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Semantics with Failures 

• If map and reduce are deterministic, then output 
identical to non-faulting sequential execution 
– For non-deterministic operators, different reduce 

tasks might see output of different map executions 

• Relies on atomic commit of map and reduce 
outputs 
– In-progress task writes output to private temp file 
– Mapper: on completion, send names of all temp files 

to master (master ignores if task already complete) 
– Reducer: on completion, atomically rename temp file 

to final output file (needs to be supported by 
distributed file system) 
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Practical Considerations 

• Conserve network bandwidth (“Locality optimization”) 
– Schedule map task on machine that already has a copy of the 

split, or one “nearby” 

• How to choose M (#map tasks) and R (#reduce tasks) 
– Larger M, R: smaller tasks, enabling easier load balancing and 

faster recovery (many small tasks from failed machine) 
– Limitation: O(M+R) scheduling decisions and O(MR) in-memory 

state at master; too small tasks not worth the startup cost 
– Recommendation: choose M so that split size is approx. 64 MB 
– Choose R a small multiple of number of workers; alternatively 

choose R a little smaller than #workers to finish reduce phase in 
one “wave” 

• Create backup tasks to deal with machines that take 
unusually long for the last in-progress tasks (“stragglers”) 

100 
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Refinements 

• User-defined partitioning functions for reduce tasks 

– Use this for partitioning sort 

– Default: assign key K to reduce task hash(K) mod R 

– Use hash(Hostname(urlkey)) mod R to have URLs from 
same host in same output file 

– We will see others in future lectures 

• Combiner function to reduce mapper output size 

– Pre-aggregation at mapper for reduce functions that are 
commutative and associative 

– Often (almost) same code as for reduce function 

Careful With Combiners 

• Consider Word Count, but assume we only want 
words with count > 10 
– Reducer computes total word count, only outputs if 

greater than 10 

– Combiner = Reducer? No. Combiner should not filter 
based on its local count! 

• Consider computing average of a set of numbers 
– Reducer should output average 

– Combiner has to output (sum, count) pairs to allow 
correct computation in reducer 
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Experiments 

• 1800 machine cluster 

– 2 GHz Xeon, 4 GB memory, two 160 GB IDE disks, 
gigabit Ethernet link 

– Less than 1 msec roundtrip time 

• Grep workload 

– Scan 1010 100-byte records, search for rare 3-
character pattern, occurring in 92,337 records 

– M=15,000 (64 MB splits), R=1 
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Grep Progress Over Time 

• Rate at which input is scanned as more mappers are added 
• Drops as tasks finish, done after 80 sec 
• 1 min startup overhead beforehand 

– Propagation of program to workers 
– Delays due to distributed file system for opening input files and getting 

information for locality optimization 
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Sort 

• Sort 1010 100-byte records (~1 TB of data) 

• Less than 50 lines user code 

• M=15,000 (64 MB splits), R=4000 

• Use key distribution information for intelligent 
partitioning 

• Entire computation takes 891 sec 
– 1283 sec without backup task optimization (few slow 

machines delay completion) 

– 933 sec if 200 out of 1746 workers are killed several 
minutes into computation 

MapReduce at Google (2004) 

• Machine learning algorithms, clustering 
• Data extraction for reports of popular queries 
• Extraction of page properties, e.g., geographical location 
• Graph computations 
• Google indexing system for Web search (>20 TB of data) 

– Sequence of 5-10 MapReduce operations 
– Smaller simpler code: from 3800 LOC to 700 LOC for one 

computation phase 
– Easier to change code 
– Easier to operate, because MapReduce library takes care of 

failures 
– Easy to improve performance by adding more machines 
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Summary 

• Programming model that hides details of 
parallelization, fault tolerance, locality 
optimization, and load balancing 

• Simple model, but fits many common problems 
– User writes Map and Reduce function 
– Can also provide combine and partition functions 

