
1

CS 6240: Parallel Data Processing
in MapReduce

Mirek Riedewald

1

Course Information

• Homepage:
http://www.ccs.neu.edu/home/mirek/classes/
2012-F-CS6240/
– Announcements

– Lecture handouts

– Office hours

• Homework management through Blackboard

• Prerequisites: CS 5800/CS 7800, or consent of
instructor

2

Grading

• Homework/project: 60%
• Midterm 30%
• Participation 10%

– Ask/answer in class; answer questions on Piazza

• No copying or sharing of homework solutions!
– But you can discuss general challenges and ideas

• Material allowed for exams
– Any handwritten notes (originals, no photocopies)
– Printouts of lecture summaries distributed by

instructor

3

Instructor Information

• Instructor: Mirek Riedewald (332 WVH)

– Office hours: Tue 4:00-5:30pm

– Post questions on Piazza

– Email for appointment if you cannot make it
during office hours (or stop by for 1-minute
questions)

• TA: Alper Okcan (472 WVH)

4

Course Materials

• Hadoop: The Definitive Guide by Tom White

• Hadoop in Action by Chuck Lam
– Both available from Safari Books Online at

http://0-
proquest.safaribooksonline.com.ilsprod.lib.neu.ed
u/

– Use your myNEU credentials

• Other resources mentioned in syllabus and
class homepage

5

Course Content and Objectives

• How to process Big Data
– Different from traditional approaches to parallel

computation for smaller data

• Learn important fundamentals of selected approaches
– Current trends and architectures

– Parallel programming in (raw) MapReduce
• Programming model and Hadoop open source implementation

– Creating data processing workflows with Pig Latin

– HBase for storing and managing big data

– MapReduce versus SQL and other related approaches

• Various problem types and design patterns

6

http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
http://www.ccs.neu.edu/home/mirek/classes/2012-F-CS6240/
http://0-proquest.safaribooksonline.com.ilsprod.lib.neu.edu/
http://0-proquest.safaribooksonline.com.ilsprod.lib.neu.edu/
http://0-proquest.safaribooksonline.com.ilsprod.lib.neu.edu/
http://0-proquest.safaribooksonline.com.ilsprod.lib.neu.edu/
http://0-proquest.safaribooksonline.com.ilsprod.lib.neu.edu/

2

Course Content and Objectives

• Gain an intuition for how to deal with big-data
problems

• Hands-on MapReduce practice
– Writing MapReduce programs and running them

on the Amazon Cloud

– Understanding the system architecture and
functionality below MapReduce

– Learning about limitations of MapReduce

• Might produce publishable research

7

Words of Caution 1

• We can only cover a small part of the parallel
computation universe
– Do not expect all possible architectures,

programming models, theoretical results, or
vendors to be covered

– Explore complementary courses in CCIS and ECE

• This really is an algorithms course, not a basic
programming course
– But you will need to do a lot of non-trivial

programming

8

Words of Caution 2

• This is still a fairly a new course, so expect rough edges
like too slow/fast pace, uncertainty in homework load
estimation

• There are few certain answers, as people in research
and leading tech companies are trying to understand
how to deal with big data

• We are working with cutting edge technology
– Bugs, lack of documentation, new Hadoop API

• In short: you have to be able to deal with inevitable
frustrations and plan your work accordingly…

• …but if you can do that and are willing to invest the
time, it will be a rewarding experience

9

Running Your Code

• You need to set up an account with Amazon
Web Services (AWS)

• Requires a credit card

• We give you $100 in credit for this course

• Should be sufficient for all assignments
– Develop and test on your laptop

– Deploy once you are confident things work

– Monitor your job and make sure it terminates as
expected

10

How to Succeed

• Attend the lectures and take your own notes

– Helps remembering (compared to just listening)

– Capture lecture content more individually than our
handouts

– Free preparation for exams

• Go over notes, handouts, book soon after lecture

– Try to explain material to yourself or friend

• Look at content from previous lecture right
before the next lecture to “page-in the context”

11

How to Succeed

• Ask questions during the lecture
– Even seemingly simple questions show that you are

thinking about the material and are genuinely interested

• Work on the HW assignment as soon as it comes out
– Can do most of the work on your own laptop

– Time to ask questions and deal with unforeseen problems

– We might not be able to answer all last-minute questions
right before the deadline

• Students with disabilities: contact me by September 18

12

3

What Else to Expect?

