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Pairs Design Pattern 

• Can use combiner or in-mapper combining 
• Good: easy to implement and understand 
• Bad: huge intermediate-key space (shuffling/sorting cost!) 

– Quadratic in number of distinct terms 
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map(docID a, doc d) 
  for all term w in doc d do 
    for all term u NEAR w do 
      Emit(pair (w, u), count 1) 
 
reduce(pair p, counts [c1, c2,…]) 
  sum = 0 
  for all count c in counts do 
    sum += c 
  Emit(pair p, count sum) 
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Stripes Design Pattern 

• Can use combiner or in-mapper combining 
• Good: much smaller intermediate-key space 

– Linear in number of distinct terms 

• Bad: more difficult to implement, Map needs to hold entire stripe in 
memory 
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map(docID a, doc d) 
  for all term w in doc d do 
    H = new hashMap 
    for all term u NEAR w do  H{u} ++ 
    Emit(term w, stripe H) 
 
reduce(term w, stripes [H1, H2,…]) 
  Hout = new hashMap 
  for all stripe H in stripes do  Hout = ElementWiseSum(Hout, H) 
  Emit(term w, stripe Hout) 

w v u 
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Beyond Pairs and Stripes 

• In general, it is not clear which approach is better 

– Some experiments indicate stripes win for co-
occurrence matrix computation 

• Pairs and stripes are special cases of shapes for 
covering the entire matrix 

– Could use sub-stripes, or partition matrix horizontally 
and vertically into more square-like shapes etc. 

• Can also be applied to higher-dimensional arrays 

• Will see interesting version of this idea for joins 
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(3) Relative Frequencies 

• Important for data mining 
• E.g., for each species and color, compute 

probability of color for that species 
– Probability of Northern Cardinal being red, P(color = 

red | species = N.C.) 
• Count f(N.C.), the frequency of observations for N.C. 

(marginal) 
• Count f(N.C., red), the frequency of observations for red 

N.C.’s (joint event) 
• P(red | N.C.) = f(N.C., red) / f(N.C.) 

• Similarly: normalize word co-occurrence vector 
for word w by dividing it by w’s frequency 
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Bird Probabilities Using Stripes 

• Use species as intermediate key 
– One stripe per species, e.g., stripe[N.C.] 

• (stripe[species])[color] stores f(species, color) 
• Map: for each observation of (species S, color C) in an 

observation event, increment (stripe[S])[C] 
– Output (S, stripe[S]) 

• Reduce: for each species S, add all stripes for S 
– Result: stripeSum[S] with total counts for each color for S 
– Can get f(S) by adding all stripeSum[S] values together 
– Get probability P(color = C | species = S) as 

(stripeSum[S])[C] / f(S) 
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Discussion, Part 1 

• Stripe is great fit for relative frequency 
computation 

• All values for computing the final result are in 
the stripe 

• Any smaller unit would miss some of the joint 
events needed for computing f(S), the 
marginal for the species 

• So, this would be a problem for the pairs 
pattern 
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Bird Probabilities Using Pairs 

• Intermediate key is (species, color) 

• Map produces partial counts for each species-
color combination in input 

• Reduce can compute f(species, color), the 
total count of each species-color combination 

• But: cannot compute marginal f(S) 

– Reduce needs to sum f(S, color) for all colors for 
species S 
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Pairs-Based Solution, Take 1 

• Make sure all values f(S, color) for the same 
species end up in the same reduce task 
– Define custom partitioning function on species 

• Maintain state across different keys in same 
reduce task 

• This essentially simulates the stripes approach 
in the reduce task, creating big reduce tasks 
when there are many colors 

• Can we do better? 
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Discussion, Part 2 

• Pairs-based algorithm would work better, if 
marginal f(S) was known already 

– Reducer computes f(species, color) and then outputs 
f(species, color) / f(species) 

• We can compute the species marginals f(species) 
in a separate MapReduce job first 

