
9/29/2011

1

Semantics with Failures

• If map and reduce are deterministic, then output
identical to non-faulting sequential execution
– For non-deterministic operators, different reduce

tasks might see output of different map executions

• Relies on atomic commit of map and reduce
outputs
– In-progress task writes output to private temp file
– Mapper: on completion, send names of all temp files

to master (master ignores if task already complete)
– Reducer: on completion, atomically rename temp file

to final output file (needs to be supported by
distributed file system)

99

Practical Considerations

• Conserve network bandwidth (“Locality optimization”)
– Schedule map task on machine that already has a copy of the

split, or one “nearby”

• How to choose M (#map tasks) and R (#reduce tasks)
– Larger M, R: smaller tasks, enabling easier load balancing and

faster recovery (many small tasks from failed machine)
– Limitation: O(M+R) scheduling decisions and O(MR) in-memory

state at master; too small tasks not worth the startup cost
– Recommendation: choose M so that split size is approx. 64 MB
– Choose R a small multiple of number of workers; alternatively

choose R a little smaller than #workers to finish reduce phase in
one “wave”

• Create backup tasks to deal with machines that take
unusually long for the last in-progress tasks (“stragglers”)

100

9/29/2011

2

101

Refinements

• User-defined partitioning functions for reduce tasks

– Use this for partitioning sort

– Default: assign key K to reduce task hash(K) mod R

– Use hash(Hostname(urlkey)) mod R to have URLs from
same host in same output file

– We will see others in future lectures

• Combiner function to reduce mapper output size

– Pre-aggregation at mapper for reduce functions that are
commutative and associative

– Often (almost) same code as for reduce function

Careful With Combiners

• Consider Word Count, but assume we only want
words with count > 10
– Reducer computes total word count, only outputs if

greater than 10

– Combiner = Reducer? No. Combiner should not filter
based on its local count!

• Consider computing average of a set of numbers
– Reducer should output average

– Combiner has to output (sum, count) pairs to allow
correct computation in reducer

102

9/29/2011

3

103

Experiments

• 1800 machine cluster

– 2 GHz Xeon, 4 GB memory, two 160 GB IDE disks,
gigabit Ethernet link

– Less than 1 msec roundtrip time

• Grep workload

– Scan 1010 100-byte records, search for rare 3-
character pattern, occurring in 92,337 records

– M=15,000 (64 MB splits), R=1

104

Grep Progress Over Time

• Rate at which input is scanned as more mappers are added
• Drops as tasks finish, done after 80 sec
• 1 min startup overhead beforehand

– Propagation of program to workers
– Delays due to distributed file system for opening input files and getting

information for locality optimization

9/29/2011

4

105

Sort

• Sort 1010 100-byte records (~1 TB of data)

• Less than 50 lines user code

• M=15,000 (64 MB splits), R=4000

• Use key distribution information for intelligent
partitioning

• Entire computation takes 891 sec
– 1283 sec without backup task optimization (few slow

machines delay completion)

– 933 sec if 200 out of 1746 workers are killed several
minutes into computation

MapReduce at Google (2004)

• Machine learning algorithms, clustering
• Data extraction for reports of popular queries
• Extraction of page properties, e.g., geographical location
• Graph computations
• Google indexing system for Web search (>20 TB of data)

– Sequence of 5-10 MapReduce operations
– Smaller simpler code: from 3800 LOC to 700 LOC for one

computation phase
– Easier to change code
– Easier to operate, because MapReduce library takes care of

failures
– Easy to improve performance by adding more machines

106

9/29/2011

5

Summary

• Programming model that hides details of
parallelization, fault tolerance, locality
optimization, and load balancing

• Simple model, but fits many common problems
– User writes Map and Reduce function
– Can also provide combine and partition functions

• Implementation on cluster scales to 1000s of
machines

• Open source implementation, Hadoop, is
available

107

108

MapReduce relies heavily on the underlying
distributed file system. Let’s take a closer look
to see how it works.

