
1 

1 

Let’s see how MapReduce works. 

MapReduce 

• Proposed by Google in research paper 

– Jeffrey Dean and Sanjay Ghemawat. MapReduce: 
Simplified Data Processing on Large Clusters. 
OSDI'04: Sixth Symposium on Operating System 
Design and Implementation, San Francisco, CA, 
December, 2004 

• MapReduce implementations such as Hadoop 
differ in details, but main principles are the 
same 

 
2 

Overview 

• MapReduce = programming model and 
associated implementation for processing large 
data sets 

• Programmer essentially just specifies two 
(sequential) functions: map and reduce 

• Program execution is automatically parallelized 
on large clusters of commodity PCs 

– MapReduce could be implemented on different 
architectures, but Google proposed it for clusters 

3 

Overview 

• Clever abstraction that is a good fit for many 
real-world problems 

• Programmer focuses on algorithm itself 

• Runtime system takes care of all messy details 

– Partitioning of input data 

– Scheduling program execution 

– Handling machine failures 

– Managing inter-machine communication 

4 

Programming Model 

• Transforms set of input key-value pairs to set of 
output values (notice small modification 
compared to paper) 

• Map: (k1, v1)  list (k2, v2) 

• MapReduce library groups all intermediate pairs 
with same key together 

• Reduce: (k2, list (v2))  list (k3, v3) 
– Usually zero or one output value per group 

– Intermediate values supplied via iterator (to handle 
lists that do not fit in memory) 

5 

Example: Word Count 

• Insight: can count each document in parallel, then 
aggregate counts 

• Final aggregation has to happen in Reduce 
– Need count per word, hence use word itself as 

intermediate key (k2) 

– Intermediate counts are the intermediate values (v2) 

• Parallel counting can happen in Map 
– For each document, output set of pairs, each being a word 

in the document and its frequency of occurrence in the 
document 

– Alternative: output (word, 1) for each word encountered 

6 



2 

Word Count in MapReduce 

7 

map(String key, String value): 
  // key: document name 
  // value: document contents 
  for each word w in value: 
    EmitIntermediate(w, 1); 

Count number of occurrences of each word in a document collection: 

reduce(String key, Iterator values): 
  // key: a word 
  // values: a list of counts 
  int result = 0; 
  for each v in values: 
    result += v; 
  Emit(key, result); 

Almost all the coding needed 
(need also MapReduce specification object with names of input and 
output files, and optional tuning parameters) 

Execution Overview 

• Data is stored in files 
– Files are partitioned into smaller splits, typically 64MB 
– Splits are stored (usually also replicated) on different 

cluster machines 

• Master node controls program execution and 
keeps track of progress 
– Does not participate in data processing 

• Some workers will execute the Map function, let’s 
call them mappers 

• Some workers will execute the Reduce function, 
let’s call them reducers 

8 

Execution Overview 

• Master assigns map and reduce tasks to workers, taking 
data location into account 

• Mapper reads an assigned file split and writes intermediate 
key-value pairs to local disk 

• Mapper informs master about result locations, who in turn 
informs the reducers 

• Reducers pull data from appropriate mapper disk location 
• After map phase is completed, reducers sort their data by 

key 
• For each key, the Reduce function is executed and output is 

appended to final output file 
• When all reduce tasks are completed, master wakes up 

user program 

9 10 

Execution Overview 

Master Data Structures 

• Master keeps track of status of each map and 
reduce task and who is working on it 

– Idle, in-progress, or completed 

• Master stores location and size of output of 
each completed map task 

– Pushes information incrementally to workers with 
in-progress reduce tasks 

11 

Handling Mapper Failures 

• Master pings every worker periodically 
• Workers who do not respond in time are marked 

as failed 
• Mapper’s in-progress and completed tasks are 

reset to idle state 
– Can be assigned to other mapper 
– Completed tasks are re-executed because result is 

stored on mapper’s local disk 

• Reducers are notified about mapper failure, so 
that they can read the data from the replacement 
mapper 

