
10/6/2011

1

Extension: Combiner Functions

• Recall earlier discussion about combiner function
– Pre-reduces mapper output before transfer to

reducers

– Does not change program semantics

• Usually (almost) same as reduce function, but has
to have same output type as Map

• Works only for some reduce functions that can be
incrementally computed
– MAX(5, 4, 1, 2) = MAX(MAX(5, 1), MAX(4, 2))

– Same for SUM, MIN, COUNT, AVG (=SUM/COUNT)

163

164

import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class MaxTemperatureWithCombiner {

 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: MaxTemperatureWithCombiner <input path> " +
 "<output path>");
 System.exit(-1);
 }

 JobConf conf = new JobConf(MaxTemperatureWithCombiner.class);
 conf.setJobName("Max temperature");

 FileInputFormat.addInputPath(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setMapperClass(MaxTemperatureMapper.class);
 conf.setCombinerClass(MaxTemperatureReducer.class);
 conf.setReducerClass(MaxTemperatureReducer.class);

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 JobClient.runJob(conf);
 }
}

Note: combiner here is identical
to reducer class.

10/6/2011

2

Extension: Custom Partitioner

• Partitioner determines which keys are
assigned to which reduce task

• Default HashPartitioner essentially assigns
keys randomly

• Create custom partitioner by implementing
Partitioner interface in
org.apache.hadoop.mapred

– Write your own getPartition() method

165

Extension: MapFile

• Sorted file of (key, value) pairs with an index
for lookups by key

• Must append new entries in order
– Can create MapFile by sorting SequenceFile

• Can get value for specific key by calling
MapFile’s get() method
– Found by performing binary search on index

• Method getClosest() finds closest match to
search key

166

10/6/2011

3

Extension: Counters

• Useful to get statistics about the MapReduce
job, e.g., how many records were discarded in
Map

• Difficult to implement from scratch

– Mappers and reducers need to communicate to
compute a global counter

• Hadoop has built-in support for counters

• See ch. 8 in Tom White’s book for details

167

Hadoop Job Tuning

• Choose appropriate number of mappers and
reducers

• Define combiners whenever possible
– But see also later discussion about local aggregation

• Consider Map output compression
• Optimize the expensive shuffle phase (between

mappers and reducers) by setting its tuning
parameters

• Profiling distributed MapReduce jobs is
challenging.

168

10/6/2011

4

Hadoop and Other Programming
Languages

• Hadoop Streaming API to write map and
reduce functions in languages other than Java

– Any language that can read from standard input
and write to standard output

• Hadoop Pipes API for using C++

– Uses sockets to communicate with Hadoop’s task
trackers

169

Multiple MapReduce Steps

• Example: find average max temp for every day
of the year and every weather station

– Find max temp for each combination of station
and day/month/year

– Compute average for each combination of station
and day/month

• Can be done in two MapReduce jobs

– Could also combine it into single job, which would
be faster

170

10/6/2011

5

Running a MapReduce Workflow

• Linear chain of jobs

– To run job2 after job1, create JobConf’s conf1 and
conf2 in main function

– Call JobClient.runJob(conf1); JobClient.runJob(conf2);

– Catch exceptions to re-start failed jobs in pipeline

• More complex workflows

– Use JobControl from
org.apache.hadoop.mapred.jobcontrol

– We will see soon how to use Pig for this

171

MapReduce Coding Summary

• Decompose problem into appropriate workflow
of MapReduce jobs

• For each job, implement the following
– Job configuration
– Map function
– Reduce function
– Combiner function (optional)
– Partition function (optional)

• Might have to create custom data types as well
– WritableComparable for keys
– Writable for values

172

10/6/2011

6

173

Let’s see how we can create complex
MapReduce workflows by programming in a
high-level language.

The Pig System

• Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, Andrew Tomkins: Pig
Latin: a not-so-foreign language for data
processing. SIGMOD Conference 2008: 1099-
1110

• Several slides courtesy Chris Olston and
Utkarsh Srivastava

• Open source project under the Apache
Hadoop umbrella

174

10/6/2011

7

Overview

• Design goal: find sweet spot between
declarative style of SQL and low-level
procedural style of MapReduce

• Programmer creates Pig Latin program, using
high-level operators

• Pig Latin program is compiled to MapReduce
program to run on Hadoop

175

Why Not SQL or Plain MapReduce?