9/29/2011

6

The Distributed File System

• Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google File System. 19th ACM
Symposium on Operating Systems Principles,
Lake George, NY, October, 2003

109

Motivation

• Abstraction of a single global file system greatly
simplifies programming in MapReduce

• MapReduce job just reads from a file and writes
output back to a file (or multiple files)

• Frees programmer from worrying about messy
details
– How many chunks to create and where to store them

– Replicating chunks and dealing with failures

– Coordinating concurrent file access at low level

– Keeping track of the chunks

110

9/29/2011

7

Google File System (GFS)

• GFS in 2003: 1000s of storage nodes, 300 TB
disk space, heavily accessed by 100s of clients

• Goals: performance, scalability, reliability,
availability

• Differences compared to other file systems
– Frequent component failures

– Huge files (multi-GB or even TB common)

– Workload properties
• Design system to make important operations efficient

111

Data and Workload Properties

• Modest number of large files
– Few million files, most 100 MB+
– Manage multi-GB files efficiently

• Reads: large streaming (1 MB+) or small random (few
KBs)

• Many large sequential append writes, few small writes
at arbitrary positions

• Concurrent append operations
– E.g., Producer-consumer queues or many-way merging

• High sustained bandwidth more important than low
latency
– Bulk data processing

112

9/29/2011

8

File System Interface

• Like typical file system interface

– Files organized in directories

– Operations: create, delete, open, close, read,
write

• Special operations

– Snapshot: creates copy of file or directory tree at
low cost

– Record append: concurrent append guaranteeing
atomicity of each individual client’s append

113

Architecture Overview

• 1 master, multiple chunkservers, many clients

– All are commodity Linux machines

• Files divided into fixed-size chunks

– Stored on chunkservers’ local disks as Linux files

– Replicated on multiple chunkservers

• Master maintains all file system metadata:
namespace, access control info, mapping from
files to chunks, chunk locations

114

9/29/2011

9

Why a Single Master?

• Simplifies design

• Master can make decisions with global
knowledge

• Potential problems:

– Can become bottleneck

• Avoid file reads and writes through master

– Single point of failure

• Ensure quick recovery

115

High-Level Functionality

• Master controls system-wide activities like chunk lease
management, garbage collection, chunk migration

• Master communicates with chunkservers through
HeartBeat messages to give instructions and collect
state

• Clients get metadata from master, but access files
directly through chunkservers

• No GFS-level file caching
– Little benefit for streaming access or large working set

– No cache coherence issues

– On chunkserver, standard Linux file caching is sufficient

116

9/29/2011

10

Read Operation

• Client: from (file, offset), compute chunk index, then get chunk locations
from master
– Client buffers location info for some time

• Client requests data from nearby chunkserver
– Future requests use cached location info

• Optimization: batch requests for multiple chunks into single request

117

Chunk Size

• 64 MB, stored as Linux file on a chunkserver
• Advantages of large chunk size

– Fewer interactions with master (recall: large sequential reads
and writes)

– Smaller chunk location information
• Smaller metadata at master, might even fit in main memory
• Can be cached at client even for TB-size working sets

– Many accesses to same chunk, hence client can keep persistent
TCP connection to chunkserver

• Disadvantage: fewer chunks => fewer options for load
balancing
– Fixable with higher replication factor
– Address hotspots by letting clients read from other clients

118

9/29/2011

11

Practical Considerations

• Number of chunks is limited by master’s memory
size
– Only 64 bytes metadata per 64 MB chunk; most

chunks full
– Less than 64 bytes namespace data per file

• Chunk location information at master is not
persistent
– Master polls chunkservers at startup, then updates

info because it controls chunk placement
– Eliminates problem of keeping master and

chunkservers in sync (frequent chunkserver failures,
restarts)

119

Consistency Model

• GFS uses a relaxed consistency model

• File namespace updates are atomic (e.g., file
creation)

– Only handled by master, using locking

– Operations log defines global total order

• State of file region after update

– Consistent: all clients will always see the same data,
regardless which chunk replica they access

– Defined: consistent and reflecting the entire update

120

9/29/2011

12

Relaxed Consistency

• GFS guarantees that after a sequence of successful
updates, the updated file region is defined and
contains the data of the last update
– Applies updates to all chunk replica in same order
– Uses chunk version numbers to detect stale replica (when

chunk server was down during update)

• Stale replica are never involved in an update or given
to clients asking the master for chunk locations

• But, client might read from stale replica when it uses
cached chunk location data
– Not all clients read the same data
– Can address this problem for append-only updates

