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301 

Finally, let us put things into perspective by 
looking at alternatives to MapReduce. 
 
We start with Dryad from Microsoft. 

Overview 

• Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and 
Dennis Fetterly. Dryad: distributed data-parallel programs 
from sequential building blocks. European Conference on 
Computer Systems (EuroSys), Lisbon, Portugal, March 21-
23, 2007 

• Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar 
Erlingsson, Pradeep Kumar Gunda, and Jon Currey. 
DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing Using a High-Level Language. 
Symposium on Operating System Design and 
Implementation (OSDI), San Diego, CA, December 8-10, 
2008 

• Presentation based on authors’ slides 

302 
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Outline 

• Dryad Design 

• Implementation 

• Policies as Plug-ins 

• Building on Dryad 
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305 

2-D Piping 
• Unix Pipes: 1-D 

  grep |  sed  | sort | awk |  perl 

 

 

• Dryad: 2-D 

  grep1000 |  sed500  | sort1000 | awk500 |  perl50 
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Dryad = Execution Layer 

306 

Job (Application) 
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Outline 

• Dryad Design 

• Implementation 

• Policies as Plug-ins 

• Building on Dryad 
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Virtualized 2-D Pipelines 
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Virtualized 2-D Pipelines 

309 

310 

Virtualized 2-D Pipelines 
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Virtualized 2-D Pipelines 

311 

312 

Virtualized 2-D Pipelines 

312 

• 2D DAG 
• multi-machine 
• virtualized 
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313 

Dryad Job Structure 

313 

grep 

sed 

sort 
awk 

perl 
grep 

grep 
sed 

sort 

sort 

awk 

Input 
files 

Vertices  
(processes) 

Output 
files 

Channels 

Stage 

 grep1000 |  sed500  | sort1000 | awk500 |  perl50 
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Channels 

314 

X 

M 

Items 

Finite Streams of items 
 
• distributed filesystem files 
   (persistent) 
• SMB/NTFS files  
   (temporary) 
• TCP pipes 
   (inter-machine) 
• memory FIFOs  
   (intra-machine) 
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315 

Architecture 

315 

Files, TCP, FIFO, Network 
job schedule 

data plane 

control plane 
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Job manager cluster 
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JM code 

vertex 
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Staging 
1. Build 

2. Send  
.exe 

3. Start JM 

5. Generate graph 

7. Serialize 
vertices 

8. Monitor 
Vertex execution 

4. Query 
cluster resources 

Cluster  
services 6. Initialize vertices 
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Outline 

• Dryad Design 

• Implementation 

• Policies  and Resource Management 

• Building on Dryad 
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X[0] X[1] X[3] X[2] X’[2] 

Completed vertices Slow  
vertex 

Duplicate 
vertex 

Duplicate Execution Manager 

Duplication Policy = f(running times, data volumes) 
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Goal: Declarative Programming 

323 
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Outline 

• Dryad Design 

• Implementation 

• Policies as Plug-ins 

• Building on Dryad 
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Software Stack 
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Example Query: Sky Server 

• Table photoPrimary 
– All identified astronomical objects (354,254,163 

records) 

– ID, color magnitude in 5 bands (u, g, r, i, z) 

• Table neighbors 
– For each object, neighbors within 30 arc seconds 

(2,803,165,372 records) 

• Query 18: gravitational lens effect 
– Find all objects that have neighbors whose color is 

similar to that object 

326 
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SkyServer Query 18 

327 
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select distinct U.ObjID 
into results 
   from photoPrimary U,  
            neighbors N,  
            photoPrimary L 
where U.ObjID = N.ObjID 
    and U.mode = 1 
    and L.ObjID = N.NeighborObjID 
    and U.ObjID < L.ObjID 
    and abs((U.u-U.g)-(L.u-L.g))<0.05 
    and abs((U.g-U.r)-(L.g-L.r))<0.05 
    and abs((U.r-U.i)-(L.r-L.i))<0.05 
    and abs((U.i-U.z)-(L.i-L.z))<0.05 
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SkyServer DB query 

• Took SQL plan 

• Manually coded in Dryad 

• Manually partitioned data 

u: objid, color 
n: objid, neighborobjid 
[partition by objid] 

select 
  u.color,n.neighborobjid 
from u join n 
where 
  u.objid = n.objid 

(u.color,n.neighborobjid) 
[re-partition by n.neighborobjid] 
[order by n.neighborobjid] 
 

[distinct] 
[merge outputs] 

select 
  u.objid 
from u join <temp> 
where 
  u.objid = <temp>.neighborobjid and 
  |u.color - <temp>.color| < d 
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336 

