
CS 3200 Topic Overview

Resource Suggestions
Read about these topics in your favorite textbook. (See syllabus for recommendations.)

To look up SQL statements and their use in Postgres, do a Web search for postgres 9 SQL_keyword,

where SQL_keyword is the one you want to learn more about. We are using a Postgres 9.x server. While

Postgres, like most DBMS, implements most of the SQL standard, looking at Postgres-specific

documentation will tell you about Postgres-specific differences.

Many people also find the SQL tutorial by W3Schools helpful: http://www.w3schools.com/sql/.

Lecture 1
Motivation, introduction, and overview (see slides)

Lecture 2
Entity-Relationship Model (ERM)

What are entities, entity sets, relationships, and relationship sets?

Creating a basic ERM design by approaching the problem from two directions: (1) diagram first, then

check if the resulting relations can actually store the data; and (2) desired relations first, then try to

create the matching ER diagram.

Basic transformation of an entity set and a relationship set into SQL code:

 CREATE TABLE statement

 Declaration of attributes and their types

 PRIMARY KEY

 UNIQUE

 FOREIGN KEY … REFERENCES

 ON DELETE and ON UPDATE

Lecture 3
ERM continued

Key constraints (“at most one”) and how to express them in the ER diagram and in the corresponding

SQL code

Participation constraints (“at least one”) and how to express them in the ER diagram and in the

corresponding SQL code:

 NOT NULL condition for an attribute

 Need for more powerful constructs (to be discussed in a future lecture)

Weak entities and how to express them in the ER diagram and how to map the diagram to relations

Hierarchies using the “ISA” design element and their transformation into matching relations. Relevant

properties of the hierarchy:

 Overlap: can an entity be in multiple subclasses?

 Coverage: does every superclass entity have to be in one of the subclasses?

Lecture 4
ERM completed

Aggregation to let a relationship participate in another relationship

Design choices for ERM

 Entity versus attribute; example: address of a person

 Entity or relationship, and placement of attributes; example: manager and budget

 Arity of a relationship; example: sale (customer, product, store) versus health insurance policy

(employee, policy, dependents)

Useful SQL commands for implementing a design:

 DROP TABLE

 ALTER TABLE

 INSERT INTO … VALUES …

 DELETE FROM … WHERE …

 UPDATE … SET … WHERE …

Lecture 5
Relational algebra: useful for representing query plans

Basic relational operators: selection, projection, cross-product, set difference, union

“Convenience” operators, composed from the basic ones: intersection, join (equi-join, natural join)

Algebra expression represented as query plan tree with relations and operators as nodes; simple query

optimization by pushing selection and projection “down”

Example Relations
Students:

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

Reservations:

SID BookID Date

2 B10 01/17/12

3 B11 01/18/12

Books

BookID Topic Title

B10 DB Intro DB

B11 PL More PL

StudentsXL:

SID Name Age GPA

1 Alice 18 3.5

2 Bob 27 3.4

3 Carla 20 3.8

4 Dan 20 3.9

6 Frank 20 3.8

7 Gina 27 3.8

8 Hal 18 3.5

Lecture 6
Relational calculus: basis for SQL

Basic structure of a domain-relational calculus expression (look up formal definition in a textbook)

Expressing joins, selection, and projection in relational calculus

Equivalence of relational algebra and safe queries in relational calculus

Relational completeness: SQL can express every relational algebra query

Lecture 7
Correspondence between calculus expression and corresponding SQL query

Basic SQL query: SELECT [DISTINCT] … FROM … WHERE …

SQL query semantics: the conceptual evaluation strategy to find the result of a given SQL query

Examples of conditions in the WHERE clause, including LIKE for string types

Nested queries and their conceptual evaluation (nested-loops style)

Nested queries with correlation

SQL keywords:

 IN, NOT IN, EXISTS, NOT EXISTS, UNIQUE, NOT UNIQUE

 op ANY, op ALL; where op can be <, >, <=, >=, =, or <>

 Aggregate operators: COUNT, SUM, AVG, MIN, MAX

Use of aggregate operators in the basic SQL query

Lecture 8
Two SQL versions of the query to find students who reserved all books:

 Start with first-order logic formulation (for all… there exists…), turn it into (not exists… not

exists…), then into SQL query with two nesting levels using NOT EXISTS

 Start with set-based analysis (all books minus all books reserved by the student), then create

SQL query using EXCEPT

Aggregation queries with GROUP BY and HAVING

SQL query semantics: the conceptual evaluation strategy to find the result of a given SQL query with

GROUP BY and HAVING

Difference between conditions in the HAVING clause versus the WHERE clause

Which attributes can appear in the SELECT clause of a GROUP-BY query: grouping attributes and

aggregates of other attributes

Subtleties in the HAVING clause: HAVING 2 <= COUNT(*) versus expressing the group-wise COUNT(*)

with a sub-query such as (SELECT COUNT(*) FROM Students S2 WHERE S.age = S2.age)

Lecture 9
Composing more complex SQL queries step-by-step: write separate queries to create intermediate

results, use the intermediate results as new relations, then create the final query by inlining the

intermediate queries into the final query

Missing values: NULL

 Need for a three-valued logic: true, false, unknown

 Semantics with NULL for comparisons, Boolean formulas, duplicate definition, arithmetic

operators, and SQL aggregates

Views

 CREATE VIEW and DROP VIEW statements

 Benefits and tradeoffs of views

 Materialized views: speed up queries, but make updates more expensive

Integrity constraints (ICs)

 Domain constraints (attribute types), primary key, foreign key

 CHECK: general version with sub-query versus simple per-tuple constraint

o Postgres: does not allow sub-queries, but supports functions (and a function can run a

sub-query…)

Lecture 10
Integrity constraints (ICs) continued:

 IC involving multiple tables and why not to use CHECK for such ICs

 Looking ahead: triggers can also implement ICs

Another SQL feature: LEFT/RIGHT/FULL OUTER JOIN

SQL functions to execute a list of SQL statements: CREATE FUNCTION statement, specifying input and

output parameters, returning an individual tuple or a set, use of $$ to define a string constant, how to

call a function and where to use it

User-defined aggregates: CREATE AGGREGATE statement, state value, state transition function,

initialization, finalization

Triggers:

 Event, Condition, Action parts

 Possible events, conditions, and actions

Lecture 11
Insert: discussion of the solution for HW 2 (ER diagram, SQL translation); the documents are available on

Blackboard

 Triggers continued:

 Trigger timing

 Difficulty of reasoning about what will happen when multiple triggers fire, trigger can fire each

other, or themselves repeatedly

 CREATE TRIGGER statement in Postgres: BEFORE UPDATE ON, FOR EACH ROW, EXECUTE

PROCEDURE

 WHEN clause in triggers

 Use of OLD and NEW

 TG_ARGV

 BEFORE trigger returning row (tuple) different from NEW

 Example of trigger function written in PL/pgSQL

Example from the Postgres 9.1 manual:

Lecture 12
User-defined functions written in PL/pgSQL:

 PL/pgSQL = SQL + extensions

 DECLARE variables

 Scoping rules for BEGIN … END blocks

 RAISE NOTICE print statement

 Standard assignment statement, e.g., sum := x + y

 IF … THEN … ELSIF … THEN … ELSE … END IF

 CASE … WHEN … THEN … ELSE … END CASE

 LOOP … EXIT … CONTINUE … END LOOP

 WHILE … END LOOP

 FOR … IN … LOOP

Introduction to transactions in databases

 Why should a DBMS support multiple users concurrently

 What is a transaction

 Write a transaction as if there was no concurrent access, let DBMS figure out correct interleaved

execution of transactions

 ACID properties

 Example: two transactions modifying account balances

CREATE TABLE emp (empname text, salary integer, last_date timestamp, last_user text);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp

 BEGIN

 -- Check that empname and salary are given

 IF NEW.empname IS NULL THEN RAISE EXCEPTION 'empname cannot be null'; END IF;
 IF NEW.salary IS NULL THEN RAISE EXCEPTION '% cannot have null salary', NEW.empname; END IF;