121

Leases, Update Order

• Leases used for consistent update order across
replicas
– Master grants lease to one replica (primary)
– Primary picks serial update order
– Other replicas follow this order

• Lease has initial timeout of 60 sec, but primary
can request extensions from master
– Piggybacked on HeartBeat messages
– Master can revoke lease (e.g., to rename file)
– If no communication with primary, then master grants

new lease after old one expires

122

9/29/2011

13

123

Updating a Chunk

1. Who has lease?
2. Identity of primary and

secondary replicas
3. Push data to all replicas
4. After receiving all acks, send

write request to primary who
assigns it a serial number

5. Primary forwards write request
to all other replicas

6. Secondaries ack update success
7. Primary replies to client

1. Also reports errors
2. Client retries steps 3-7 on error

• Large writes broken down into
chunks

Data Flow

• Decoupled from control flow for efficient network use

• Data pipelined linearly along chain of chunkservers
– Full outbound bandwidth for fastest transfer (instead of

dividing it in non-linear topology)

– Avoids network bottlenecks by forwarding to “next
closest” destination machine

– Minimizes latency: once chunkserver receives data, it
starts forwarding immediately
• Switched network with full-duplex links

• Sending does not reduce receive rate

• 1 MB distributable in 80 msec

124

9/29/2011

14

Namespace Management

• Want to support concurrent master operations
• Solution: locks on regions of namespace for proper

serialization
– Read-write lock for each node in namespace tree

• Operations lock all nodes on path to accessed node
– For operation on /d1/d2/leaf, acquire read locks on /d1 and /d1/d2, and

appropriate read or write lock on /d1/d2/leaf

• File creation: read-lock on parent directory

– Concurrent updates in same directory possible, e.g.,
multiple file creations

– Locks acquired in consistent total order to prevent
deadlocks
• First ordered by level in namespace tree, then lexicographically

within same level

125

Replica Placement

• Goals: scalability, reliability, availability
• Difficult problem

– 100s of chunkservers spread across many machine racks,
accessed from 100s of clients from the same or different racks

– Communication may cross network switch(es)
– Bandwidth into or out of a rack may be less than aggregate

bandwidth of all the machines within the rack

• Spread replicas across racks
– Good: fault tolerance, reads benefit from aggregate bandwidth

of multiple racks
– Bad: writes flow through multiple racks

• Master can move replicas or create/delete them to react to
system changes and failures

126

9/29/2011

15

Lazy Garbage Collection

• File deletion immediately logged by master, but file only renamed
to hidden name
– Removed later during regular scan of file system namespace
– Batch-style process amortizes cost and is run when master load is low

• Orphaned chunks identified during regular scan of chunk
namespace

• Chunkservers report their chunks to master in HeartBeat messages
• Master replies with identities of chunks it does not know

– Chunkserver can delete them

• Simple and reliable: lost deletion messages (from master) and
failures during chunk creation no problem

• Disadvantage: difficult to finetune space usage when storage is
tight, e.g., after frequent creation/deletion of temp files
– Solution: use different policies in different parts of namespace

127

Stale Replicas

• Occur when chunkserver misses updates while it is down
• Master maintains chunk version number

– Before granting new lease on chunk, master increases its version
number

– Informs all up-to-date replicas of new number
• Master and replicas keep version number in persistent state

– This happens before client is notified and hence before it can start
updating the chunk

• When chunkservers report their chunks, they include version
numbers
– Older than on master: garbage collect it
– Newer than on master: master must have failed after granting lease;

master takes higher version to be up-to-date

• Master also includes version number in reply to client and
chunkserver during update-process related communication

128

9/29/2011

16

Achieving High Availability

• Master and chunkservers can restore state and start in
seconds

• Chunk replication

• Master replication, i.e., operation log and checkpoints

• But: only one master process
– Can restart almost immediately

– Permanent failure: monitoring infrastructure outside GFS
starts new master with replicated operation log (clients
use DNS alias)

• Shadow masters for read-only access
– May lag behind primary by fraction of a sec

129

Experiments

• Chunkserver metadata mostly checksums for 64
KB blocks
– Individual servers have 50-100 MB of metadata