DryadLINQ 

336 

• Declarative programming  
• Integration with Visual Studio 
• Integration with .Net 
• Type safety 
• Automatic serialization 
• Job graph optimizations 

 static  
 dynamic 

• Conciseness 
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LINQ 

Collection<T> collection; 

bool IsLegal(Key);  

string Hash(Key); 

 

var results = from c in collection  
  where IsLegal(c.key)  
  select new { Hash(c.key), c.value}; 

338 

Collection<T> collection; 
bool IsLegal(Key k);  
string Hash(Key); 
 
var results = from c in collection  

 where IsLegal(c.key)  
 select new { Hash(c.key), c.value}; 

338 

DryadLINQ = LINQ + Dryad 

C# 

collection 

results 

C# C# C# 

Vertex 
code 

Query 
plan 
(Dryad job) 

Data 



11/10/2011 

18 

339 

Data Model 
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341 

Example: Histogram 

341 

public static IQueryable<Pair> Histogram( 
      IQueryable<LineRecord> input, int k) 
{ 
    var words = input.SelectMany(x => x.line.Split(' ')); 
    var groups = words.GroupBy(x => x); 
    var counts = groups.Select(x => new Pair(x.Key, x.Count())); 
    var ordered = counts.OrderByDescending(x => x.count); 
    var top = ordered.Take(k); 
    return top; 
} 

“A line of words of wisdom” 

[“A”, “line”, “of”, “words”, “of”, “wisdom”] 

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]] 

[ {“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}] 

[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}] 

[{“of”, 2}, {“A”, 1}, {“line”, 1}] 

342 

Histogram Plan 

342 

SelectMany 
HashDistribute 

Merge 
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OrderByDescending 
Take 

MergeSort 
Take 
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343 

Map-Reduce in DryadLINQ 

343 

public static IQueryable<S> MapReduce<T,M,K,S>( 

     this IQueryable<T> input, 

     Expression<Func<T, IEnumerable<M>>> mapper, 

     Expression<Func<M,K>> keySelector, 

     Expression<Func<IGrouping<K,M>,S>> reducer)  

{ 

     var map = input.SelectMany(mapper); 

     var group = map.GroupBy(keySelector); 

     var result = group.Select(reducer); 

     return result; 

} 

344 

Map-Reduce Plan 

344 
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345 

Distributed Sorting in DryadLINQ 

345 

public static IQueryable<TSource> 
DSort<TSource, TKey>(this IQueryable<TSource> source, 
                                      Expression<Func<TSource, TKey>> keySelector, 
                                      int pcount) 
{ 
            var samples = source.Apply(x => Sampling(x)); 
            var keys = samples.Apply(x => ComputeKeys(x, pcount)); 
            var parts = source.RangePartition(keySelector, keys); 
            return parts.OrderBy(keySelector); 
}  

346 

Distributed Sorting Plan 

346 
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Outline 

• Introduction 

• Dryad  

• DryadLINQ 

• Building on DryadLINQ 
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351 

Very Large Vector Library 
PartitionedVector<T> 

351 
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357 

Linear Regression 
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Analytic Solution 
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359 

Linear Regression Code 

Vectors x = input(0), y  = input(1); 

Matrices xx = x.PairwiseOuterProduct(x); 

OneMatrix xxs = xx.Sum(); 

Matrices yx = y.PairwiseOuterProduct(x); 

OneMatrix yxs = yx.Sum(); 

OneMatrix xxinv = xxs.Map(a => a.Inverse()); 

OneMatrix A = yxs.Map( 
 xxinv, (a, b) => a.Multiply(b)); 

359 

1))((   T

tt t

T

tt t xxxyA

360 

• Many similarities 

• Exe + app. model 

• Map+sort+reduce 

• Few policies 

• Program=map+reduce 

• Simple 

• Mature (> 4 years) 

• Widely deployed 

• Hadoop 

     Dryad                   Map-Reduce 

• Execution layer 

• Job = arbitrary DAG 

• Plug-in policies 

• Program=graph gen. 

• Complex (   features) 

• New (< 2 years) 

• Still growing 

• Internal 

 

 

 

360 
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361 

Conclusions 
• Dryad = distributed execution environment 

• Application-independent (semantics oblivious) 

• Supports rich software ecosystem 
– Relational algebra 

– Map-reduce 

– LINQ 

– Etc. 

• DryadLINQ = A Dryad provider for LINQ 

• This is only the beginning! 

361 

362 

Finally, let us put things into perspective by 
looking at alternatives to MapReduce. 
 