12 



3 

Handling Reducer Failures 

• Failed reducers identified through ping as well 

• Reducer’s in-progress tasks are reset to idle 
state 

– Can be assigned to other reducer 

– No need to restart completed reduce tasks, 
because result is written to distributed file system 

13 

Handling Master Failure 

• Failure unlikely, because it is just a single 
machine 

• Can simply abort MapReduce computation 

– Users re-submit aborted jobs when new master 
process is up 

• Alternative: master writes periodic 
checkpoints of its data structures so that it can 
be re-started from checkpointed state 

14 

Semantics with Failures 

• If map and reduce are deterministic, then output 
is identical to non-faulting sequential execution 
– For non-deterministic operators, different reduce 

tasks might see output of different map executions 

• Relies on atomic commit of map and reduce 
outputs 
– In-progress task writes output to private temp file 
– Mapper: on completion, send names of all temp files 

to master (master ignores if task already complete) 
– Reducer: on completion, atomically rename temp file 

to final output file (needs to be supported by 
distributed file system) 

15 

Practical Considerations 

• Conserve network bandwidth (“Locality 
optimization”) 

– Schedule map task on machine that already has a 
copy of the split, or one “nearby” 

• Create backup tasks to deal with machines 
that take unusually long for the last in-
progress tasks (“stragglers”) 

16 

17 

Refinements 

• User-defined partitioning functions for reduce tasks 

– Default: assign key K to reduce task hash(K) mod R 

– Use hash(Hostname(urlkey)) mod R to have URLs from 
same host in same output file 

– We will see others in future lectures 

• Combiner function to reduce mapper output size 

– Pre-aggregation at mapper for reduce functions that are 
commutative and associative 

– Often (almost) same code as for reduce function 

Careful With Combiners 

• Consider Word Count, but assume we only want 
words with count > 10 
– Reducer computes total word count, only outputs if 

greater than 10 

– Combiner = Reducer? No. Combiner should not filter 
based on its local count! 

• Consider computing average of a set of numbers 
– Reducer should output average 

– Combiner has to output (sum, count) pairs to allow 
correct computation in reducer 

18 



4 

Equi-Join in MapReduce 

• Given two data sets S=(s1,s2,…) and T=(t1,t2,…) of 
integers, find all pairs (si,tj) where si.A=tj.A 

• Can combine the si and tj only in Reduce 

– To ensure that the right tuples end up in the same 
Reduce invocation, use join attribute A as 
intermediate key (k2) 

• Map needs to output (s.A, s) for each S-tuple s 
(similar for T-tuples) 

– Also adds a flag indicating if the tuple is from S or T 

19 

DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

Equi-Join in MapReduce 

• Join condition: S.A=T.A 
• Map(s) = (s.A, (s, “S”)); Map(t) = (t.A, (t, “T”)) 
• Reduce computes Cartesian product of set of S-tuples and set of T-tuples with 

same key 

20 

s1,1 

s1,1 

1,(s1,1) 

s5,1 

s5,1 

1,(s5,1) 

1,(t3,1) t3,1 
t3,1 

t8,1 

t8,1 

1,(t8,1) 

1,[(s5,1)(t3,1)(s1,1)(t8,1)] 

(s5,t3) 

(s1,t3) 

(s1,t8) 

(s5,t8) 

s3,2 

t1,2 

s3,2 

t1,2 

2,[(s3,2)(t1,2)] 

(s3,t1) 

2,(t1,2) 

2,(s3,2) 

Theta-Joins in MapReduce? 

• Equi-join algorithm has problems when data is 
skewed 

• What about non-equi joins? 
– Inequality (S.A<T.A): map just forwards T-tuples, 

but replicates S-tuples for all larger T.A values as 
keys 
• Not practical 

• Need different approach: discussed in future 
lecture 

21 