• Implementation on cluster scales to 1000s of 
machines 

• Open source implementation, Hadoop, is 
available 

107 
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MapReduce relies heavily on the underlying 
distributed file system. Let’s take a closer look 
to see how it works. 
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The Distributed File System 

• Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google File System. 19th ACM 
Symposium on Operating Systems Principles, 
Lake George, NY, October, 2003 
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Motivation 

• Abstraction of a single global file system greatly 
simplifies programming in MapReduce 

• MapReduce job just reads from a file and writes 
output back to a file (or multiple files) 

• Frees programmer from worrying about messy 
details 
– How many chunks to create and where to store them 

– Replicating chunks and dealing with failures 

– Coordinating concurrent file access at low level 

– Keeping track of the chunks 
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Google File System (GFS) 

• GFS in 2003: 1000s of storage nodes, 300 TB 
disk space, heavily accessed by 100s of clients 

• Goals: performance, scalability, reliability, 
availability 

• Differences compared to other file systems 
– Frequent component failures 

– Huge files (multi-GB or even TB common) 

– Workload properties 
• Design system to make important operations efficient 
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Data and Workload Properties 

• Modest number of large files 
– Few million files, most 100 MB+ 
– Manage multi-GB files efficiently 

• Reads: large streaming (1 MB+) or small random (few 
KBs) 

• Many large sequential append writes, few small writes 
at arbitrary positions 

• Concurrent append operations 
– E.g., Producer-consumer queues or many-way merging 

• High sustained bandwidth more important than low 
latency 
– Bulk data processing 
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File System Interface 

• Like typical file system interface 

– Files organized in directories 

– Operations: create, delete, open, close, read, 
write 

• Special operations 

– Snapshot: creates copy of file or directory tree at 
low cost 

– Record append: concurrent append guaranteeing 
atomicity of each individual client’s append 
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Architecture Overview 

• 1 master, multiple chunkservers, many clients 

– All are commodity Linux machines 

• Files divided into fixed-size chunks 

– Stored on chunkservers’ local disks as Linux files 

– Replicated on multiple chunkservers 

• Master maintains all file system metadata: 
namespace, access control info, mapping from 
files to chunks, chunk locations 
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Why a Single Master? 

• Simplifies design 

• Master can make decisions with global 
knowledge 

• Potential problems: 

– Can become bottleneck 

• Avoid file reads and writes through master 

– Single point of failure 

• Ensure quick recovery 
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High-Level Functionality 

• Master controls system-wide activities like chunk lease 
management, garbage collection, chunk migration 

• Master communicates with chunkservers through 
HeartBeat messages to give instructions and collect 
state 

• Clients get metadata from master, but access files 
directly through chunkservers 

• No GFS-level file caching 
– Little benefit for streaming access or large working set 

– No cache coherence issues 

– On chunkserver, standard Linux file caching is sufficient 
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Read Operation 

• Client: from (file, offset), compute chunk index, then get chunk locations 
from master 
– Client buffers location info for some time 

• Client requests data from nearby chunkserver 
– Future requests use cached location info 

• Optimization: batch requests for multiple chunks into single request 
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Chunk Size 

• 64 MB, stored as Linux file on a chunkserver 
• Advantages of large chunk size 

– Fewer interactions with master (recall: large sequential reads 
and writes) 

– Smaller chunk location information 
• Smaller metadata at master, might even fit in main memory 
• Can be cached at client even for TB-size working sets 

– Many accesses to same chunk, hence client can keep persistent 
TCP connection to chunkserver 

• Disadvantage: fewer chunks => fewer options for load 
balancing 
– Fixable with higher replication factor 
– Address hotspots by letting clients read from other clients 
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Practical Considerations 

• Number of chunks is limited by master’s memory 
size 
– Only 64 bytes metadata per 64 MB chunk; most 

chunks full 
– Less than 64 bytes namespace data per file 

• Chunk location information at master is not 
persistent 
– Master polls chunkservers at startup, then updates 

info because it controls chunk placement 
– Eliminates problem of keeping master and 

chunkservers in sync (frequent chunkserver failures, 
restarts) 
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Consistency Model 