We started with Dryad from Microsoft, now 
move on to parallel and distributed 
databases. 
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Parallel Database Systems 

• Data: relations 

• Relational operators process relations and 
output relations 

– Selection 

– Projection 

– Join 

– Group By and aggregation 

• Query language: SQL 

363 

SQL 

• Declarative language 

– Specify what you want, not how to get it 

• Database optimizer chooses best implementation 

– Query plan: DAG of operators and their 
implementations 

– Minimize cost of query plan 

• I/O cost, CPU cost 

– Optimizer explores space of query plans, chooses best 
one 

364 
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SQL in Parallel 

• Same query, just replace optimizer 
– Take data location and network cost into account 
– Optimize for latency or total cost 

• Add new operators 
– Exchange operator: behaves like an iterator, but receives input 

via inter-process communication rather than iterator procedure 
calls 

– Split and Merge: create and join parallel dataflows 

• Add new operator implementations 
– Semi-join implementation to reduce network communication 

cost 

• The optimizer is more complex, but SQL does not need to 
change 

365 

Distributed Query Optimization 

• Start: calculus query on global relations 

• Transform into algebraic query on global 
relations 

• Perform data localization, using fragment 
schema, to generate algebraic query on 
fragments 

• Perform global optimization to create 
distributed query execution plan 

• Run on local sites in parallel 

366 
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Pipeline Parallelism 

• Computation of one operator proceeds in 
parallel with another 

• Model: output pulls from last operators, which 
pulls from its inputs and so on 

367 

Data 

Scan 

Sort 

Limited Benefits of Pipeline Parallelism 

• Relational pipelines are usually not very long 

– Ten or longer is rare 

• Some operators are blocking and cannot be 
pipelined 

– Aggregates, sorting 

• Execution cost of one operator might be much 
larger than the others 

– Limits speedup obtained by pipelining 

368 
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Partitioned Parallelism 

• Query performs batch-style computation on 
many input tuples 

369 

Data 

Scan 

Sort 

Data 

Scan 

Sort 

Data 

Scan 

Sort 

Merge 

Partitioned data 

Data Partitioning 

• Round-robin 
– Simple, but not helpful for associative access 

• Hash partitioning 
– Assign tuples to partition using hash function 
– Good for associative access (equality-based) 
– Not good for range queries 

• Range partitioning 
– Partition data into continuous ranges 
– Good for range queries, parallel sort 
– Risks data skew (uneven partitions) and execution 

skew (uneven access pattern) 

370 
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Distributed Transactions? 

• Transactions were crucial for the success of 
database systems 

• Enable concurrent processing of multiple 
queries, but programmers could write them as 
if they executed in isolation 

371 

The ACID Properties 

• Atomicity: Either all or none of the transaction’s 
actions are executed 
– Even when a crash occurs mid-way 

• Consistency: Transaction run by itself must 
preserve consistency of the database 
– User’s responsibility 

• Isolation: Transaction semantics do not depend 
on other concurrently executed transactions 

• Durability: Effects of successfully committed 
transactions should persist, even when crashes 
occur 

372 
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Example 

• T1 transfers $100 from B’s account to A’s account. 
• T2 credits both accounts with a 6% interest 

payment. 
• There is no guarantee that T1 will execute before 

T2 or vice-versa, if both are submitted together. 
• However, the net effect must be equivalent to 

these two transactions running serially in some 
order. 

373 

T1: BEGIN   A=A+100,   B=B-100   END 
T2: BEGIN   A=1.06*A,   B=1.06*B   END 

Example (Contd.) 

• Consider a possible interleaving (schedule): 

 

 

• This is OK.  But what about: 

 

 

• The DBMS’s view of the second schedule: 

T1:  A=A+100,                  B=B-100    
T2:              A=1.06*A,     B=1.06*B 

T1:  A=A+100,           B=B-100    
T2:              A=1.06*A, B=1.06*B 

T1:  R(A), W(A),                  R(B), W(B) 
T2:               R(A), W(A), R(B), W(B) 

374 
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Scheduling Transactions 

• Serial schedule: Schedule that does not interleave the 
actions of different transactions. 
– Easy for programmer, easy to achieve consistency 
– Bad for performance 

• Equivalent schedules: For any database state, the effect 
(on the objects in the database) of executing the first 
schedule is identical to the effect of executing the 
second schedule. 