• SQL difficult to use and debug for many
programmers

• Programmer might not trust automatic optimizer
and prefers to hard-code best query plan

• Plain MapReduce lacks convenience of readily
available, reusable data manipulation operators
like selection, projection, join, sort

• Program semantics hidden in “opaque” Java code

– More difficult to optimize and maintain

176

10/6/2011

8

Example Data Analysis Task

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Find the top 10 most visited pages in each category

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits Url Info

177

Data Flow
Load Visits

Group by url

Foreach url

generate count
Load Url Info

Join on url

Group by category

Foreach category

generate top10 urls

178

10/6/2011

9

In Pig Latin

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

179

Pig Latin Notes

• No need to import data into database
– Pig Latin works directly with files

• Schemas are optional and can be assigned
dynamically
– Load ‘/data/visits’ as (user, url, time);

• Can call user-defined functions in every
construct like Load, Store, Group, Filter,
Foreach
– Foreach gCategories generate top(visitCounts,10);

180

10/6/2011

10

Pig Latin Data Model

• Fully-nestable data model with:
– Atomic values, tuples, bags (lists), and maps

• More natural to programmers than flat tuples
– Can flatten nested structures using FLATTEN

• Avoids expensive joins, but more complex to
process

yahoo ,

finance

email

news

181

Pig Latin Operators: LOAD

• Reads data from file and optionally assigns
schema to each record

• Can use custom deserializer

queries = LOAD ‘query_log.txt’ USING myLoad()
AS (userID, queryString, timestamp);

182

10/6/2011

11

Pig Latin Operators: FOREACH

• Applies processing to each record of a data set

• No dependence between the processing of
different records
– Allows efficient parallel implementation

• GENERATE creates output records for a given
input record

expanded_queries = FOREACH queries
GENERATE userId, expandQuery(queryString);

183

Pig Latin Operators: FILTER

• Remove records that do not pass filter
condition

• Can use user-defined function in filter
condition

real_queries =
 FILTER queries BY userId neq `bot‘;

184

10/6/2011

12

Pig Latin Operators: COGROUP

• Group together records from one or more
data sets

185

queryString url rank

Lakers nba.com 1

Lakers espn.com 2

Kings nhl.com 1

Kings nba.com 2

queryString adSlot amount

Lakers top 50

Lakers side 20

Kings top 30

Kings side 10

Lakers,
(Lakers, nba.com, 1)
(Lakers, espn.com, 2)

(Lakers, top, 50)
(Lakers, side, 20)

Kings,
(Kings, nhl.com, 1)
(Kings, nba.com, 2)

(Kings, top, 30)
(Kings, side, 10)

,

,

COGROUP results BY queryString, revenue BY queryString

results

revenue

Pig Latin Operators: GROUP

• Special case of COGROUP, to group single data
set by selected fields

• Similar to GROUP BY in SQL, but does not
need to apply aggregate function to records in
each group

grouped_revenue = GROUP revenue BY
queryString;

186

10/6/2011

13

Pig Latin Operators: JOIN

• Computes equi-join
join_result = JOIN results BY queryString, revenue
BY queryString;

• Just a syntactic shorthand for COGROUP followed

by flattening
temp_var = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH temp_var GENERATE
FLATTEN(results), FLATTEN(revenue);

187

Other Pig Latin Operators

• UNION: union of two or more bags

• CROSS: cross product of two or more bags

• ORDER: orders a bag by the specified field(s)

• DISTINCT: eliminates duplicate records in bag

• STORE: saves results to a file

• Nested bags within records can be processed
by nesting operators within a FOREACH
operator

188

10/6/2011

14

Transform
to (user, Canonicalize(url), time)

Join
url = url

Group
by user

Transform
to (user, Average(pagerank) as avgPR)

Filter
avgPR > 0.5

Load
Pages(url, pagerank)

Load
Visits(user, url, time)

(Amy, 0.65)

(Amy, 0.65)
(Fred, 0.4)

(Amy, { (Amy, www.cnn.com, 8am, 0.9),
 (Amy, www.snails.com, 9am, 0.4) })
(Fred, { (Fred, www.snails.com, 11am, 0.4) })

(Amy, www.cnn.com, 8am, 0.9)
(Amy, www.snails.com, 9am, 0.4)
(Fred, www.snails.com, 11am, 0.4)

(Amy, cnn.com, 8am)
(Amy, http://www.snails.com, 9am)
(Fred, www.snails.com/index.html, 11am)

(Amy, www.cnn.com, 8am)
(Amy, www.snails.com, 9am)
(Fred, www.snails.com, 11am)