– Reading this from disk during recovery is fast

130

9/29/2011

17

Results

• Clusters had been up for 1 week at time of measurement
• A’s network configuration has max read rate of 750 MB/s

– Actually reached sustained rate of 580 MB/s

• B’s peak rate is 1300 MB/s, but applications never used more than
380 MB/s

• Master not a bottleneck, despite large number of ops sent to it

131

Summary

• GFS supports large-scale data processing workloads on
commodity hardware

• Component failures treated as norm, not exception
– Constant monitoring, replicating of crucial data
– Relaxed consistency model
– Fast, automatic recovery

• Optimized for huge files, appends, large sequential
reads

• High aggregate throughput for concurrent readers and
writers
– Separation of file system control (through master) from

data transfer (between chunkservers and clients)

132

9/29/2011

18

133

Now that we covered the basics of
MapReduce, let’s look at some Hadoop
specifics.

Working With Hadoop

• Mostly based on Tom White’s book “Hadoop:
The Definitive Guide”, 2nd edition

• Note: We will use the old
org.apache.hadoop.mapred API

– New API, org.apache.hadoop.mapreduce, seems
to be incomplete and less tested at this time

– Cluster has Hadoop 0.20.2 installed

134

9/29/2011

19

Important Terminology

• NameNode daemon

– Corresponds to GFS Master

– Runs on master node of the Hadoop Distributed File
System (HDFS)

– Directs DataNodes to perform their low-level I/O tasks

• DataNode daemon

– Corresponds to GFS chunkserver

– Runs on each slave machine in the HDFS

– Does the low-level I/O work

135

Important Terminology

• Secondary NameNode daemon
– One per cluster to monitor status of HDFS

– Takes snapshots of HDFS metadata to facilitate
recovery from NameNode failure

• JobTracker daemon
– MapReduce master in Google paper

– One per cluster, usually running on master node

– Communicates with client application and controls
MapReduce execution in TaskTrackers

136

9/29/2011

20

Important Terminology

• TaskTracker daemon
– MapReduce worker in Google paper
– One TaskTracker per slave node
– Performs actual Map and Reduce execution
– Can spawn multiple JVMs to do the work

• Typical setup
– NameNode and JobTracker run on cluster head node
– DataNode and TaskTracker run on all other nodes
– Secondary NameNode runs on dedicated machine or

on cluster head node (usually not a good idea, but ok
for small clusters)

137

Anatomy of MapReduce Job Run

138

MapReduce
program

JobClient
1: run job

Client JVM

Client node

HDFS

3: copy job
resources (job
JAR, config file,
input split info)

JobTracker 5: initialize job

JobTracker node
2: get new job ID

4: submit job

TaskTracker

6: retrieve
input split
info

7.1: heartbeat
(slots free)

7.2: task

8: retrieve job resources

Child

Map or
Reduce

task

9: launch

Child JVM

10: run

TaskTracker node

Illustration based on White’s book

9/29/2011

21

Job Submission

• Client submits MapReduce job through
JobClient.runJob() call
– runJob() polls JobTracker about progress every sec,

outputs to console if changed

• Job submission process
– Get new job ID from JobTracker
– Determine input splits for job
– Copy job resources (job JAR file, configuration file,

computed input splits) to HDFS into directory named
after the job ID

– Informs JobTracker that job is ready for execution

139

Job Initialization

• JobTracker puts ready job into internal queue

• Job scheduler picks job from queue

– Initializes it by creating job object

– Creates list of tasks

• One map task for each input split

• Number of reduce tasks determined by
mapred.reduce.tasks property in JobConf

• Each task has unique ID

• Tasks need to be assigned to worker nodes

140

9/29/2011

22

Task Assignment

• TaskTrackers send heartbeat to JobTracker
– Indicate if ready to run new tasks

– Number of “slots” for tasks depends on number of
cores and memory size

• JobTracker replies with new task
– Chooses task from first job in priority-queue

• Chooses map tasks before reduce tasks

• Chooses map task whose input split location is closest to
machine running the TaskTracker instance
– Ideal case: data-local task

– Could also use other scheduling policy

141

Task Execution

• TaskTracker copies job JAR and other
configuration data (e.g., distributed cache)
from HDFS to local disk