• GFS uses a relaxed consistency model 

• File namespace updates are atomic (e.g., file 
creation) 

– Only handled by master, using locking 

– Operations log defines global total order 

• State of file region after update 

– Consistent: all clients will always see the same data, 
regardless which chunk replica they access 

– Defined: consistent and reflecting the entire update 
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Relaxed Consistency 

• GFS guarantees that after a sequence of successful 
updates, the updated file region is defined and 
contains the data of the last update 
– Applies updates to all chunk replica in same order 
– Uses chunk version numbers to detect stale replica (when 

chunk server was down during update) 

• Stale replica are never involved in an update or given 
to clients asking the master for chunk locations 

• But, client might read from stale replica when it uses 
cached chunk location data 
– Not all clients read the same data 
– Can address this problem for append-only updates 
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Leases, Update Order 

• Leases used for consistent update order across 
replicas 
– Master grants lease to one replica (primary) 
– Primary picks serial update order 
– Other replicas follow this order 

• Lease has initial timeout of 60 sec, but primary 
can request extensions from master 
– Piggybacked on HeartBeat messages 
– Master can revoke lease (e.g., to rename file) 
– If no communication with primary, then master grants 

new lease after old one expires 
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Updating a Chunk 

1. Who has lease? 
2. Identity of primary and 

secondary replicas 
3. Push data to all replicas 
4. After receiving all acks, send 

write request to primary who 
assigns it a serial number 

5. Primary forwards write request 
to all other replicas 

6. Secondaries ack update success 
7. Primary replies to client 

1. Also reports errors 
2. Client retries steps 3-7 on error 
 

• Large writes broken down into 
chunks 

Data Flow 

• Decoupled from control flow for efficient network use 

• Data pipelined linearly along chain of chunkservers 
– Full outbound bandwidth for fastest transfer (instead of 

dividing it in non-linear topology) 

– Avoids network bottlenecks by forwarding to “next 
closest” destination machine 

– Minimizes latency: once chunkserver receives data, it 
starts forwarding immediately 
• Switched network with full-duplex links 

• Sending does not reduce receive rate 

• 1 MB distributable in 80 msec 
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Namespace Management 

• Want to support concurrent master operations 
• Solution: locks on regions of namespace for proper 

serialization 
– Read-write lock for each node in namespace tree 

• Operations lock all nodes on path to accessed node 
– For operation on /d1/d2/leaf, acquire read locks on /d1 and /d1/d2, and 

appropriate read or write lock on /d1/d2/leaf 

• File creation: read-lock on parent directory 

– Concurrent updates in same directory possible, e.g., 
multiple file creations 

– Locks acquired in consistent total order to prevent 
deadlocks 
• First ordered by level in namespace tree, then lexicographically 

within same level 
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Replica Placement 

• Goals: scalability, reliability, availability 
• Difficult problem 

– 100s of chunkservers spread across many machine racks, 
accessed from 100s of clients from the same or different racks 

– Communication may cross network switch(es) 
– Bandwidth into or out of a rack may be less than aggregate 

bandwidth of all the machines within the rack 

• Spread replicas across racks 
– Good: fault tolerance, reads benefit from aggregate bandwidth 

of multiple racks 
– Bad: writes flow through multiple racks 

• Master can move replicas or create/delete them to react to 
system changes and failures 
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Lazy Garbage Collection 

• File deletion immediately logged by master, but file only renamed 
to hidden name 
– Removed later during regular scan of file system namespace 
– Batch-style process amortizes cost and is run when master load is low 

• Orphaned chunks identified during regular scan of chunk 
namespace 

• Chunkservers report their chunks to master in HeartBeat messages 
• Master replies with identities of chunks it does not know 

– Chunkserver can delete them 

• Simple and reliable: lost deletion messages (from master) and 
failures during chunk creation no problem 