(www.cnn.com, 0.9)
(www.snails.com, 0.4)

Pig Latin workflow
and example records

189

MapReduce in Pig Latin

map_result = FOREACH input GENERATE
 FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE reduce(*);

• Map() is a UDF, where * indicates that the entire input
record is passed to map()

• $0 refers to first field, i.e., the intermediate key here

• Reduce() is another UDF

190

10/6/2011

15

Implementation

cluster

Hadoop
Map-Reduce

Pig

SQL

automatic
rewrite +
optimize

or

or

user

191

execution
plan

Pig Compiler

Pig System

 cluster

parsed
program

Parser

user

cross-job
optimizer

Pig Latin
program

Map-Reduce

map-red.
jobs

MR Compiler
join

output

filter

X

f()

Y
192

10/6/2011

16

Compilation into Map-Reduce
Load Visits

Group by url

Foreach url

generate count
Load Url Info

Join on url

Group by category

Foreach category

generate top10(urls)

Map1

Reduce1
Map2

Reduce2

Map3

Reduce3

Every group or join operation
forms a map-reduce boundary

Other operations
pipelined into map
and reduce phases

193

Is Pig a DBMS?

DBMS Pig

Bulk and random reads &

writes; indexes, transactions
Bulk reads & writes only

System controls data format

Must pre-declare schema
Pigs eat anything

System of constraints Sequence of steps

Custom functions second-

class to logic expressions

Easy to incorporate

custom functions

workload

data
representation

programming
style

customizable
processing

194

10/6/2011

17

195

Now let’s go back to plain Hadoop and look at
important program “design patterns”.

MapReduce Design Patterns

• This section is based on the book by Jimmy Lin
and Chris Dyer

• Programmer can control program execution
only through implementation of mapper,
reducer, combiner, and partitioner

• No explicit synchronization primitives

• So how can a programmer control execution
and data flow?

196

10/6/2011

18

Taking Control of MapReduce

• Store and communicate partial results through
complex data structures for keys and values

• Run appropriate initialization code at beginning of task
and termination code at end of task

• Preserve state in mappers and reducers across multiple
input splits and intermediate keys, respectively

• Control sort order of intermediate keys to control
processing order at reducers

• Control set of keys assigned to a reducer

• Use “driver” program

197

(1) Local Aggregation

• Reduce size of intermediate results passed
from mappers to reducers

– Important for scalability: recall Amdahl’s Law

• Various options using combiner function and
ability to preserve mapper state across
multiple inputs

• Illustrated with word count example

– Will use document-based version of Map

198

10/6/2011

19

Word Count Baseline Algorithm

• Problem: frequent terms are emitted many
times with count 1

199

map(docID a, doc d)
 for all term t in doc d do
 Emit(term t, count 1)

reduce(term t, counts [c1, c2,…])
 sum = 0
 for all count c in counts do
 sum += c
 Emit(term t, count sum);

Tally Counts Per Document

• Same Reduce function as before
• Limitation: only aggregates counts within

document
• Map task usually receives split containing many

documents
• Can we aggregate across all documents in the

same task?

200

map(docID a, doc d)
 H = new hashMap
 for all term t in doc d do
 H{t} ++
 for all term t in H do
 Emit(term t, count H{t})

10/6/2011

20

Tally Counts Across Documents

• Data structure is private
member of mapper

• Initialize is called once before
all map invocations
– Configure() in old API
– Setup() in new API

• Close is called after last
document from split has been
processed
– Close() in old API
– Cleanup() in new API

201

Class Mapper
 initialize()
 H = new hashMap

 map(docID a, doc d)
 for all term t in doc d do
 H{t} ++

 close()
 for all term t in H do
 Emit(term t, count H{t})

Design Pattern for Local Aggregation

• In-mapper combining
– Done by preserving state across map calls in same task

• Advantages over using combiners
– Combiner does not guarantee if, when or how often it is

executed
– Combiner combines data after it was generated, in-

mapper combining avoids generating it!

• Drawbacks
– Introduces complexity, e.g., result might depend on order

of map executions (order-dependent bugs possible!)
– Higher memory consumption for managing state

• Might have to write memory-management code to page data to
disk

202

10/6/2011

21

(2) Counting of Combinations

• Needed for computing correlations,
associations, confusion matrix (how many
times does a classifier confuse Yi with Yj)

• Co-occurrence matrix for a text corpus: how
many times do two terms appear near each
other

• Compute partial counts for some
combinations, then aggregate them
– At what granularity should Map work?

203