• Need strong Java programming skills
– Code for Hadoop system is in Java
– Hadoop supports other languages, but use at your

own risk (we cannot help you and have not tested it)

• Need strong algorithms background
– Analyze problems and solve them using an unfamiliar

framework

• Basic understanding of important system
concepts
– File system, processes, network basics, computer

architecture

13

Why Focus on MapReduce?

• MapReduce is viewed as one of the biggest
breakthroughs for processing massive amounts of data.

• It is widely used at technology leaders like Google,
Yahoo, Facebook.

• It has huge support by the open source community.

• Amazon provides special support for setting up Hadoop
MapReduce clusters on its cloud infrastructure.

• It plays a major role in current database research
conferences (and many other research communities)

14

15

Let us first look at some recent trends and
developments that motivated MapReduce
and other approaches to parallel data
processing.

Why Parallel Processing?

• Answer 1: big data

16

How Much Information?

• Source:
http://www2.sims.berkeley.edu/research/projects/ho
w-much-info-2003/execsum.htm

• 5 exabytes (1018) of new information from print, film,
optical storage in 2002
– 37,000 times Library of Congress book collections (17M

books)

• New information on paper, film, magnetic and optical
media doubled between 2000 and 2003

• Information that flows through electronic channels—
telephone, radio, TV, Internet—contained 18 exabytes
of new information in 2002

17

Web 2.0

• Billions of Web pages, social networks with millions of
users, millions of blogs
– How do friends affect my reviews, purchases, choice of friends
– How does information spread?
– What are “friendship patterns”

• Small-world phenomenon: any two individuals likely to be connected
through short sequence of acquaintances

18

http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm

4

Facebook Statistics

• 955M active users (June ‘12), 81% outside
US/Canada

• More than 100 petabytes of photos and
videos

• August 2011: 30 billion pieces of content (web
links, news stories, blog posts, notes, photo
albums, etc.) shared each month

– Avg. user created 90 pieces of content per month

19

Business World

• Fraudulent/criminal transactions in bank
accounts, credit cards, phone calls
– Billions of transactions, real-time detection

• Retail stores
– What products are people buying together?
– What promotions will be most effective?

• Marketing
– Which ads should be placed for which keyword query?
– What are the key groups of customers and what

defines each group?

• Spam filtering

20

eScience Examples

• Genome data

• Large Hadron Collider
– Petabytes of raw data per

year

• SkyServer
– 818 GB, 3.4 billion rows

•
– “Universal access to data

about life on earth and the
environment”

• Cornell Lab of Ornithology
– 107M observations, 100s of

attributes

21

Source: Nature

Our Scolopax Project

• Search for patterns in prediction models based on user preferences
 Make this as easy and fast as Web search

22

Summary Summary

FunctionJoin

Sort

Model

Pattern creation alg.
(low cost, parallel,

approximate)

Pattern ranking alg.

Function join alg.

User-friendly
query language
(broad class
of patterns)

Formal
language
(for query
optimization)

Optimizer
(execution in
distributed
system)

Data mining models
(distributed training, evaluation,
confidence computation)

Pattern
evaluation

Why Parallel Processing?

• Answer 1: big data

• Answer 2: hardware trends

23

The Good Old Days

• Moore’s Law: number of transistors that can be placed
inexpensively on an integrated circuit doubles about
every 2 years

• Computational capability
improved at similar rate
– Sequential programs

became automatically
faster

• Parallel computing never
became mainstream
– Reserved for high-

performance computing
niches

24
Source: Wikipedia

5

“New” Realities

• “Party” ended around 2004

• Heat issues prevent higher clock speeds

• Clock speed remains below 4 GHz

0

5

10

15

20

25

2001 2003 2005 2007 2009 2011 2013

C
lo

ck
 R

at
e

(G
H

z)
 2005 Roadmap

2007 Roadmap

Intel single core

Intel multi-core

25

Source:
Dave Patterson, UCB

Multi-Core CPUs

• Clock speed stagnates, but number of cores
increases
– Core is like a processor, but shares chip with other

cores

– Cores typically share some cache, memory bus,
access to same main memory

• Need to keep multiple cores busy to exploit
additional transistors on chip
– Multi-threaded applications