• Creates local working directory

• Creates TaskRunner instance

• TaskRunner launches new JVM (or reuses one
from another task) to execute the JAR

142

9/29/2011

23

Monitoring Job Progress

• Tasks report progress to TaskTracker

• TaskTracker includes task progress in
heartbeat message to JobTracker

• JobTracker computes global status of job
progress

• JobClient polls JobTracker regularly for status

• Visible on console and Web UI

143

Handling Failures: Task

• Error reported to TaskTracker and logged

• Hanging task detected through timeout

• JobTracker will automatically re-schedule
failed tasks
– Tries up to mapred.map.max.attempts many times

(similar for reduce)

– Job is aborted when task failure rate exceeds
mapred.max.map.failures.percent (similar for
reduce)

144

9/29/2011

24

Handling Failures: TaskTracker and
JobTracker

• TaskTracker failure detected by JobTracker
from missing heartbeat messages

– JobTracker re-schedules map tasks and not
completed reduce tasks from that TaskTracker

• Hadoop cannot deal with JobTracker failure

– Could use Google’s proposed JobTracker take-over
idea, using ZooKeeper to make sure there is at
most one JobTracker

145

HDFS Coherency Model

• After creating a file, it is visible in the filesystem namespace
• Content written to file might not be visible, even if write

stream is flushed
– In general: current block being written is not visible to other

readers

• Use FSDataOutputStream.sync() to force all buffers to be
synced to the DataNodes
– Data written up to successful sync is persisted and visible to new

readers (closing file performs implicit sync)

• Application design implication: without calling sync, might
lose up to a block of data in event of client or system failure

• Note: new API uses hflush() and hsync() with different
guarantees

146

9/29/2011

25

Moving Data From Mappers to
Reducers

• Shuffle and sort phase = synchronization barrier
between map and reduce phase

• Often one of the most expensive parts of a
MapReduce execution

• Mappers need to separate output intended for
different reducers

• Reducers need to collect their data from all
mappers and group it by key

• Keys at each reducer are processed in order

147

Shuffle and Sort Overview

148

Input
split

M
a
p

Buffer in
memory

R
e
d
u
c
e

From other Maps

To other Reduces

merge

merge

merge

Output

Map task Reduce task
Spill files on
disk: partitioned
by reducer, each
partition sorted
by key

Spilled to a
new disk
file when
almost full

Spill files merged
into single output
file

Fetch over HTTP

Reduce task starts copying data from map task as soon as it completes. Reduce cannot start working on the data
until all mappers have finished and their data has arrived.

Merge happens in
memory if data fits,
otherwise also on disk

There are tuning parameters
to control the performance
of this crucial phase.

Illustration based on White’s book

9/29/2011

26

NCDC Weather Data Example

• Raw data has lines like these (year, temperature in
bold)
– 0067011990999991950051507004+68750+023550FM-

12+038299999V0203301N00671220001CN9999999N9+00
001+99999999999

– 0043011990999991950051512004+68750+023550FM-
12+038299999V0203201N00671220001CN9999999N9+00
221+99999999999

• Goal: find max temperature for each year
– Map: emit (year, temp) for each year
– Reduce: compute max over temp from (year, (temp,

temp,…)) list

149

Map

• Implements Hadoop’s Mapper interface
– Org.apache.hadoop.mapred.Mapper

• Parameters: input key type, input value type, output
key type, and output value type
– Input key: line’s offset in file (irrelevant)
– Input value: line from NCDC file
– Output key: year
– Output value: temperature

• Data types are optimized for network serialization
– Found in org.apache.hadoop.io package

• Work is done by the map() method

150

9/29/2011

27

Map() Method

• Input: input key type, input value type

– Line of text from NCDC file

– Converted to Java String type, then parsed to get
year and temperature

• Output: OutputCollector instance

– Uses output key and value types

• Only write (year, temp) pair if the temperature
is present and quality indicator reading is OK

151

152

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {

 private static final int MISSING = 9999;

 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter)
 throws IOException {

 String line = value.toString();
 String year = line.substring(15, 19);
 int airTemperature;
 if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
 airTemperature = Integer.parseInt(line.substring(88, 92));
 } else {
 airTemperature = Integer.parseInt(line.substring(87, 92));
 }
 String quality = line.substring(92, 93);
 if (airTemperature != MISSING && quality.matches("[01459]")) {
 output.collect(new Text(year), new IntWritable(airTemperature));
 }
 }
}