• Serializable schedule: A schedule that is equivalent to 
some serial execution of the transactions. 
– Retains advantages of serial schedule, but addresses 

performance issue 

375 

Anomalies with Interleaved Execution 

• Reading Uncommitted Data (WR Conflicts, 
“dirty reads”) 

• Example: T1(A=A-100), T2(A=1.06A), 
T2(B=1.06B), C(T2), T1(B=B+100) 

• T2 reads value A written by T1 before T1 
completed its changes 

• If T1 later aborts, T2 worked with invalid data 

T1:  R(A), W(A),                     R(B), W(B), Abort 
T2:                        R(A), W(A), C 

376 
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More Anomalies 

• Unrepeatable Reads (RW Conflicts) 
• T1 sees two different values of A, even though it 

did not change A between the reads 
• Example: online bookstore 

– Only one copy of a book left 
– Both T1 and T2 see that 1 copy is left, then try to 

order 
– T1 gets an error message when trying to order 
– Could not have happened with serial execution 

T1: R(A),             R(A), W(A), C 
T2:  R(A), W(A), C 

377 

Even More Anomalies 

• Overwriting Uncommitted Data (WW Conflicts) 

• T1’s B and T2’s A persist, which would not happen 
with any serial execution 

• Example: 2 people with same salary 
– T1 sets both salaries to 2000, T2 sets both to 1000 

– Above schedule results in A=1000, B=2000, which is 
inconsistent 

378 

T1: W(A),                 W(B), C 
T2:  W(A), W(B), C 
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Aborted Transactions 

• All actions of aborted transactions have to be 
undone 

• Dirty read can result in unrecoverable schedule 
– T1 writes A, then T2 reads A and makes modifications 

based on A’s value 
– T2 commits, and later T1 is aborted 
– T2 worked with invalid data and hence has to be 

aborted as well; but T2 already committed… 

• Recoverable schedule: cannot allow T2 to commit 
until T1 has committed 
– Can lead to cascading aborts 

379 

Preventing Anomalies through Locking 

• DBMS can support concurrent transactions while 
preventing anomalies by using a locking protocol 

• If a transaction wants to read an object, it first 
requests a shared lock (S-lock) on the object 

• If a transaction wants to modify an object, it first 
requests an exclusive lock (X-lock) on the object 

• Multiple transactions can hold a shared lock on 
an object 

• At most one transaction can hold an exclusive 
lock on an object 

380 
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Lock-Based Concurrency Control 

• Strict Two-phase Locking (Strict 2PL) Protocol: 

– Each Xact must obtain the appropriate lock before 
accessing an object. 

– All locks held by a transaction are released when 
the transaction is completed. 

– All this happens automatically inside the DBMS 

• Strict 2PL allows only serializable schedules. 

– Prevents all the anomalies shown earlier 

381 

Deadlocks 

• Assume T1 and T2 both want to read and write objects 
A and B 
– T1 acquires X-lock on A; T2 acquires X-lock on B 
– Now T1 wants to update B, but has to wait for T2 to 

release its lock on B 
– But T2 wants to read A and also waits for T1 to release its 

lock on A 
– Strict 2PL does not allow either to release its locks before 

the transaction completed. Deadlock! 

• DBMS can detect this 
– Automatically breaks deadlock by aborting one of the 

involved transactions 

382 
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Performance of Locking 

• Locks force transactions to wait 

• Abort, restart due to deadlock wastes work 

• Waiting for locks becomes worse as more 
transactions execute concurrently 
– Allowing more concurrent transactions at some point 

leads to thrashing 

– Need to limit max number of concurrent transactions 
to prevent thrashing 

– Minimize lock contention by reducing the time a Xact 
holds locks 
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Distributed Transactions 

• Transactions take longer to access remote objects 
– Need to hold locks longer 

– Greater probability for waiting and deadlocks 

• What if the network partitions? 
– Transaction cannot acquire/release some locks 

• Even without partitions, the problem is hard 
– Need to coordinate commit between multiple nodes 

– What happens if some participating node crashes? 

• Standard protocol: 2PC (2-phase commit) 

384 
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2PC Basics 

• Commit-request phase 
– Coordinator asks all participants to prepare for 

commit 

– Participants vote YES or NO to commit request 

• Commit phase 
– Based on participants’ votes, coordinator decides to 

commit (if all voted YES) or abort 

– Coordinator notifies participants about decision 

– Participants apply corresponding action (commit or 
abort) locally 

385 

2PC Problems 

• 2PC = blocking protocol 

– Nodes cannot make a decision without hearing 
from coordinator, e.g., might hold on to locks 
forever if coordinator is down and they answered 
YES to first request 

• Expensive for many-worker transactions 

• Some issues were addressed by later 2PC 
modifications, but the basic problems remain 
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