• Better: fold this into a single MapReduce job 

– Problem: easy to compute f(S) from all f(S, color), but 
how do we compute f(S) before knowing f(S, color)? 
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Bird Probabilities Using Pairs, Take 2 

• Map: for each observation event, emit ((species S, color C), 
1) and ((species S, dummyColor), 1) for each species-color 
combination encountered 

• Use custom partitioner that partitions based on the species 
component only 

• Use custom key comparator such that (S, dummyColor) is 
before all (S, C) for real colors C 
– Reducer computes f(S) before the f(S, C) 

• Reducer keeps f(S) in state for duration of entire task 

– Reducer then computes f(S, C) for each C, outputting f(S, C) / 
f(S) 

• Advantage: avoids having to manage all colors for a species 
together 
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Order Inversion Design Pattern 

• Occurs surprisingly often during data analysis 
• Solution 1: use complex data structures that bring the 

right results together 
– Array structure used by stripes pattern 

• Solution 2: turn synchronization into ordering problem 
– Key sort order enforces computation order 
– Partitioner for key space assigns appropriate partial results 

to each reduce task 
– Reducer maintains task-level state across Reduce 

invocations 
– Works for simpler pairs pattern, which uses simpler data 

structures and requires less reducer memory 
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(4) Secondary Sorting 

• Recall the weather data: for simplicity assume 
observations are (date, stationID, temperature) 

• Goal: for each station, create a time series of 
temperature measurements 

• Per-station data: use stationID as intermediate 
key 

• Problem: reducers receive huge number of (date, 
temp) pairs for each station 

– Have to be sorted by user code 
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Can Hadoop Do The Sorting? 

• Use (stationID, date) as intermediate key 
– Problem: records for the some station might end up in different 

reduce tasks 
– Solution: custom partitioner, using only stationID component of 

key for partitioning 

• General value-to-key conversion design pattern 
– To partition by X and then sort each X-group by Y, make (X, Y) 

the key 
– Define key comparator to order by composite key (X, Y) 
– Define partitioner and grouping comparator for (X, Y) to 

consider only X for partitioning and grouping 
• Grouping part is necessary if all dates for a station should be 

processed in the same Reduce invocation (otherwise each station-
date combination ends up in a different Reduce invocation) 
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Design Pattern Summary 

• In-mapper combining: do work of combiner in 
mapper 

• Pairs and stripes: for keeping track of joint 
events 

• Order inversion: convert sequencing of 
computation into sorting problem 

• Value-to-key conversion: scalable solution for 
secondary sorting, without writing own sort 
code 
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Tools for Synchronization 

• Cleverly-constructed data structures for key 
and values to bring data together 

• Preserving state in mappers and reducers, 
together with capability to add initialization 
and termination code for entire task 

• Sort order of intermediate keys to control 
order in which reducers process keys 

• Custom partitioner to control which reducer 
processes which keys 
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Issues and Tradeoffs 

• Number of key-value pairs 
– Object creation overhead 
– Time for sorting and shuffling pairs across the network 

• Size of each key-value pair 
– (De-)serialization overhead 

• Local aggregation 
– Opportunities to perform local aggregation vary 
– Combiners can make a big difference 
– Combiners vs. in-mapper combining 
– RAM vs. disk vs. network 
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Now that we have seen important design 
patterns and MapReduce algorithms for 
simpler problems, let’s look at some more 
complex problems. 