• Disadvantage: difficult to finetune space usage when storage is 
tight, e.g., after frequent creation/deletion of temp files 
– Solution: use different policies in different parts of namespace 
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Stale Replicas 

• Occur when chunkserver misses updates while it is down 
• Master maintains chunk version number 

– Before granting new lease on chunk, master increases its version 
number 

– Informs all up-to-date replicas of new number 
• Master and replicas keep version number in persistent state 

– This happens before client is notified and hence before it can start 
updating the chunk 

• When chunkservers report their chunks, they include version 
numbers 
– Older than on master: garbage collect it 
– Newer than on master: master must have failed after granting lease; 

master takes higher version to be up-to-date 

• Master also includes version number in reply to client and 
chunkserver during update-process related communication 
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Achieving High Availability 

• Master and chunkservers can restore state and start in 
seconds 

• Chunk replication 

• Master replication, i.e., operation log and checkpoints 

• But: only one master process 
– Can restart almost immediately 

– Permanent failure: monitoring infrastructure outside GFS 
starts new master with replicated operation log (clients 
use DNS alias) 

• Shadow masters for read-only access 
– May lag behind primary by fraction of a sec 
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Experiments 

• Chunkserver metadata mostly checksums for 64 
KB blocks 
– Individual servers have 50-100 MB of metadata 

– Reading this from disk during recovery is fast 
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Results 

• Clusters had been up for 1 week at time of measurement 
• A’s network configuration has max read rate of 750 MB/s 

– Actually reached sustained rate of 580 MB/s 

• B’s peak rate is 1300 MB/s, but applications never used more than 
380 MB/s 

• Master not a bottleneck, despite large number of ops sent to it 
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Summary 

• GFS supports large-scale data processing workloads on 
commodity hardware 

• Component failures treated as norm, not exception 
– Constant monitoring, replicating of crucial data 
– Relaxed consistency model 
– Fast, automatic recovery 

• Optimized for huge files, appends, large sequential 
reads 

• High aggregate throughput for concurrent readers and 
writers 
– Separation of file system control (through master) from 

data transfer (between chunkservers and clients) 
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Now that we covered the basics of 
MapReduce, let’s look at some Hadoop 
specifics. 

Working With Hadoop 

• Mostly based on Tom White’s book “Hadoop: 
The Definitive Guide”, 2nd edition 

 

• Note: We will use the old 
org.apache.hadoop.mapred API 

– New API, org.apache.hadoop.mapreduce, seems 
to be incomplete and less tested at this time 

– Cluster has Hadoop 0.20.2 installed 

134 



9/29/2011 

19 

Important Terminology 

• NameNode daemon 

– Corresponds to GFS Master 

– Runs on master node of the Hadoop Distributed File 
System (HDFS) 

– Directs DataNodes to perform their low-level I/O tasks 

• DataNode daemon 

– Corresponds to GFS chunkserver 

– Runs on each slave machine in the HDFS 

– Does the low-level I/O work 
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Important Terminology 

• Secondary NameNode daemon 
– One per cluster to monitor status of HDFS 

– Takes snapshots of HDFS metadata to facilitate 
recovery from NameNode failure 

• JobTracker daemon 
–  MapReduce master in Google paper 

– One per cluster, usually running on master node 

– Communicates with client application and controls 
MapReduce execution in TaskTrackers 
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Important Terminology 

• TaskTracker daemon 
– MapReduce worker in Google paper 
– One TaskTracker per slave node 
– Performs actual Map and Reduce execution 
– Can spawn multiple JVMs to do the work 

• Typical setup 
– NameNode and JobTracker run on cluster head node 
– DataNode and TaskTracker run on all other nodes 
– Secondary NameNode runs on dedicated machine or 

on cluster head node (usually not a good idea, but ok 
for small clusters) 
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Anatomy of MapReduce Job Run 

138 

MapReduce 
program 

JobClient 
1: run job 

Client JVM 

Client node 

HDFS 

3: copy job 
resources (job 
JAR, config file, 
input split info) 

