
10/14/2011

1

Pairs Design Pattern

• Can use combiner or in-mapper combining
• Good: easy to implement and understand
• Bad: huge intermediate-key space (shuffling/sorting cost!)

– Quadratic in number of distinct terms

204

map(docID a, doc d)
 for all term w in doc d do
 for all term u NEAR w do
 Emit(pair (w, u), count 1)

reduce(pair p, counts [c1, c2,…])
 sum = 0
 for all count c in counts do
 sum += c
 Emit(pair p, count sum)

w v u

w

v

u

Stripes Design Pattern

• Can use combiner or in-mapper combining
• Good: much smaller intermediate-key space

– Linear in number of distinct terms

• Bad: more difficult to implement, Map needs to hold entire stripe in
memory

205

map(docID a, doc d)
 for all term w in doc d do
 H = new hashMap
 for all term u NEAR w do H{u} ++
 Emit(term w, stripe H)

reduce(term w, stripes [H1, H2,…])
 Hout = new hashMap
 for all stripe H in stripes do Hout = ElementWiseSum(Hout, H)
 Emit(term w, stripe Hout)

w v u

w

v

u

10/14/2011

2

Beyond Pairs and Stripes

• In general, it is not clear which approach is better

– Some experiments indicate stripes win for co-
occurrence matrix computation

• Pairs and stripes are special cases of shapes for
covering the entire matrix

– Could use sub-stripes, or partition matrix horizontally
and vertically into more square-like shapes etc.

• Can also be applied to higher-dimensional arrays

• Will see interesting version of this idea for joins

206

(3) Relative Frequencies

• Important for data mining
• E.g., for each species and color, compute

probability of color for that species
– Probability of Northern Cardinal being red, P(color =

red | species = N.C.)
• Count f(N.C.), the frequency of observations for N.C.

(marginal)
• Count f(N.C., red), the frequency of observations for red

N.C.’s (joint event)
• P(red | N.C.) = f(N.C., red) / f(N.C.)

• Similarly: normalize word co-occurrence vector
for word w by dividing it by w’s frequency

207

10/14/2011

3

Bird Probabilities Using Stripes

• Use species as intermediate key
– One stripe per species, e.g., stripe[N.C.]

• (stripe[species])[color] stores f(species, color)
• Map: for each observation of (species S, color C) in an

observation event, increment (stripe[S])[C]
– Output (S, stripe[S])

• Reduce: for each species S, add all stripes for S
– Result: stripeSum[S] with total counts for each color for S
– Can get f(S) by adding all stripeSum[S] values together
– Get probability P(color = C | species = S) as

(stripeSum[S])[C] / f(S)

208

Discussion, Part 1

• Stripe is great fit for relative frequency
computation

• All values for computing the final result are in
the stripe

• Any smaller unit would miss some of the joint
events needed for computing f(S), the
marginal for the species

• So, this would be a problem for the pairs
pattern

209

10/14/2011

4

Bird Probabilities Using Pairs

• Intermediate key is (species, color)

• Map produces partial counts for each species-
color combination in input

• Reduce can compute f(species, color), the
total count of each species-color combination

• But: cannot compute marginal f(S)

– Reduce needs to sum f(S, color) for all colors for
species S

210

Pairs-Based Solution, Take 1

• Make sure all values f(S, color) for the same
species end up in the same reduce task
– Define custom partitioning function on species

• Maintain state across different keys in same
reduce task

• This essentially simulates the stripes approach
in the reduce task, creating big reduce tasks
when there are many colors

• Can we do better?

211

10/14/2011

5

Discussion, Part 2

• Pairs-based algorithm would work better, if
marginal f(S) was known already

– Reducer computes f(species, color) and then outputs
f(species, color) / f(species)

• We can compute the species marginals f(species)
in a separate MapReduce job first

• Better: fold this into a single MapReduce job

– Problem: easy to compute f(S) from all f(S, color), but
how do we compute f(S) before knowing f(S, color)?

