementation on cluster scales to 1000s of 
machines 

• Open source implementation, Hadoop, is 
available 
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MapReduce relies heavily on the underlying 
distributed file system. Let’s take a closer look 
to see how it works. 

The Distributed File System 

• Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google File System. 19th ACM 
Symposium on Operating Systems Principles, 
Lake George, NY, October, 2003 
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Motivation 

• Abstraction of a single global file system greatly 
simplifies programming in MapReduce 

• MapReduce job just reads from a file and writes 
output back to a file (or multiple files) 

• Frees programmer from worrying about messy 
details 
– How many chunks to create and where to store them 

– Replicating chunks and dealing with failures 

– Coordinating concurrent file access at low level 

– Keeping track of the chunks 
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Google File System (GFS) 

• GFS in 2003: 1000s of storage nodes, 300 TB 
disk space, heavily accessed by 100s of clients 

• Goals: performance, scalability, reliability, 
availability 

• Differences compared to other file systems 
– Frequent component failures 

– Huge files (multi-GB or even TB common) 

– Workload properties 
• Design system to make important operations efficient 
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Data and Workload Properties 

• Modest number of large files 
– Few million files, most 100 MB+ 
– Manage multi-GB files efficiently 

• Reads: large streaming (1 MB+) or small random (few 
KBs) 

• Many large sequential append writes, few small writes 
at arbitrary positions 

• Concurrent append operations 
– E.g., Producer-consumer queues or many-way merging 

• High sustained bandwidth more important than low 
latency 
– Bulk data processing 
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File System Interface 

• Like typical file system interface 

– Files organized in directories 

– Operations: create, delete, open, close, read, 
write 

• Special operations 

– Snapshot: creates copy of file or directory tree at 
low cost 

– Record append: concurrent append guaranteeing 
atomicity of each individual client’s append 
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Architecture Overview 

• 1 master, multiple chunkservers, many clients 

– All are commodity Linux machines 

• Files divided into fixed-size chunks 

– Stored on chunkservers’ local disks as Linux files 

– Replicated on multiple chunkservers 

• Master maintains all file system metadata: 
namespace, access control info, mapping from 
files to chunks, chunk locations 

49 

Why a Single Master? 

• Simplifies design 

• Master can make decisions with global 
knowledge 

• Potential problems: 

– Can become bottleneck 

• Avoid file reads and writes through master 

– Single point of failure 

• Ensure quick recovery 
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High-Level Functionality 

• Master controls system-wide activities like chunk lease 
management, garbage collection, chunk migration 

• Master communicates with chunkservers through 
HeartBeat messages to give instructions and collect 
state 

• Clients get metadata from master, but access files 
directly through chunkservers 

• No GFS-level file caching 
– Little benefit for streaming access or large working set 

– No cache coherence issues 

– On chunkserver, standard Linux file caching is sufficient 
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Read Operation 

• Client: from (file, offset), compute chunk index, then get chunk locations 
from master 
– Client buffers location info for some time 

• Client requests data from nearby chunkserver 
– Future requests use cached location info 

• Optimization: batch requests for multiple chunks into single request 
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Chunk Size 

• 64 MB, stored as Linux file on a chunkserver 

• Advantages of large chunk size 
– Fewer interactions with master (recall: large sequential 

reads and writes) 

– Smaller chunk location information 
• Smaller metadata at master, might even fit in main memory 

• Can be cached at client even for TB-size working sets 

• Disadvantage: fewer chunks => fewer options for load 
balancing 
– Fixable with higher replication factor 

– Address hotspots by letting clients read from other clients 
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Practical Considerations 

• Number of chunks is limited by master’s memory 
size 
– Only 64 bytes metadata per 64 MB chunk; most 

chunks full 
– Less than 64 bytes namespace data per file 

• Chunk location information at master is not 
persistent 
– Master polls chunkservers at startup, then updates 

info because it controls chunk placement 
– Eliminates problem of keeping master and 

chunkservers in sync (frequent chunkserver failures, 
restarts) 
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Consistency Model 

• GFS uses a relaxed consistency model 

• File namespace updates are atomic (e.g., file 
creation) 

– Only handled by master, using locking 

– Operations log defines global total order 

• State of file region after update 

– Consistent: all clients will always see the same data, 
regardless which chunk replica they access 

– Defined: consistent and reflecting the entire update 
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Relaxed Consistency 

• GFS guarantees that after a sequence of successful 
updates, the updated file region is defined and 
contains the data of the last update 
– Applies updates to all chunk replica in same order 
– Uses chunk version numbers to detect stale replica (when 

chunk server was down during update) 

• Stale replica are never involved in an update or given 
to clients asking the master for chunk locations 

• But, client might read from stale replica when it uses 
cached chunk location data 
– Not all clients read the same data 
– Can address this problem for append-only updates 
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Leases, Update Order 

• Leases used for consistent update order across 
replicas 
– Master grants lease to one replica (primary) 
– Primary picks serial update order 
– Other replicas follow this order 