JobTracker 5: initialize job 

JobTracker node 
2: get new job ID 

4: submit job 

TaskTracker 

6: retrieve 
input split 
info 

7.1: heartbeat 
(slots free) 

7.2: task 

8: retrieve job resources 

Child 

Map or 
Reduce 

task 

9: launch 

Child JVM 

10: run 

TaskTracker node 

Illustration based on White’s book 
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Job Submission 

• Client submits MapReduce job through 
JobClient.runJob() call 
– runJob() polls JobTracker about progress every sec, 

outputs to console if changed 

• Job submission process 
– Get new job ID from JobTracker 
– Determine input splits for job 
– Copy job resources (job JAR file, configuration file, 

computed input splits) to HDFS into directory named 
after the job ID 

– Informs JobTracker that job is ready for execution 
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Job Initialization 

• JobTracker puts ready job into internal queue 

• Job scheduler picks job from queue 

– Initializes it by creating job object 

– Creates list of tasks 

• One map task for each input split 

• Number of reduce tasks determined by 
mapred.reduce.tasks property in JobConf 

• Each task has unique ID 

• Tasks need to be assigned to worker nodes 
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Task Assignment 

• TaskTrackers send heartbeat to JobTracker 
– Indicate if ready to run new tasks 

– Number of “slots” for tasks depends on number of 
cores and memory size 

• JobTracker replies with new task 
– Chooses task from first job in priority-queue 

• Chooses map tasks before reduce tasks 

• Chooses map task whose input split location is closest to 
machine running the TaskTracker instance 
– Ideal case: data-local task 

– Could also use other scheduling policy 
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Task Execution 

• TaskTracker copies job JAR and other 
configuration data (e.g., distributed cache) 
from HDFS to local disk 

• Creates local working directory 

• Creates TaskRunner instance 

• TaskRunner launches new JVM (or reuses one 
from another task) to execute the JAR 
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Monitoring Job Progress 

• Tasks report progress to TaskTracker 

• TaskTracker includes task progress in 
heartbeat message to JobTracker 

• JobTracker computes global status of job 
progress 

• JobClient polls JobTracker regularly for status 

• Visible on console and Web UI 
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Handling Failures: Task 

• Error reported to TaskTracker and logged 

• Hanging task detected through timeout 

• JobTracker will automatically re-schedule 
failed tasks 
– Tries up to mapred.map.max.attempts many times 

(similar for reduce) 

– Job is aborted when task failure rate exceeds 
mapred.max.map.failures.percent (similar for 
reduce) 
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Handling Failures: TaskTracker and 
JobTracker 

• TaskTracker failure detected by JobTracker 
from missing heartbeat messages 

– JobTracker re-schedules map tasks and not 
completed reduce tasks from that TaskTracker 

• Hadoop cannot deal with JobTracker failure 

– Could use Google’s proposed JobTracker take-over 
idea, using ZooKeeper to make sure there is at 
most one JobTracker 
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HDFS Coherency Model 

• After creating a file, it is visible in the filesystem namespace 
• Content written to file might not be visible, even if write 

stream is flushed 
– In general: current block being written is not visible to other 

readers 

• Use FSDataOutputStream.sync() to force all buffers to be 
synced to the DataNodes 
– Data written up to successful sync is persisted and visible to new 

readers (closing file performs implicit sync) 

• Application design implication: without calling sync, might 
lose up to a block of data in event of client or system failure 

• Note: new API uses hflush() and hsync() with different 
guarantees 
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Moving Data From Mappers to 
Reducers 

• Shuffle and sort phase = synchronization barrier 
between map and reduce phase 

• Often one of the most expensive parts of a 
MapReduce execution 

• Mappers need to separate output intended for 
different reducers 

• Reducers need to collect their data from all 
mappers and group it by key 

• Keys at each reducer are processed in order 
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Shuffle and Sort Overview 
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Input 
split 

M
a
p 

Buffer in 
memory 

R
e
d
u
c
e 

From other Maps 

To other Reduces 

merge 

merge 

merge 

Output 

Map task Reduce task 
Spill files on 
disk: partitioned 
by reducer, each 
partition sorted 
by key 

Spilled to a 
new disk 
file when 
almost full 

Spill files merged 
into single output 
file 

Fetch over HTTP 

Reduce task starts copying data from map task as soon as it completes. Reduce cannot start working on the data 
until all mappers have finished and their data has arrived. 

