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CS 6240: Parallel Data Processing 
in MapReduce 

Mirek Riedewald 
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Course Information 

• Homepage: 
http://www.ccs.neu.edu/home/mirek/classes/
2012-F-CS6240/ 
– Announcements 

– Lecture handouts 

– Office hours 

• Homework management through Blackboard 

• Prerequisites: CS 5800/CS 7800, or consent of 
instructor 
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Grading 

• Homework/project: 60% 
• Midterm 30% 
• Participation 10% 

– Ask/answer in class; answer questions on Piazza 

• No copying or sharing of homework solutions! 
– But you can discuss general challenges and ideas 

• Material allowed for exams 
– Any handwritten notes (originals, no photocopies) 
– Printouts of lecture summaries distributed by 

instructor 
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Instructor Information 

• Instructor: Mirek Riedewald (332 WVH) 

– Office hours: Tue 4:00-5:30pm 

– Post questions on Piazza 

– Email for appointment if you cannot make it 
during office hours (or stop by for 1-minute 
questions) 

• TA: Alper Okcan (472 WVH) 
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Course Materials 

• Hadoop: The Definitive Guide by Tom White 

• Hadoop in Action by Chuck Lam 
– Both available from Safari Books Online at 

http://0-
proquest.safaribooksonline.com.ilsprod.lib.neu.ed
u/ 

– Use your myNEU credentials 

• Other resources mentioned in syllabus and 
class homepage 
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Course Content and Objectives 

• How to process Big Data 
– Different from traditional approaches to parallel 

computation for smaller data 

• Learn important fundamentals of selected approaches 
– Current trends and architectures 

– Parallel programming in (raw) MapReduce 
• Programming model and Hadoop open source implementation 

– Creating data processing workflows with Pig Latin 

– HBase for storing and managing big data 

– MapReduce versus SQL and other related approaches 

• Various problem types and design patterns 
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Course Content and Objectives 

• Gain an intuition for how to deal with big-data 
problems 

• Hands-on MapReduce practice 
– Writing MapReduce programs and running them 

on the Amazon Cloud 

– Understanding the system architecture and 
functionality below MapReduce 

– Learning about limitations of MapReduce 

• Might produce publishable research 
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Words of Caution 1 

• We can only cover a small part of the parallel 
computation universe 
– Do not expect all possible architectures, 

programming models, theoretical results, or 
vendors to be covered 

– Explore complementary courses in CCIS and ECE 

• This really is an algorithms course, not a basic 
programming course 
– But you will need to do a lot of non-trivial 

programming 
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Words of Caution 2 

• This is still a fairly a new course, so expect rough edges 
like too slow/fast pace, uncertainty in homework load 
estimation 

• There are few certain answers, as people in research 
and leading tech companies are trying to understand 
how to deal with big data 

• We are working with cutting edge technology 
– Bugs, lack of documentation, new Hadoop API 

• In short: you have to be able to deal with inevitable 
frustrations and plan your work accordingly… 

• …but if you can do that and are willing to invest the 
time, it will be a rewarding experience 
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Running Your Code 

• You need to set up an account with Amazon 
Web Services (AWS) 

• Requires a credit card 

• We give you $100 in credit for this course 

• Should be sufficient for all assignments 
– Develop and test on your laptop 

– Deploy once you are confident things work 

– Monitor your job and make sure it terminates as 
expected 

10 

How to Succeed 

• Attend the lectures and take your own notes 

– Helps remembering (compared to just listening) 

– Capture lecture content more individually than our 
handouts 

– Free preparation for exams 

• Go over notes, handouts, book soon after lecture 

– Try to explain material to yourself or friend 

• Look at content from previous lecture right 
before the next lecture to “page-in the context” 
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How to Succeed 

• Ask questions during the lecture 
– Even seemingly simple questions show that you are 

thinking about the material and are genuinely interested 

• Work on the HW assignment as soon as it comes out 
– Can do most of the work on your own laptop 

– Time to ask questions and deal with unforeseen problems 

– We might not be able to answer all last-minute questions 
right before the deadline 

 

• Students with disabilities: contact me by September 18 
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What Else to Expect? 

• Need strong Java programming skills 
– Code for Hadoop system is in Java 
– Hadoop supports other languages, but use at your 

own risk (we cannot help you and have not tested it) 

• Need strong algorithms background 
– Analyze problems and solve them using an unfamiliar 

framework 

• Basic understanding of important system 
concepts 
– File system, processes, network basics, computer 

architecture 
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Why Focus on MapReduce? 