 -- Salary cannot be negative

 IF NEW.salary < 0 THEN RAISE EXCEPTION '% cannot have a negative salary', NEW.empname; END IF;

 -- Remember who changed the payroll when

 NEW.last_date := current_timestamp;
 NEW.last_user := current_user;

 RETURN NEW;
 END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp

 FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

Executing multiple transactions: serial schedule, notion of equivalence of two schedules, serializable

schedule

Possible anomalies when interleaving actions of different transactions

 WR anomaly (dirty read, reading uncommitted data)

o Unrecoverable schedule if transaction reading dirty data commits before the writing

transaction completed

o Possibility of cascading aborts

 RW anomaly (unrepeatable read)

Lecture 13
Midterm exam review

Anomaly discussion continued

 WW anomaly (overwriting uncommitted data)

Preventing anomalies through locking

 Shared lock, a.k.a. S-lock or read-lock

 Exclusive lock, a.k.a. X-lock or write-lock

Two-phase locking (2PL)

 Ensures serializable schedule, but does not prevent dirty reads

 Strict 2PL version to prevent dirty reads

Lecture 14
Deadlocks

 Strict 2PL and deadlocks

 Deadlock detection using the waits-for graph

 Breaking a deadlock by aborting a transaction

 Avoiding deadlocks by using Conservative 2PL

o Why Conservative 2PL is not really practical

Phantom problem and its solution

 Locking granularity: individual tuples versus tables

 Locking predicates on tables

Performance of locking, lock contention, and thrashing

Controlling locking overhead in user transactions

 SET TRANSACTION READ ONLY

 Isolation levels and their guarantees to prevent anomalies

o READ UNCOMMITTED

o READ COMMITTED

o REPEATABLE READ

o SERIALIZABLE

 Achieving flexible per-transaction selection of isolation level through appropriate locking

protocols

Transactions in SQL: use BEGIN; … COMMIT; or BEGIN; … ROLLBACK;

Lecture 15
Accessing a DBMS from an application

Embedding SQL in a host language: Embedded SQL

Cursors (= more powerful iterators) for accessing a DBMS relation in the host language

Database APIs as an alternative to embedding SQL: JDBC

 JDBC type 4 driver (will be used in this course), e.g., postgresql-9.2-1001.jdbc4.jar

 Other drivers: types 1, 2, and 3

Accessing a DBMS using JDBC

char SQLSTATE[6];

EXEC SQL BEGIN DECLARE SECTION

 char c_name[20]; short c_minGPA; float c_age;

EXEC SQL END DECLARE SECTION

c_minGPA = random();

EXEC SQL DECLARE info CURSOR FOR

 SELECT S.name, S.age FROM Students S

 WHERE S.GPA > :c_minGPA

 ORDER BY S.name;

do {

 EXEC SQL FETCH info INTO :c_name, :c_age;

 printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’);

EXEC SQL CLOSE info;

import java.sql.*; // And some more imports

public class CreateUsers {

 public static void main(String args[]) {

 Statement stmt;
 String inputLine;

 try {
 // Connect to DB server

 Connection con = DriverManager.getConnection(
 "jdbc:postgresql://129.10.112.226:5432/TestDB", “userID", “pwd");

 // Initialize statement object

 stmt = con.createStatement();
 String login = “newLoginName”;
 String pwd = “newPWD”;

 String createUser = "CREATE USER " + login + " WITH PASSWORD '" + pwd + "'";
 String createDB = "CREATE DATABASE " + login + " OWNER " + login;

 stmt.execute(createUser);
 stmt.execute(createDB);
 con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Important classes and interfaces from java.sql:

 java.sql.Connection

o getAutoCommit, setAutoCommit

o getTransactionIsolation, setTransactionIsolation

o isReadOnly, setReadOnly

o isClosed, close

o commit, rollback

 java.sql.DriverManager

 java.sql.ResultSet

o next

o getString, getInt, and so on

// The usual imports go here

public class SimpleQuery {

 public static void main(String args[]) {

 ArrayList<String> userNames = new ArrayList<String>();
 Statement stmt;

 try {
 // Connect to DB server

 Connection con = DriverManager.getConnection(
 "jdbc:postgresql://129.10.112.226:5432/db", “userID", “pwd");

