Finally, let us put things into perspective by looking at alternatives to MapReduce.

We start with Dryad from Microsoft.

- Dryad Design
- Implementation
- Policies as Plug-ins
- Building on Dryad

- Dryad Design
- Implementation
- Policies as Plug-ins
- Building on Dryad

		S	oftw	ar	e S	stack			
sed, awk, grep, etc. legacy code PSQL Perl C++			C++ Que	C# Queries C#		Machine Learning Vectors	C++	SSIS SQL server	ing, monitoring
Distributed Filesystem CIFS/NTFS									Job queue
			Clus	ter Se	ervice	5			
Windo Serve	Windows Window Server Server		indows erver		Windows Server			Windows Server	

Parallel Database Systems

- Data: relations
- Relational operators process relations and output relations
 - Selection
 - Projection
 - Join
 - Group By and aggregation
- Query language: SQL

363

<section-header><list-item><list-item><list-item>

Example

T1: BEGIN A=A+100, B=B-100 END T2: BEGIN A=1.06*A, B=1.06*B END

- T1 transfers \$100 from B's account to A's account.
- T2 credits both accounts with a 6% interest payment.
- There is no guarantee that T1 will execute before T2 or vice-versa, if both are submitted together.
- However, the net effect must be equivalent to these two transactions running serially in some order.

Performance of Locking

- Locks force transactions to wait
- Abort, restart due to deadlock wastes work
- Waiting for locks becomes worse as more transactions execute concurrently
 - Allowing more concurrent transactions at some point leads to thrashing
 - Need to limit max number of concurrent transactions to prevent thrashing
 - Minimize lock contention by reducing the time a Xact holds locks