• MapReduce is viewed as one of the biggest 
breakthroughs for processing massive amounts of data. 

• It is widely used at technology leaders like Google, 
Yahoo, Facebook. 

• It has huge support by the open source community. 

• Amazon provides special support for setting up Hadoop 
MapReduce clusters on its cloud infrastructure. 

• It plays a major role in current database research 
conferences (and many other research communities) 
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Let us first look at some recent trends and 
developments that motivated MapReduce 
and other approaches to parallel data 
processing. 

Why Parallel Processing? 

• Answer 1: big data 
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How Much Information? 

• Source: 
http://www2.sims.berkeley.edu/research/projects/ho
w-much-info-2003/execsum.htm 

• 5 exabytes (1018) of new information from print, film, 
optical storage in 2002 
– 37,000 times Library of Congress book collections (17M 

books) 

• New information on paper, film, magnetic and optical 
media doubled between 2000 and 2003 

• Information that flows through electronic channels—
telephone, radio, TV, Internet—contained 18 exabytes 
of new information in 2002 
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Web 2.0 

• Billions of Web pages, social networks with millions of 
users, millions of blogs 
– How do friends affect my reviews, purchases, choice of friends 
– How does information spread? 
– What are “friendship patterns” 

• Small-world phenomenon: any two individuals likely to be connected 
through short sequence of acquaintances 
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Facebook Statistics 

• 955M active users (June ‘12), 81% outside 
US/Canada 

• More than 100 petabytes of photos and 
videos 

• August 2011: 30 billion pieces of content (web 
links, news stories, blog posts, notes, photo 
albums, etc.) shared each month 

– Avg. user created 90 pieces of content per month 
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Business World 

• Fraudulent/criminal transactions in bank 
accounts, credit cards, phone calls 
– Billions of transactions, real-time detection 

• Retail stores 
– What products are people buying together? 
– What promotions will be most effective? 

• Marketing 
– Which ads should be placed for which keyword query? 
– What are the key groups of customers and what 

defines each group? 

• Spam filtering 
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eScience Examples 

• Genome data 

• Large Hadron Collider 
– Petabytes of raw data per 

year 

• SkyServer 
– 818 GB, 3.4 billion rows 

•   
– “Universal access to data 

about life on earth and the 
environment” 

• Cornell Lab of Ornithology 
– 107M observations, 100s of 

attributes 
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Source: Nature 

Our Scolopax Project 

• Search for patterns in prediction models based on user preferences 
                    Make this as easy and fast as Web search 
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Summary Summary 

FunctionJoin 

Sort 

Model 

Pattern creation alg. 
(low cost, parallel, 

approximate) 

Pattern ranking alg. 

Function join alg. 

User-friendly 
query language 
(broad class 
of patterns) 

Formal 
language 
(for query 
optimization) 

Optimizer 
(execution in 
distributed 
system) 

Data mining models 
(distributed training, evaluation, 
confidence computation) 

Pattern 
evaluation 

Why Parallel Processing? 

• Answer 1: big data 

• Answer 2: hardware trends 
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The Good Old Days 

• Moore’s Law: number of transistors that can be placed 
inexpensively on an integrated circuit doubles about 
every 2 years 

• Computational capability 
improved at similar rate 
– Sequential programs 

became automatically 
faster 

• Parallel computing never 
became mainstream 
– Reserved for high- 

performance computing 
niches 

24 
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“New” Realities 

• “Party” ended around 2004 

• Heat issues prevent higher clock speeds 

• Clock speed remains below 4 GHz 
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Source: 
Dave Patterson, UCB 

Multi-Core CPUs 

• Clock speed stagnates, but number of cores 
increases 
– Core is like a processor, but shares chip with other 

cores 

– Cores typically share some cache, memory bus, 
access to same main memory 

• Need to keep multiple cores busy to exploit 
additional transistors on chip 
– Multi-threaded applications 
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Processor Example (Source: Intel) 
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Typical Multi-Core Properties 

• Each core has some local cache (e.g., L1, L2) 

• The cores share some cache (e.g., L3) 

• All cores access same memory through bus 

• Misses become much more expensive from L1 
to L3, even more when accessing memory 
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Important Numbers (Source: Google’s 
Jeff Dean @LADIS’09) 
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L1 cache reference 0.5 

Branch mispredict 5 

L2 cache reference 7 

Mutex lock/unlock 25 

Main memory reference 100 

Compress 1 KB with Zippy 3,000 

Send 2 KB over 1 Gbps network 20,000 

Read 1 MB sequentially from memory 250,000 

Round trip within same data center 500,000 

Disk seek 10,000,000 

Read 1 MB sequentially from disk 20,000,000 

Send packet CA -> Holland -> CA 150,000,000 

All times in ns. 