 // Initialize statement object and then query DBMS

 stmt = con.createStatement();

 String colName = "name";
 String tableName = "users";

 ResultSet rs = stmt.executeQuery("SELECT DISTINCT " + colName
 + " FROM " + tableName + " ORDER BY " + colName);

 // Copy results into list

 while (rs.next()) userNames.add(rs.getString(colName));

 rs.close();

con.close();

 // Output the user names

 for (String name : userNames) System.out.println(name);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 java.sql.Exception

 java.sql.Statement

o execute, executeQuery, executeUpdate

o PreparedStatement: pre-compiled SQL statement of fixed structure (can already be pre-

optimized by DBMS), parameters supplied at runtime, types of parameters enforced

(good protection against SQL injection attacks)

o CallableStatement: to call SQL stored procedures (= functions in Postgres)

Calling stored procedures:

Processing SQL warnings:

CallableStatement cs = null;

try {

 // Procedure without parameters

 cs = con.prepareCall(“{call myStoredProcName}”);

 cs.execute();

 // Procedure with input parameters only

 cs = connection.prepareCall("{call getReservations(?)}");

 cs.setString(1, “Joe”);

 cs.execute();

 // Procedure with input and output parameters

 cs = connection.prepareCall("{call getReservationCnt(?, ?)}");

 cs.setInt(1, 101);

 cs.registerOutParameter(2, Types.INT);

 // For parameters that are used for both input and output,

 // have both the set and registerOutParameter statement

 cs.execute();

 int result = cs.getInt(2);

} catch (SQLException e) { }

Accessing database metadata: driver name and version, table names, attribute names and types etc.:

Alternative to JDBC: Java Persistence API, Hibernate

 Hides explicit DBMS accesses and makes them look like “normal” object manipulations

 SQL-inspired Java Persistence Query Language operates against entity objects, not DB tables

directly

Tradeoffs between placing application functionality into application layer (e.g., Java program) versus

DBMS

try {

 stmt = con.createStatement();

 warning = con.getWarnings();

 while (warning != null) {

 // handle SQLWarnings;

 warning = warning.getNextWarning():

 }

 con.clearWarnings();

 stmt.executeUpdate(queryString);

 warning = con.getWarnings();

 …

}

catch(SQLException SQLe) {

 // handle the exception

}

DatabaseMetaData md = con.getMetaData();

// Print information about the driver

System.out.println(“Name:” + md.getDriverName() + “version: ” + md.getDriverVersion());

// Get all table names: parameters allow narrowing down table selection

ResultSet trs = md.getTables(null,null,null,null);

While(trs.next()) {

 String tableName = trs.getString(“TABLE_NAME”);

 System.out.println(“Table: “ + tableName);

 // Print all attributes

 ResultSet crs = md.getColumns(null,null,tableName, null);

 while (crs.next()) {

 System.out.println(crs.getString(“COLUMN_NAME”) + “, “);

 }

}

 Programming effort required

 Benefiting from DBMS functionality

 Communication cost: transfer input data or (often smaller) results

 Ease of programming for given task

Lectures 16 and 17
Storage and indexing: important numbers [nano seconds] (source: Google’s Jeff Dean @LADIS 2009):

L1 cache reference 0.5

Branch mispredict 5

L2 cache reference 7

Mutex lock/unlock 25

Main memory reference 100

Compress 1 KB with Zippy 3,000

Send 2 KB over 1 Gbps network 20,000

Read 1 MB sequentially from memory 250,000

Round trip within same data center 500,000

Disk seek 10,000,000

Read 1 MB sequentially from disk 20,000,000

Send packet CA -> Holland -> CA 150,000,000

Hard disk properties

 Seek time, rotational delay, transfer time

 Data access based on pages (aka blocks), typically 4096 bytes or larger

Simplified cost model

 Count number of page accesses on disk

 Ignore difference between random and sequential access (can be large, e.g., factor of 50)