9/29/2011

28

Reduce

• Implements
org.apache.hadoop.mapred.Reducer

• Input key and value types must match Mapper
output key and value types

• Work is done by reduce() method
– Input values passed as Iterator

– Goes over all temperatures to find the max

– Result pair is passed to OutputCollector instance
• Writes result to HDFS, Hadoop’s distributed file system

153

154

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class MaxTemperatureReducer extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output, Reporter reporter)
 throws IOException {

 int maxValue = Integer.MIN_VALUE;
 while (values.hasNext()) {
 maxValue = Math.max(maxValue, values.next().get());
 }
 output.collect(key, new IntWritable(maxValue));
 }
}

9/29/2011

29

Job Configuration

• Create JobConf object to set options to control how job is run
• Specify data input path with addInputPath()

– Can be single file, directory (to use all files there), or file pattern
– Can be called multiple times to add multiple paths

• Specify output path
– Single output path, which is a directory for all output files
– Directory should not exist before running the job!

• Set mapper and reducer class to be used
• Set output key and value classes for map and reduce functions

– For reducer: setOutputKeyClass(), setOutputValueClass()
– For mapper (omit if same as reducer): setMapOutputKeyClass(),

setMapOutputValueClass()

• Can set input types similarly (default is TextInputFormat)
• JobClient.runJob() submits job and waits for it to finish

155

156

import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class MaxTemperature {

 public static void main(String[] args) throws IOException {
 if (args.length != 2) {
 System.err.println("Usage: MaxTemperature <input path> <output path>");
 System.exit(-1);
 }

 JobConf conf = new JobConf(MaxTemperature.class);
 conf.setJobName("Max temperature");

 FileInputFormat.addInputPath(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setMapperClass(MaxTemperatureMapper.class);
 conf.setReducerClass(MaxTemperatureReducer.class);

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 JobClient.runJob(conf);
 }
}

9/29/2011

30

MapReduce Development Steps

1. Write Map and Reduce functions
– Create unit tests

2. Write driver program to run a job
– Can run from IDE with small data subset for testing
– If test fails, use IDE for debugging
– Update unit tests and Map/Reduce if necessary

3. Once program works on small test set, run it on full
data set
– If there are problems, update tests and code accordingly
– IsolationRunner helps debugging cluster implementation

4. Fine-tune code, do some profiling

157

Local (Standalone) Mode

• Runs same MapReduce user program as cluster
version, but does it sequentially

• Does not use any of the Hadoop daemons

• Works directly with local file system

– No HDFS, hence no need to copy data to/from HDFS

• Great for development, testing, initial debugging

• Get Hadoop 0.20.2 and Java 1.6 to match the
current cluster installation

158

9/29/2011

31

Example Setup

• Use Eclipse without Hadoop plugin

• Create Java project and make sure Hadoop
core jar and all jars from lib directory are
added

• Run in local Hadoop mode from Eclipse
– Can also debug as usual

• Export jar file and run using hadoop jar
command outside Eclipse

• Copy jar file to cluster to run it there

159

Pseudo-Distributed Mode

• Still runs on single machine, but now
simulates a real Hadoop cluster

– Simulates multiple nodes

– Runs all daemons

– Uses HDFS

• Main purpose: more advanced testing and
debugging

• You can also set this up on your laptop

160

9/29/2011

32

Fully Distributed Mode

• Already set up for you on a cluster

• Connect to head node at 129.10.112.225

– Copy files from/to other machines using scp

– Copy file to HDFS using hadoop fs commands

– Run job jar file

• Can view HDFS status though Web UI

– Go to 129.10.112.225:50070 (only works from
inside CCIS)

161

More Details About The Cluster

• Make sure hadoop command is found
– Can add /usr/local/hadoop/bin to PATH

• Typical commandline call on cluster
– hadoop jar myJar.jar myPackagePath.WordCount

-D mapred.reduce.tasks=10 InputDir OutputDir

– Make sure JAR file is in path found by Java

• View MapReduce stats at
129.10.112.225:50030 (only works from inside
CCIS)

162