Other Trends 

• Datacenter as a computer 
– Hundreds to tens of thousands of commodity 

machines for large-scale data processing 

• Cloud computing 
– Often powered by data center(s) 

• GPU computing 
– Initially developed for fast parallel graphics 

computations, now also used for general 
computations 

• Parallel data processing is becoming mainstream 

30 
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Parallel Architectures 

• Multi-core chips 

• Datacenter as a computer 
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Warehouse-Scale Computer (WSC) 

• Hundreds or thousands of commodity PCs 
– Better cost per unit of computational capability than 

specialized hardware due to economies of scale of 
commodity hardware 

– Easy to “scale out” by adding more machines 

• Organized in racks in data centers 
• Relatively homogenous hardware and system 

software platform with common system 
management layer 
– Often run smaller number of very large applications 

like Internet services 
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Basic Architecture 

33 
Source: Barroso, Holzle (2009) 

Typical Specs 

• Low-end servers in 1U enclosure in 7’ rack 

• Rack-level switch with 1- or 10-Gbps links 

• Connected by one or more cluster switches 

– Can include >10,000 servers 

• Local (cheap) disks on each server 

– Managed by global distributed file system 

• Might have Network Attached Storage (NAS) 
devices for more centralized storage solution 
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Storage Hierarchy 

35 
Source: Barroso, Holzle (2009) 

Programming WSCs 

• Build cluster infrastructure and services that hide 
architecture complexity from developers 
– Program it like a single big computer, but avoid inefficient 

code 

• Need easy way to keep hundreds or thousands of CPUs 
busy 

• Handle failures transparently 
– With 1000 commodity machines, failures are the norm, 

not the exception 
– Developers want to focus on their application, not how to 

deal with failures of hardware and low-level services 

• This is where MapReduce comes into the picture! 
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Parallel Architectures 

• Multi-core chips 

• Datacenter as a computer 

• Cloud computing 
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The Cloud 

• Many different versions of Clouds 
• Common idea: customers use virtual resources without knowing details 

about underlying hardware 
– Could run on cluster, multiple data centers, or large parallel machine 

• Typical use 1: reserve virtual machines to create virtual cluster 
• Typical use 2: connect through Web browser and run favorite application 
• Typical use 3: build own app on top of services offered by Cloud provider 

– Database, document management, Web design, workflow, analytics 
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Cloud Computing 

• Goal: Move data and programs from desktop 
PCs and corporate server rooms to “compute 
cloud” 

• Related buzzwords: on-demand computing, 
software as a service (SaaS), Internet as 
platform 

• Starts to replace shrink-wrap software 

– MSFT Word on desktop PC vs. Google Docs 
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Back to the Future… 

• 1960s: service bureaus, time-sharing systems 

– Hub-and-spoke configuration: terminal access 
through phone lines, central site for computation 

 

• 1980s: PCs “liberate” programs and data from 
central computing center 

– Customization of computing environment 

– Client-server model 
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…or not? 

• Cloud is not the same as 1960’s hub 

– Client can communicate with many servers at the 
same time 

– Servers can communicate with each other 

• Still, functions migrate to distant data centers 

– “Core” and “fringe” 

• Storage, computing, high bandwidth, and careful 
resource management in core 

• End users initiate requests from fringe 
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Why Clouds? 