 Ignore CPU time (can be significant, e.g., for joins)

Assumptions about the data for the cost analysis

 Students table

o 40,000 tuples, 80 tuples per page; hence total of 500 pages

o Each age between 18 and 22 is equally likely, hence 1/5*40,000 = 8000 students in each

age group

 Reservations table

o 100,000 tuples, 100 per page; hence total of 1000 pages

Cost of “SELECT * FROM STUDENTS WHERE age = 19”, deletes, and inserts

 Heap file: no sorting on age

o Query

 Scan all pages: 500 I/O

o Delete

 Scan until found (if unique record is deleted): 250 I/O on average

 Scan until end of file (e.g., when deleting based on age): 500 I/O

o Insert

 Append at end (or known empty slot): 2 I/O (read old version, write new version

of page)

 Sorted file: sorted on age

o Query

 Binary search to find first match: log2 500 = 9 I/O

 Scan all matches (8000 match): 8000 / 80 = 100 I/O

o Delete

 Perform query to find all matches, then delete them

 Need to manage free space: non-trivial to maintain sort order

o Insert

 Binary search to find correct location, then update page

 Need to manage overflow of pages

B+-tree index: improved version of sorted file idea

 Search key: attribute(s) of the relation, used for search; we use the age attribute

 Inner (i.e., non-leaf) nodes contain key-values and pointers to other tree nodes, guiding the

search

 Leaf nodes contain data entries

o Clustered index: data entries are the actual data records from the Students table

o Unclustered index: data entries are (age, pointer) pairs, each pointing to a data record in

a heap file where the actual student records are stored

 We can replace a set of pointers like (19, p1), (19, p2),…, (19, pn) with the more

compact (19, [p1, p2,…, pn])

Cost of “SELECT * FROM STUDENTS WHERE age = 19”, deletes, and inserts

 Clustered tree index on age

o Need more information about the index

 Maximum fanout of a non-leaf index node: F; assume F = 100

 Number of data entries per leaf node: 80 (clustered index stores actual data

records); hence there are 40,000 / 80 = 500 index leaf pages

 Index height = logF (number of leaf pages) = 2

 B-trees in practice often do not have more than 3-5 levels

o Query

 Search index from root to first leaf with match: 2 I/O (tree height)

 Scan leaf level to get all matches: 8000 / 80 = 100 I/O

o Delete of single entry

 Search index from root to leaf, then update leaf node

 Might sometimes cause cascade of updates on path up to root node

o Insert of single entry

 Search index from root to leaf, then update leaf node

 Might sometimes cause cascade of updates on path up to root node

o Summary of tree updates: cost of a single insert/delete is limited by one to about three

times the height of the tree

 More expensive when several entries are inserted or deleted

 Unclustered tree index on age

o Need more information about the index

 Maximum fanout of a non-leaf index node: F; assume F = 100 as above

 Number of data entries per leaf node: 160 (unclustered index stores (key,

pointer) instead of actual data records); hence there are 40,000 / 160 = 250

index leaf pages

 Index height = logF (number of leaf pages) = 2

o Query

 Search index from root to first leaf with match: 2 I/O (tree height)

 Get all data entries by scanning matches in leaf level: 8000 / 160 = 50 I/O

 For each matching data entry, follow pointer to access actual data record in

heap file

 8000 matches, hence 8000 I/O using naïve approach

 Better: re-order accesses by pointer to reduce this to about 500 I/O

(each page most likely contains a 19-year-old student)

Hash index

 Search key: attribute(s) of the relation, used for search; we use the age attribute

 Hash function h(search key(s)) maps each search key value to a “bucket”

o Different keys might hash to the same bucket

o If the first bucket (the “primary” page) is full, additional overflow pages are linked to it

Cost of “SELECT * FROM STUDENTS WHERE age = 19”

 Access primary page for age=19, then all overflow pages linked from it

 Number of overflow pages depends on (1) number of data entries per page and (2) collisions,

i.e., if other age values hash to the same bucket.

 If unclustered, then hash index only provides RID pointers, i.e., additional accesses to heap file

with data records are needed like for the unclustered tree index.

 Delete, insert similar to tree

Lecture 18
Index design choices

 Which relations need an index?

 Which fields should be the index search key?

 Should the index be clustered?

 Hash or tree index?

 Consider index update and storage costs

General guidelines

 Tree index: equality and range selections

 Hash index: equality selections

 Clustered index: there can only be one (per relation)

 Query workload analysis: consider all attributes mentioned in the query

o Index-only strategies (unclustered index)

o Clustered index for larger range selections

o Supporting GROUP-BY computation

o Unclustered index for selections returning a single result, e.g., looking up single primary

key

Composite search keys

 Build index on multiple attributes, e.g., <age, GPA>

o Total order requirement for tree index

 Search key order versus index effectiveness, e.g., <age, GPA> versus <GPA, age>

o Visualizing index sort order and query range in a scatter-plot

 Unsing multiple 1-dimensional trees versus using a single 2-dimensional tree, e.g., index on

<age> and another on <GPA> versus a single one on <age, GPA>

Index effectiveness

 Given a WHERE condition, which of a given set of hash or tree indexes is (1) not useful (and

would be ignored by the DB optimizer), (2) useful but not very effective, and (3) useful and

highly effective?

Lecture 19
Join algorithms and their cost

 (Naïve) nested loops join: for each tuple in outer, go through all tuples in inner relation

o Improved version: block nested loops: for each page from outer, process each page

from inner relation by checking all tuple-pairs from that outer and inner page

 Index nested loops: for each tuple in outer, use index on appropriate attribute to find all

matches from inner relation

o Can use any index, including clustered/unclustered, hash, or tree, depending on cost

and if it “matches”

 Sort-merge join: sort both files on the join attribute(s), then scan “in lockstep”

 Hash join (for equi-joins): partition both relations by using the same hash function, then join

each pair of corresponding buckets

System-R style optimizer

 Many equivalent query plans for a given SQL query: enumerate many candidate plans, estimate

cost, then choose winner

 Reducing the plan search space

o Avoid Cartesian products

o Only consider left-deep join plans (no need to materialize intermediate join results)

o Push down selections and projections

Lectures 20 and 21
Discussion of HW 5

Normal forms for better database design

Separate relations for Students, Reservations, and Books versus single “wide” relation (all joined

together)

 Redundancy in wide relation

 Challenge to keep multiple copies of the same data in different records in sync for wide relation

 Many more NULL values in wide relation

 Higher query cost whenever join is needed across the separate relations

Functional dependencies (FDs)

 What is an FD?

 Need to be specified by the designer

 From a given database, we can only infer FDs that do not hold

 Armstrong’s axioms

 Closure F+ of a given set F of FDs

 Algorithm for computing if a certain FD XY is in F+

o Using this algorithm to determine if some set of attributes is a key candidate

Boyce-Codd Normal Form (BCNF)

 How to check if a relation is in BCNF

 Decomposing a relation by using the FD that violates BCNF

 Decomposition properties

o Order of decompositions affects final result

o Lossless join property: has to be satisfied

o Dependency-preservation: sometimes forces tradeoff between redundancy reduction

versus performance penalty

 We can always decompose into BCNF such that lossless-join property holds, but there might be

no dependency-preserving BCNF decomposition

Third Normal Form (3NF)

 Slightly weaker than BCNF

 There is an algorithm for performing 3NF decomposition that achieves both lossless-join and

dependency preservation property

Footnote about other normal forms: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF

Normal forms as part of the database design process

Overview of recovery in a DBMS: the ARIES approach

 Goal: changes of committed transactions should be durable, partial changes of crashed

transactions need to be rolled back

 Write-ahead logging (WAL) to keep record of update operations

o Log record keeps old and new version of a page

o Allows re-applying or undoing the update

 REDO operation for committed transactions: read forward in the log

 UNDO operation for failed transactions: read backward in the log

 Checkpointing for speeding up recovery after crash

Lecture 22
Final exam review

Overview of SQL injection attacks and how to prevent them

Overview of MapReduce: word count and equi-join example