• Lease has initial timeout of 60 sec, but primary 
can request extensions from master 
– Piggybacked on HeartBeat messages 
– Master can revoke lease (e.g., to rename file) 
– If no communication with primary, then master grants 

new lease after old one expires 
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Updating a Chunk 

1. Who has lease? 
2. Identity of primary and 

secondary replicas 
3. Push data to all replicas 
4. After receiving all acks, send 

write request to primary who 
assigns it a serial number 

5. Primary forwards write request 
to all other replicas 

6. Secondaries ack update success 
7. Primary replies to client 

1. Also reports errors 
2. Client retries steps 3-7 on error 
 

• Large writes broken down into 
chunks 

Data Flow 

• Decoupled from control flow for efficient network use 

• Data pipelined linearly along chain of chunkservers 
– Full outbound bandwidth for fastest transfer (instead of 

dividing it in non-linear topology) 

– Avoids network bottlenecks by forwarding to “next 
closest” destination machine 

– Minimizes latency: once chunkserver receives data, it 
starts forwarding immediately 
• Switched network with full-duplex links 

• Sending does not reduce receive rate 

• 1 MB distributable in 80 msec 
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Namespace Management 

• Want to support concurrent master operations 
• Solution: locks on regions of namespace for proper 

serialization 
– Read-write lock for each node in namespace tree 

• Operations lock all nodes on path to accessed node 
– For operation on /d1/d2/leaf, acquire read locks on /d1 and /d1/d2, and 

appropriate read or write lock on /d1/d2/leaf 

• File creation: read-lock on parent directory 

– Concurrent updates in same directory possible, e.g., 
multiple file creations 

– Locks acquired in consistent total order to prevent 
deadlocks 
• First ordered by level in namespace tree, then lexicographically 

within same level 
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Replica Placement 

• Goals: scalability, reliability, availability 
• Difficult problem 

– 100s of chunkservers spread across many machine racks, 
accessed from 100s of clients from the same or different racks 

– Communication may cross network switch(es) 
– Bandwidth into or out of a rack may be less than aggregate 

bandwidth of all the machines within the rack 

• Spread replicas across racks 
– Good: fault tolerance, reads benefit from aggregate bandwidth 

of multiple racks 
– Bad: writes flow through multiple racks 

• Master can move replicas or create/delete them to react to 
system changes and failures 
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Lazy Garbage Collection 

• File deletion immediately logged by master, but file only renamed 
to hidden name 
– Removed later during regular scan of file system namespace 
– Batch-style process amortizes cost and is run when master load is low 

• Orphaned chunks identified during regular scan of chunk 
namespace 

• Chunkservers report their chunks to master in HeartBeat messages 
• Master replies with identities of chunks it does not know 

– Chunkserver can delete them 

• Simple and reliable: lost deletion messages (from master) and 
failures during chunk creation no problem 

• Disadvantage: difficult to finetune space usage when storage is 
tight, e.g., after frequent creation/deletion of temp files 
– Solution: use different policies in different parts of namespace 
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Stale Replicas 

• Occur when chunkserver misses updates while it is down 
• Master maintains chunk version number 

– Before granting new lease on chunk, master increases its version 
number 

– Informs all up-to-date replicas of new number 
• Master and replicas keep version number in persistent state 

– This happens before client is notified and hence before it can start 
updating the chunk 

• When chunkservers report their chunks, they include version 
numbers 
– Older than on master: garbage collect it 
– Newer than on master: master must have failed after granting lease; 

master takes higher version to be up-to-date 

• Master also includes version number in reply to client and 
chunkserver during update-process related communication 
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Achieving High Availability 

• Master and chunkservers can restore state and start in 
seconds 

• Chunk replication 

• Master replication, i.e., operation log and checkpoints 

• But: only one master process 
– Can restart almost immediately 

– Permanent failure: monitoring infrastructure outside GFS 
starts new master with replicated operation log (clients 
use DNS alias) 

• Shadow masters for read-only access 
– May lag behind primary by fraction of a sec 
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Experiments 

• Chunkserver metadata mostly checksums for 64 
KB blocks 
– Individual servers have 50-100 MB of metadata 

– Reading this from disk during recovery is fast 
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Results 

• Clusters had been up for 1 week at time of measurement 
• A’s network configuration has max read rate of 750 MB/s 

– Actually reached sustained rate of 580 MB/s 

• B’s peak rate is 1300 MB/s, but applications never used more than 
380 MB/s 

• Master not a bottleneck, despite large number of ops sent to it 
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Summary 

• GFS supports large-scale data processing workloads on 
commodity hardware 

• Component failures treated as norm, not exception 
– Constant monitoring, replicating of crucial data 
– Relaxed consistency model 
– Fast, automatic recovery 

• Optimized for huge files, appends, large sequential 
reads 

• High aggregate throughput for concurrent readers and 
writers 
– Separation of file system control (through master) from 

data transfer (between chunkservers and clients) 
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