Merge happens in 
memory if data fits, 
otherwise also on disk 

There are tuning parameters 
to control the performance 
of this crucial phase. 

Illustration based on White’s book 
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NCDC Weather Data Example 

• Raw data has lines like these (year, temperature in 
bold) 
– 0067011990999991950051507004+68750+023550FM-

12+038299999V0203301N00671220001CN9999999N9+00
001+99999999999 

– 0043011990999991950051512004+68750+023550FM-
12+038299999V0203201N00671220001CN9999999N9+00
221+99999999999 

• Goal: find max temperature for each year 
– Map: emit (year, temp) for each year 
– Reduce: compute max over temp from (year, (temp, 

temp,…)) list 
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Map 

• Implements Hadoop’s Mapper interface 
– Org.apache.hadoop.mapred.Mapper 

• Parameters: input key type, input value type, output 
key type, and output value type 
– Input key: line’s offset in file (irrelevant) 
– Input value: line from NCDC file 
– Output key: year 
– Output value: temperature 

• Data types are optimized for network serialization 
– Found in org.apache.hadoop.io package 

• Work is done by the map() method 
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Map() Method 

• Input: input key type, input value type 

– Line of text from NCDC file 

– Converted to Java String type, then parsed to get 
year and temperature 

• Output: OutputCollector instance 

– Uses output key and value types 

• Only write (year, temp) pair if the temperature 
is present and quality indicator reading is OK 
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import java.io.IOException; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapred.MapReduceBase; 
import org.apache.hadoop.mapred.Mapper; 
import org.apache.hadoop.mapred.OutputCollector; 
import org.apache.hadoop.mapred.Reporter; 
 
public class MaxTemperatureMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { 
 
  private static final int MISSING = 9999; 
   
  public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) 
      throws IOException { 
     
    String line = value.toString(); 
    String year = line.substring(15, 19); 
    int airTemperature; 
    if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs 
      airTemperature = Integer.parseInt(line.substring(88, 92)); 
    } else { 
      airTemperature = Integer.parseInt(line.substring(87, 92)); 
    } 
    String quality = line.substring(92, 93); 
    if (airTemperature != MISSING && quality.matches("[01459]")) { 
      output.collect(new Text(year), new IntWritable(airTemperature)); 
    } 
  } 
} 



9/29/2011 

28 

Reduce 

• Implements 
org.apache.hadoop.mapred.Reducer 

• Input key and value types must match Mapper 
output key and value types 

• Work is done by reduce() method 
– Input values passed as Iterator 

– Goes over all temperatures to find the max 

– Result pair is passed to OutputCollector instance 
• Writes result to HDFS, Hadoop’s distributed file system 

153 

154 

import java.io.IOException; 
import java.util.Iterator; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapred.MapReduceBase; 
import org.apache.hadoop.mapred.OutputCollector; 
import org.apache.hadoop.mapred.Reducer; 
import org.apache.hadoop.mapred.Reporter; 
 
public class MaxTemperatureReducer extends MapReduceBase 
  implements Reducer<Text, IntWritable, Text, IntWritable> { 
 
  public void reduce(Text key, Iterator<IntWritable> values, 
      OutputCollector<Text, IntWritable> output, Reporter reporter) 
      throws IOException { 
     
    int maxValue = Integer.MIN_VALUE; 
    while (values.hasNext()) { 
      maxValue = Math.max(maxValue, values.next().get()); 
    } 
    output.collect(key, new IntWritable(maxValue)); 
  } 
} 
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Job Configuration 

• Create JobConf object to set options to control how job is run 
• Specify data input path with addInputPath() 

– Can be single file, directory (to use all files there), or file pattern 
– Can be called multiple times to add multiple paths 

• Specify output path 
– Single output path, which is a directory for all output files 
– Directory should not exist before running the job! 