Joins in MapReduce 

• Data sets S={s1,..., s|S|} and T={t1,..., t|T|} 

• Find all pairs (si, tj) that satisfy some predicate 

• Examples 

– Pairs of similar or complementary function 
summaries 

– Facebook and Twitter posts by same user or from 
same location 

• Typical goal: minimize job completion time 
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Function-Join Pattern 

• Find groups of summaries with certain properties 
of interest 
– Similar trends, opposite trends, correlations 

– Groups not known a priori, need to be discovered 
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Existing Join Support 

• Hadoop has some built-in join support, but 
our goal is to design our own algorithms 

– Built-in support is limited 

– We want to understand important algorithm 
design principles 

• “Join” usually just means equi-join, but we 
also want to support other join predicates 

• Note: recall join discussion from earlier lecture 
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Joining Large With Small 

• Assume data set T is small enough to fit in 
memory 

• Can run Map-only join 
– Load T onto every mapper 

– Map: join incoming S-tuple with T, output all matching 
pairs 
• Can scan entire T (nested loop) or use index on T (index 

nested loop) 

• Downside: need to copy T to all mappers 
– Not so bad, since T is small 
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Distributed Cache 

• Efficient way to copy files to all nodes 
processing a certain task 

– Use it to send small T to all mappers 

• Part of the job configuration 

• Hadoop still needs to move the data to the 
worker nodes, so use this with care 

– But it avoids copying the file for every task on the 
same node 
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DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

Recall: Standard Equi-Join Algorithm 

• Join condition: S.A=T.A 
• Map(s) = (s.A, s); Map(t) = (t.A, t) 
• Reduce combines S-tuples and T-tuples with same key 
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s1,1 

s1,1 

1,(s1,1) 

s5,1 

s5,1 

1,(s5,1) 

1,(t3,1) t3,1 
t3,1 

t8,1 

t8,1 

1,(t8,1) 

1,[(s5,1)(t3,1)(s1,1)(t8,1)] 

(s5,t3) 

(s1,t3) 

(s1,t8) 

(s5,t8) 

s3,2 

t1,2 

s3,2 

t1,2 

2,[(s3,2)(t1,2)] 

(s3,t1) 

2,(t1,2) 

2,(s3,2) 

Problems With Standard Approach 

• Degree of parallelism limited by number of 
distinct A-values 

 

• Data skew 

– If one A-value dominates, reducer processing that 
key will become bottleneck 

 

• Does not generalize to other joins 
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Reducer-Centric Cost Model 

• Difference between join implementations starts 
with Map output 
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Join output

time=f(input size) time=f(output size)

output
Sort input
by key

Read
input algorithm

Send join
output

Receive Mapper Run join

Reducer
Mapper output

Optimization Goal: Minimal Job 
Completion time 

• Assume all reducers are similarly capable 
• Processing time at reducer is approximately 

monotonic in input and output size 
• Hence need to minimize: 

– Max-reducer-input and/or 
– Max-reducer-output 

• Join problem classification 
– Input-size dominated: minimize max-reducer-input 
– Output-size dominated: minimize max-reducer-output 
– Input-output balanced: minimize combination of both 
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Join Model 

• Join-matrix M: M(i, j) = true, if and only if (si, tj) in join 
result 

• Cover each true-valued cell by exactly one reducer 
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M(2,5)
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S.A >= T.A
M(2,1)
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Input: S2,S3,S4,S6
T3,T4,T5,T6

Output: 4 tuples

Input: S2,S3,S5
T2,T4,T6

Output: 3 tuples

R3: key 3
Input: S1,S2,S3

T1,T2,T3
Output: 3 tuples

max-reducer-input = 8

R1: key 1

R2: key 2

max-reducer-output = 4

S1,S4
T1,T5
2 tuples

Input: S2,S3
T2,T3,T4

Output: 6 tuples

R3: key 9
Input: S5,S6

T6
Output: 2 tuples

R2: key 7

R1: keys 5,8

Output:

Input:

max-reducer-input = 5
max-reducer-output = 6

R1: key 1
Input: S1,S2,S3

T1,T2
Output: 3 tuples

Input: S2,S3
T3,T4

Output: 4 tuples

R3: key 3
Input: S4,S5,S6
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Output: 3 tuples

max-reducer-input = 5
max-reducer-output = 4

R2: key 2
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Standard Equi-Join Alg.: Random Assignment: Balanced Algorithm: 