26

Processor Example (Source: Intel)

27

Typical Multi-Core Properties

• Each core has some local cache (e.g., L1, L2)

• The cores share some cache (e.g., L3)

• All cores access same memory through bus

• Misses become much more expensive from L1
to L3, even more when accessing memory

28

Important Numbers (Source: Google’s
Jeff Dean @LADIS’09)

29

L1 cache reference 0.5

Branch mispredict 5

L2 cache reference 7

Mutex lock/unlock 25

Main memory reference 100

Compress 1 KB with Zippy 3,000

Send 2 KB over 1 Gbps network 20,000

Read 1 MB sequentially from memory 250,000

Round trip within same data center 500,000

Disk seek 10,000,000

Read 1 MB sequentially from disk 20,000,000

Send packet CA -> Holland -> CA 150,000,000

All times in ns.

Other Trends

• Datacenter as a computer
– Hundreds to tens of thousands of commodity

machines for large-scale data processing

• Cloud computing
– Often powered by data center(s)

• GPU computing
– Initially developed for fast parallel graphics

computations, now also used for general
computations

• Parallel data processing is becoming mainstream

30

6

Parallel Architectures

• Multi-core chips

• Datacenter as a computer

31

Warehouse-Scale Computer (WSC)

• Hundreds or thousands of commodity PCs
– Better cost per unit of computational capability than

specialized hardware due to economies of scale of
commodity hardware

– Easy to “scale out” by adding more machines

• Organized in racks in data centers
• Relatively homogenous hardware and system

software platform with common system
management layer
– Often run smaller number of very large applications

like Internet services

32

Basic Architecture

33
Source: Barroso, Holzle (2009)

Typical Specs

• Low-end servers in 1U enclosure in 7’ rack

• Rack-level switch with 1- or 10-Gbps links

• Connected by one or more cluster switches

– Can include >10,000 servers

• Local (cheap) disks on each server

– Managed by global distributed file system

• Might have Network Attached Storage (NAS)
devices for more centralized storage solution

34

Storage Hierarchy

35
Source: Barroso, Holzle (2009)

Programming WSCs

• Build cluster infrastructure and services that hide
architecture complexity from developers
– Program it like a single big computer, but avoid inefficient

code

• Need easy way to keep hundreds or thousands of CPUs
busy

• Handle failures transparently
– With 1000 commodity machines, failures are the norm,

not the exception
– Developers want to focus on their application, not how to

deal with failures of hardware and low-level services

• This is where MapReduce comes into the picture!

36

7

Parallel Architectures

• Multi-core chips

• Datacenter as a computer

• Cloud computing

37

The Cloud

• Many different versions of Clouds
• Common idea: customers use virtual resources without knowing details

about underlying hardware
– Could run on cluster, multiple data centers, or large parallel machine

• Typical use 1: reserve virtual machines to create virtual cluster
• Typical use 2: connect through Web browser and run favorite application
• Typical use 3: build own app on top of services offered by Cloud provider

– Database, document management, Web design, workflow, analytics

38

Cloud Computing

• Goal: Move data and programs from desktop
PCs and corporate server rooms to “compute
cloud”

• Related buzzwords: on-demand computing,
software as a service (SaaS), Internet as
platform

• Starts to replace shrink-wrap software

– MSFT Word on desktop PC vs. Google Docs

39

Back to the Future…

• 1960s: service bureaus, time-sharing systems

– Hub-and-spoke configuration: terminal access
through phone lines, central site for computation

• 1980s: PCs “liberate” programs and data from
central computing center

– Customization of computing environment

– Client-server model

40

…or not?

• Cloud is not the same as 1960’s hub

– Client can communicate with many servers at the
same time

– Servers can communicate with each other

• Still, functions migrate to distant data centers

– “Core” and “fringe”

• Storage, computing, high bandwidth, and careful
resource management in core

• End users initiate requests from fringe

41

Why Clouds?

• High price of total control
– Software installation, configuration, and maintenance
– Maintenance of computing infrastructure
– Difficult to grow and shrink capacity on demand

• Easier software development
– Replaces huge variety of operating environments by

computing platform of vendor’s choosing
– But: server interaction with variety of clients

• Easier to deploy updates and bug fixes
• Easier to leverage multi-core, parallel systems

– Single instance of Word cannot utilize 100 cores, but 100
instances of Word can

42

8

Example Cloud Offerings

• Document processing
– Google Docs: word processor, spreadsheet, presentations
– Adobe: Acrobat.com, Photoshop Express
– Microsoft Office 365

• Enterprise applications
– Salesforce.com: customer relationship management, sales marketing

apps
– Microsoft Dynamics CRM, IBM Tivoli Live

• Cloud infrastructure
– Amazon Web Services: storage, computing as needed (pay as you go)
– IBM Smart Cloud, Google App Engine, Force.com, Microsoft Azure

• Cloud OS
– User interface in Web browser
– New browser wars: browser as new Cloud OS

43

Challenges

• Scalability
– More users, complex interactions between

applications

• Many-to-many communication
– Client invokes programs on multiple servers,

server talks to multiple clients

• Browser is limited compared to traditional OS
– Limited functionality

– Fewer development tools

44

More Challenges

• Heterogeneous environment

– Database backend with SQL

– JavaScript, HTML at client

– Server app written in PHP, Java, Python

– Information exchanged as XML

• New role for open source movement?

– Open source word processor vs. running a service

45

Biggest Problems

• Privacy, security, reliability

– What if the service is not accessible?

– Who owns the data?

– Lose access to data if bill not paid?

– Guarantee that deleted documents are really
gone?

– How aggressive about protecting data, e.g.,
against government access?

– How to know if data is leaked to third party?

46

Parallel Architectures

• Multi-core chips

• Datacenter as a computer

• Cloud computing

• GPU computing

47

GPU vs. CPU

48

• Optimized for massively parallel processing
– Graphics processing

• Challenge: how to create applications for 100s of
cores?
– Example: NVIDIA developed CUDA
– Used widely for general-purpose computations

Source: NVIDIA

9

CUDA (Source: NVIDIA)

• CUDA programming model provides abstractions for data and task
parallelism
– Programmer can express parallelism in high-level languages such as C, C++,

Fortran or driver APIs such as OpenCL™ and DirectX™-11 Compute
– Programming model guides programmers to partition the problem into coarse

sub-problems that can be solved independently in parallel
– Fine grain parallelism in the sub-problems is then expressed such that each

sub-problem can be solved cooperatively in parallel.

49

Course Content in a Nutshell

• In big-data processing, usually the same
computation needs to be applied to a lot of
data

– Possibly many such steps (think “workflow”)

• Divide the work between multiple processors

– Make sure you can handle data transfer efficiently

• Combine intermediate results from multiple
processors

50

Why This Is Not So Easy

• How can the work be partitioned?

• What if too much intermediate data is
produced?

• How do we start up and manage 1000s of
jobs?

• How do we get large data sets to processors or
move processing to the data?

• How do we deal with slow responses and
failures?

51

More Problems

• Shared resources limit scalability
– Cost of managing concurrent access

• Shared-nothing architectures still need communication
for processes to share data

• Easy to get into problems like deadlocks and race
conditions

• It is generally difficult to reason about the behavior and
correctness of concurrent processes
– Especially when failures are part of the model

• Inherent tradeoff between consistency, availability, and
partition tolerance (Brewer’s Conjecture)

52

What Can We Do?

• Work at the right level of abstraction
– Too low-level: difficult to write programs, e.g., to deal

with locks; need to customize code for different
systems

– Too high-level: poor performance if control for crucial
bottleneck is “abstracted away”

• Use more declarative style of programming
– Define WHAT needs to be computed, not HOW this is

done at the low level

– Well-known success story: SQL and databases

53

Recipes for Success

• Use hardware that can scale out, not just up
– Doubling the number of commodity servers is easy, but buying a

double-sized SMP machine is not.

• Have data located near the processors
– Sending petabytes around is not a good idea

• Avoid centralized resources that are likely bottlenecks, e.g.,
single shared memory bus for many cores

• Read and write data sequentially
– Assume random I/O takes 20 msec, disk streams data

sequentially at 100 MB/sec, and record size is 1 KB
– During 1 random I/O, can read 2000 records sequentially

• MapReduce does all this, and its level of abstraction seems
to have hit a sweet spot

54

10

Algorithms First

• No matter which parallel programming model
we use, we first need to understand what part
of a computation can be performed in parallel

• More precisely…

55

Writing Parallel Programs

• Analyze problem and identify what can be done
in parallel
– Dependencies: if I need data D as input for a task,

then I cannot run this task and the creation of D in
parallel.

– Coordination requirements: when do parallel tasks
have to communicate and how much data is sent?

– Best sequential algorithm might not be easy to
parallelize—find alternative solutions

• Create an efficient implementation
– Make sure solution is a good fit for the given

architecture and programming model

56

Examples

• Let us look at some examples to get a feeling
for the challenges

57

Sum Of Integers

• Compute sum of a large set of integers
• Sequential: simple for-loop (scan)
• Parallel: assign chunk of data to each processor to compute

local sum, then add them together

• Algorithmically easy, but…
– Where do the chunks come from? Partitioning data file into

multiple chunks might take as long as sequential computation.
– What if data transfer is the bottleneck? Then pushing k chunks

from disk to k cores might not be a good idea.
– Who computes final sum and how do the local sums get there?

58

Word Count

• Count the number of occurrences of each word in a large
document

• Sequential: read document sequentially, update counters
for each word
– Need data structure, e.g., hash map, to keep track of counts

• Parallel: each processor does this for a chunk using local
data structure, then counts are aggregated

• Improvement (?): use shared data structure for counts
– Good: no “replication”, no need for final summation step
– Bad: need to coordinate access to shared data structure, not a

good fit for shared-nothing architecture

• What if some documents are much larger than others?
– Need to deal with data skew, e.g., break up large documents

59

Median

• Find the median of a set of integers

• Holistic aggregate function
– Chunk assigned to a processor might contain

mostly smaller or mostly larger values, and the
processor does not know this without
communicating extensively with the others

• Parallel implementation might not do much
better than sequential one

• Efficient approximation algorithms exist

60

11

Parallel Office Tools

• Parallelize Word, Excel, email client?

• Need to rewrite them as multi-threaded
applications

– Seem to naturally have low degree of parallelism

• Leverage economies of scale: n processors (or
cores) support n desktop users by hosting the
service in the Cloud

– E.g., Google docs

61 62

Before exploring parallel algorithms in more
depth, how do we know if our parallel
algorithm or implementation actually does
well or not?

Measures Of Success

• If sequential version takes time t, then parallel
version on n processors should take time t/n

– Speedup = sequentialTime / parallelTime

– Note: job, i.e., work to be done, is fixed

• Response time should stay constant if number of
processors increases at same rate as “amount of
work”

– Scaleup = workDoneParallel / workDoneSequential

– Note: time to work on job is fixed

63

Things to Consider: Amdahl’s Law

• Consider job taking sequential time 1 and
consisting of two sequential tasks taking time t1
and 1-t1, respectively

• Assume we can perfectly parallelize the first task
on n processors
– Parallel time: t1/n + (1 – t1)

• Speedup = 1 / (1 – t1(n-1)/n)
– t1=0.9, n=2: speedup = 1.81
– t1=0.9, n=10: speedup = 5.3
– t1=0.9, n=100: speedup = 9.2
– Max. possible speedup for t1=0.9 is 1/(1-0.9) = 10

64

Implications of Amdahl’s Law

• Parallelize the tasks that take the longest

• Sequential steps limit maximum possible speedup

– Communication between tasks, e.g., to transmit
intermediate results, can inherently limit speedup, no
matter how well the tasks themselves can be
parallelized

• If fraction x of the job is inherently sequential,
speedup can never exceed 1/x

– No point running this on too many processors

65

Performance Metrics

• Total execution time

– Part of both speedup and scaleup

• Total resources consumed

• Total amount of money paid

• Total energy consumed

• Optimize some combination of the above

– E.g., minimize total execution time, subject to a
money budget constraint

66

12

Popular Solution: Load Balancing

• Avoid overloading one processor while other is
idle
– Careful: if better balancing increases total load, it

might not be worth it
– Careful: optimizes for response time, but not

necessarily other metrics like $ paid

• Static load balancing
– Need cost analyzer like in DBMS

• Dynamic load balancing
– Easy: Web search
– Hard: join

67