• Set mapper and reducer class to be used 
• Set output key and value classes for map and reduce functions 

– For reducer: setOutputKeyClass(), setOutputValueClass() 
– For mapper (omit if same as reducer): setMapOutputKeyClass(), 

setMapOutputValueClass() 

• Can set input types similarly (default is TextInputFormat) 
• JobClient.runJob() submits job and waits for it to finish 
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import java.io.IOException; 
 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapred.FileInputFormat; 
import org.apache.hadoop.mapred.FileOutputFormat; 
import org.apache.hadoop.mapred.JobClient; 
import org.apache.hadoop.mapred.JobConf; 
 
public class MaxTemperature { 
 
  public static void main(String[] args) throws IOException { 
    if (args.length != 2) { 
      System.err.println("Usage: MaxTemperature <input path> <output path>"); 
      System.exit(-1); 
    } 
     
    JobConf conf = new JobConf(MaxTemperature.class); 
    conf.setJobName("Max temperature"); 
 
    FileInputFormat.addInputPath(conf, new Path(args[0])); 
    FileOutputFormat.setOutputPath(conf, new Path(args[1])); 
     
    conf.setMapperClass(MaxTemperatureMapper.class); 
    conf.setReducerClass(MaxTemperatureReducer.class); 
 
    conf.setOutputKeyClass(Text.class); 
    conf.setOutputValueClass(IntWritable.class); 
 
    JobClient.runJob(conf); 
  } 
} 



9/29/2011 

30 

MapReduce Development Steps 

1. Write Map and Reduce functions 
– Create unit tests 

2. Write driver program to run a job 
– Can run from IDE with small data subset for testing 
– If test fails, use IDE for debugging 
– Update unit tests and Map/Reduce if necessary 

3. Once program works on small test set, run it on full 
data set 
– If there are problems, update tests and code accordingly 
– IsolationRunner helps debugging cluster implementation 

4. Fine-tune code, do some profiling 
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Local (Standalone) Mode 

• Runs same MapReduce user program as cluster 
version, but does it sequentially 

• Does not use any of the Hadoop daemons 

• Works directly with local file system 

– No HDFS, hence no need to copy data to/from HDFS 

• Great for development, testing, initial debugging 

• Get Hadoop 0.20.2 and Java 1.6 to match the 
current cluster installation 
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Example Setup 

• Use Eclipse without Hadoop plugin 

• Create Java project and make sure Hadoop 
core jar and all jars from lib directory are 
added 

• Run in local Hadoop mode from Eclipse 
– Can also debug as usual 

• Export jar file and run using hadoop jar 
command outside Eclipse 

• Copy jar file to cluster to run it there 

159 

Pseudo-Distributed Mode 

• Still runs on single machine, but now 
simulates a real Hadoop cluster 

– Simulates multiple nodes 

– Runs all daemons 

– Uses HDFS 

• Main purpose: more advanced testing and 
debugging 

• You can also set this up on your laptop 
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Fully Distributed Mode 

• Already set up for you on a cluster 

• Connect to head node at 129.10.112.225 

– Copy files from/to other machines using scp 

– Copy file to HDFS using hadoop fs commands 

– Run job jar file 

• Can view HDFS status though Web UI 

– Go to 129.10.112.225:50070 (only works from 
inside CCIS) 
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More Details About The Cluster 

• Make sure hadoop command is found 
– Can add /usr/local/hadoop/bin to PATH 

• Typical commandline call on cluster 
– hadoop jar myJar.jar myPackagePath.WordCount 

-D mapred.reduce.tasks=10 InputDir OutputDir 

– Make sure JAR file is in path found by Java 

• View MapReduce stats at 
129.10.112.225:50030 (only works from inside 
CCIS) 
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