212

Bird Probabilities Using Pairs, Take 2

• Map: for each observation event, emit ((species S, color C),
1) and ((species S, dummyColor), 1) for each species-color
combination encountered

• Use custom partitioner that partitions based on the species
component only

• Use custom key comparator such that (S, dummyColor) is
before all (S, C) for real colors C
– Reducer computes f(S) before the f(S, C)

• Reducer keeps f(S) in state for duration of entire task

– Reducer then computes f(S, C) for each C, outputting f(S, C) /
f(S)

• Advantage: avoids having to manage all colors for a species
together

213

10/14/2011

6

Order Inversion Design Pattern

• Occurs surprisingly often during data analysis
• Solution 1: use complex data structures that bring the

right results together
– Array structure used by stripes pattern

• Solution 2: turn synchronization into ordering problem
– Key sort order enforces computation order
– Partitioner for key space assigns appropriate partial results

to each reduce task
– Reducer maintains task-level state across Reduce

invocations
– Works for simpler pairs pattern, which uses simpler data

structures and requires less reducer memory

214

(4) Secondary Sorting

• Recall the weather data: for simplicity assume
observations are (date, stationID, temperature)

• Goal: for each station, create a time series of
temperature measurements

• Per-station data: use stationID as intermediate
key

• Problem: reducers receive huge number of (date,
temp) pairs for each station

– Have to be sorted by user code

215

10/14/2011

7

Can Hadoop Do The Sorting?

• Use (stationID, date) as intermediate key
– Problem: records for the some station might end up in different

reduce tasks
– Solution: custom partitioner, using only stationID component of

key for partitioning

• General value-to-key conversion design pattern
– To partition by X and then sort each X-group by Y, make (X, Y)

the key
– Define key comparator to order by composite key (X, Y)
– Define partitioner and grouping comparator for (X, Y) to

consider only X for partitioning and grouping
• Grouping part is necessary if all dates for a station should be

processed in the same Reduce invocation (otherwise each station-
date combination ends up in a different Reduce invocation)

216

Design Pattern Summary

• In-mapper combining: do work of combiner in
mapper

• Pairs and stripes: for keeping track of joint
events

• Order inversion: convert sequencing of
computation into sorting problem

• Value-to-key conversion: scalable solution for
secondary sorting, without writing own sort
code

217

10/14/2011

8

Tools for Synchronization

• Cleverly-constructed data structures for key
and values to bring data together

• Preserving state in mappers and reducers,
together with capability to add initialization
and termination code for entire task

• Sort order of intermediate keys to control
order in which reducers process keys

• Custom partitioner to control which reducer
processes which keys

218

Issues and Tradeoffs

• Number of key-value pairs
– Object creation overhead
– Time for sorting and shuffling pairs across the network

• Size of each key-value pair
– (De-)serialization overhead

• Local aggregation
– Opportunities to perform local aggregation vary
– Combiners can make a big difference
– Combiners vs. in-mapper combining
– RAM vs. disk vs. network

219

10/14/2011

9

220

Now that we have seen important design
patterns and MapReduce algorithms for
simpler problems, let’s look at some more
complex problems.

Joins in MapReduce

• Data sets S={s1,..., s|S|} and T={t1,..., t|T|}

• Find all pairs (si, tj) that satisfy some predicate

• Examples

– Pairs of similar or complementary function
summaries

– Facebook and Twitter posts by same user or from
same location

• Typical goal: minimize job completion time

221

10/14/2011

10

Function-Join Pattern

• Find groups of summaries with certain properties
of interest
– Similar trends, opposite trends, correlations

– Groups not known a priori, need to be discovered

222

Existing Join Support

• Hadoop has some built-in join support, but
our goal is to design our own algorithms

– Built-in support is limited

– We want to understand important algorithm
design principles

• “Join” usually just means equi-join, but we
also want to support other join predicates