• High price of total control 
– Software installation, configuration, and maintenance 
– Maintenance of computing infrastructure 
– Difficult to grow and shrink capacity on demand 

• Easier software development 
– Replaces huge variety of operating environments by 

computing platform of vendor’s choosing 
– But: server interaction with variety of clients 

• Easier to deploy updates and bug fixes 
• Easier to leverage multi-core, parallel systems 

– Single instance of Word cannot utilize 100 cores, but 100 
instances of Word can 
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Example Cloud Offerings 

• Document processing 
– Google Docs: word processor, spreadsheet, presentations 
– Adobe: Acrobat.com, Photoshop Express 
– Microsoft Office 365 

• Enterprise applications 
– Salesforce.com: customer relationship management, sales marketing 

apps 
– Microsoft Dynamics CRM, IBM Tivoli Live 

• Cloud infrastructure 
– Amazon Web Services: storage, computing as needed (pay as you go) 
– IBM Smart Cloud, Google App Engine, Force.com, Microsoft Azure 

• Cloud OS 
– User interface in Web browser 
– New browser wars: browser as new Cloud OS 
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Challenges 

• Scalability 
– More users, complex interactions between 

applications 

• Many-to-many communication 
– Client invokes programs on multiple servers, 

server talks to multiple clients 

• Browser is limited compared to traditional OS 
– Limited functionality 

– Fewer development tools 
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More Challenges 

• Heterogeneous environment 

– Database backend with SQL 

– JavaScript, HTML at client 

– Server app written in PHP, Java, Python 

– Information exchanged as XML 

• New role for open source movement? 

– Open source word processor vs. running a service 
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Biggest Problems 

• Privacy, security, reliability 

– What if the service is not accessible? 

– Who owns the data? 

– Lose access to data if bill not paid? 

– Guarantee that deleted documents are really 
gone? 

– How aggressive about protecting data, e.g., 
against government access? 

– How to know if data is leaked to third party? 
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Parallel Architectures 

• Multi-core chips 

• Datacenter as a computer 

• Cloud computing 

• GPU computing 
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GPU vs. CPU 
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• Optimized for massively parallel processing 
– Graphics processing 

• Challenge: how to create applications for 100s of 
cores? 
– Example: NVIDIA developed CUDA 
– Used widely for general-purpose computations 

Source: NVIDIA 
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CUDA (Source: NVIDIA) 

• CUDA programming model provides abstractions for data and task 
parallelism 
– Programmer can express parallelism in high-level languages such as C, C++, 

Fortran or driver APIs such as OpenCL™ and DirectX™-11 Compute 
– Programming model guides programmers to partition the problem into coarse 

sub-problems that can be solved independently in parallel 
– Fine grain parallelism in the sub-problems is then expressed such that each 

sub-problem can be solved cooperatively in parallel. 
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Course Content in a Nutshell 

• In big-data processing, usually the same 
computation needs to be applied to a lot of 
data 

– Possibly many such steps (think “workflow”) 

• Divide the work between multiple processors 

– Make sure you can handle data transfer efficiently 

• Combine intermediate results from multiple 
processors 
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Why This Is Not So Easy 

• How can the work be partitioned? 

• What if too much intermediate data is 
produced? 

• How do we start up and manage 1000s of 
jobs? 

• How do we get large data sets to processors or 
move processing to the data? 

• How do we deal with slow responses and 
failures? 
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More Problems 

• Shared resources limit scalability 
– Cost of managing concurrent access 

• Shared-nothing architectures still need communication 
for processes to share data 

• Easy to get into problems like deadlocks and race 
conditions 

• It is generally difficult to reason about the behavior and 
correctness of concurrent processes 
– Especially when failures are part of the model 

• Inherent tradeoff between consistency, availability, and 
partition tolerance (Brewer’s Conjecture) 
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What Can We Do? 

• Work at the right level of abstraction 
– Too low-level: difficult to write programs, e.g., to deal 

with locks; need to customize code for different 
systems 

– Too high-level: poor performance if control for crucial 
bottleneck is “abstracted away” 

• Use more declarative style of programming 
– Define WHAT needs to be computed, not HOW this is 

done at the low level 

– Well-known success story: SQL and databases 
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Recipes for Success 

• Use hardware that can scale out, not just up 
– Doubling the number of commodity servers is easy, but buying a 

double-sized SMP machine is not. 

• Have data located near the processors 
– Sending petabytes around is not a good idea 

• Avoid centralized resources that are likely bottlenecks, e.g., 
single shared memory bus for many cores 

• Read and write data sequentially 
– Assume random I/O takes 20 msec, disk streams data 

sequentially at 100 MB/sec, and record size is 1 KB 
– During 1 random I/O, can read 2000 records sequentially 

• MapReduce does all this, and its level of abstraction seems 
to have hit a sweet spot 
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Algorithms First 

• No matter which parallel programming model 
we use, we first need to understand what part 
of a computation can be performed in parallel 

 

• More precisely… 
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Writing Parallel Programs 

• Analyze problem and identify what can be done 
in parallel 
– Dependencies: if I need data D as input for a task, 

then I cannot run this task and the creation of D in 
parallel. 

– Coordination requirements: when do parallel tasks 
have to communicate and how much data is sent? 

– Best sequential algorithm might not be easy to 
parallelize—find alternative solutions 

• Create an efficient implementation 
– Make sure solution is a good fit for the given 

architecture and programming model 
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Examples 

• Let us look at some examples to get a feeling 
for the challenges 
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Sum Of Integers 

• Compute sum of a large set of integers 
• Sequential: simple for-loop (scan) 
• Parallel: assign chunk of data to each processor to compute 

local sum, then add them together 
 

• Algorithmically easy, but… 
– Where do the chunks come from? Partitioning data file into 

multiple chunks might take as long as sequential computation. 
– What if data transfer is the bottleneck? Then pushing k chunks 

from disk to k cores might not be a good idea. 
– Who computes final sum and how do the local sums get there? 
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Word Count 

• Count the number of occurrences of each word in a large 
document 

• Sequential: read document sequentially, update counters 
for each word 
– Need data structure, e.g., hash map, to keep track of counts 

• Parallel: each processor does this for a chunk using local 
data structure, then counts are aggregated 

• Improvement (?): use shared data structure for counts 
– Good: no “replication”, no need for final summation step 
– Bad: need to coordinate access to shared data structure, not a 

good fit for shared-nothing architecture 

• What if some documents are much larger than others? 
– Need to deal with data skew, e.g., break up large documents 
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Median 

• Find the median of a set of integers 

• Holistic aggregate function 
– Chunk assigned to a processor might contain 

mostly smaller or mostly larger values, and the 
processor does not know this without 
communicating extensively with the others 

• Parallel implementation might not do much 
better than sequential one 

• Efficient approximation algorithms exist 

60 
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Parallel Office Tools 

• Parallelize Word, Excel, email client? 

• Need to rewrite them as multi-threaded 
applications 

– Seem to naturally have low degree of parallelism 

• Leverage economies of scale: n processors (or 
cores) support n desktop users by hosting the 
service in the Cloud 

– E.g., Google docs 
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Before exploring parallel algorithms in more 
depth, how do we know if our parallel 
algorithm or implementation actually does 
well or not? 

Measures Of Success 

• If sequential version takes time t, then parallel 
version on n processors should take time t/n 

– Speedup = sequentialTime / parallelTime 

– Note: job, i.e., work to be done, is fixed 

• Response time should stay constant if number of 
processors increases at same rate as “amount of 
work” 

– Scaleup = workDoneParallel / workDoneSequential 

– Note: time to work on job is fixed 
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Things to Consider: Amdahl’s Law 

• Consider job taking sequential time 1 and 
consisting of two sequential tasks taking time t1 
and 1-t1, respectively 

• Assume we can perfectly parallelize the first task 
on n processors 
– Parallel time: t1/n + (1 – t1) 

• Speedup = 1 / (1 – t1(n-1)/n) 
– t1=0.9, n=2: speedup = 1.81 
– t1=0.9, n=10: speedup = 5.3 
– t1=0.9, n=100: speedup = 9.2 
– Max. possible speedup for t1=0.9 is 1/(1-0.9) = 10 
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Implications of Amdahl’s Law 

• Parallelize the tasks that take the longest 

• Sequential steps limit maximum possible speedup 

– Communication between tasks, e.g., to transmit 
intermediate results, can inherently limit speedup, no 
matter how well the tasks themselves can be 
parallelized 

• If fraction x of the job is inherently sequential, 
speedup can never exceed 1/x 

– No point running this on too many processors 
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Performance Metrics 

• Total execution time 

– Part of both speedup and scaleup 

• Total resources consumed 

• Total amount of money paid 

• Total energy consumed 

• Optimize some combination of the above 

– E.g., minimize total execution time, subject to a 
money budget constraint 

66 
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Popular Solution: Load Balancing 

• Avoid overloading one processor while other is 
idle 
– Careful: if better balancing increases total load, it 

might not be worth it 
– Careful: optimizes for response time, but not 

necessarily other metrics like $ paid 

• Static load balancing 
– Need cost analyzer like in DBMS 

• Dynamic load balancing 
– Easy: Web search 
– Hard: join 
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