• Note: recall join discussion from earlier lecture

223

10/14/2011

11

Joining Large With Small

• Assume data set T is small enough to fit in
memory

• Can run Map-only join
– Load T onto every mapper

– Map: join incoming S-tuple with T, output all matching
pairs
• Can scan entire T (nested loop) or use index on T (index

nested loop)

• Downside: need to copy T to all mappers
– Not so bad, since T is small

224

Distributed Cache

• Efficient way to copy files to all nodes
processing a certain task

– Use it to send small T to all mappers

• Part of the job configuration

• Hadoop still needs to move the data to the
worker nodes, so use this with care

– But it avoids copying the file for every task on the
same node

225

10/14/2011

12

DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

Recall: Standard Equi-Join Algorithm

• Join condition: S.A=T.A
• Map(s) = (s.A, s); Map(t) = (t.A, t)
• Reduce combines S-tuples and T-tuples with same key

226

s1,1

s1,1

1,(s1,1)

s5,1

s5,1

1,(s5,1)

1,(t3,1) t3,1
t3,1

t8,1

t8,1

1,(t8,1)

1,[(s5,1)(t3,1)(s1,1)(t8,1)]

(s5,t3)

(s1,t3)

(s1,t8)

(s5,t8)

s3,2

t1,2

s3,2

t1,2

2,[(s3,2)(t1,2)]

(s3,t1)

2,(t1,2)

2,(s3,2)

Problems With Standard Approach

• Degree of parallelism limited by number of
distinct A-values

• Data skew

– If one A-value dominates, reducer processing that
key will become bottleneck

• Does not generalize to other joins

227

10/14/2011

13

Reducer-Centric Cost Model

• Difference between join implementations starts
with Map output

228

Join output

time=f(input size) time=f(output size)

output
Sort input
by key

Read
input algorithm

Send join
output

Receive Mapper Run join

Reducer
Mapper output

Optimization Goal: Minimal Job
Completion time

• Assume all reducers are similarly capable
• Processing time at reducer is approximately

monotonic in input and output size
• Hence need to minimize:

– Max-reducer-input and/or
– Max-reducer-output

• Join problem classification
– Input-size dominated: minimize max-reducer-input
– Output-size dominated: minimize max-reducer-output
– Input-output balanced: minimize combination of both

229

10/14/2011

14

Join Model

• Join-matrix M: M(i, j) = true, if and only if (si, tj) in join
result

• Cover each true-valued cell by exactly one reducer

230

M(2,5)

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A = T.A

S
5 7 7 7 8 9

7

5

7

8

9

9

T

abs(S.A - T.A) < 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T

S.A >= T.A
M(2,1)

231

5

7

8

9

3

3

3

2

2

1

1

1

1

2 3

2
1

Input: S2,S3,S4,S6
T3,T4,T5,T6

Output: 4 tuples

Input: S2,S3,S5
T2,T4,T6

Output: 3 tuples

R3: key 3
Input: S1,S2,S3

T1,T2,T3
Output: 3 tuples

max-reducer-input = 8

R1: key 1

R2: key 2

max-reducer-output = 4

S1,S4
T1,T5
2 tuples

Input: S2,S3
T2,T3,T4

Output: 6 tuples

R3: key 9
Input: S5,S6

T6
Output: 2 tuples

R2: key 7

R1: keys 5,8

Output:

Input:

max-reducer-input = 5
max-reducer-output = 6

R1: key 1
Input: S1,S2,S3

T1,T2
Output: 3 tuples

Input: S2,S3
T3,T4

Output: 4 tuples

R3: key 3
Input: S4,S5,S6

T5,T6
Output: 3 tuples

max-reducer-input = 5
max-reducer-output = 4

R2: key 2

S
5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T

key

Standard Equi-Join Alg.: Random Assignment: Balanced Algorithm:

