
9/22/2011 

1 

Grep 

• Find all lines matching some pattern 

• No need to combine anything 

– Reduce is not needed, i.e., just identity function 

• Map takes line and outputs it if it matches the 
pattern 

• Map could also take an entire document and emit 
all matching lines 

– Not a good idea if there is a single large document, 
but works well if there are many documents 

87 

URL Access Frequency 

• Web log shows individual URL accesses 

• Essentially the same Word Count 

• Map can work with individual URL access 
records, or with an entire log file 

– Word Count analogy: work with individual words 
or with documents 

• Reduce combines the partial counts for each 
URL 

88 

Reverse Web-Link Graph 

• For each URL, find all pages (URLs) pointing to it 
(incoming links) 

• Problem: Web page has only outgoing links 

• Need all (anySource, P) links for each page P 
– Suggests Reduce with P as the key, source as value 

• Map: for page source, create all (target, source) 
pairs for each link to a target found in page 

• Reduce: since target is key, will receive all sources 
pointing to that target 

89 

Inverted Index 

• For each word, create list of documents 
(document IDs) containing it 

• Same as reverse Web-link graph problem 
– “Source URL” is now “document ID” 

– “Target URL” is now “word” 

• Can augment this to create list of (document 
ID, position) pairs for each word 
– Map emits (word, (document ID, position)) while 

parsing a document 

90 

Distributed Sorting 

• Does not look like a good match for MapReduce 
• Send arbitrary data subset to reduce task? 

– How to merge them? Need another MapReduce 
phase. 

• Can Map do pre-sorting and Reduce the merging? 
– Use set of input records as Map input 
– Map pre-sorts it and single reducer merges them 
– Does not scale! 

• We need to get multiple reducers involved 
– What should we use as the intermediate key? 

91 

Distributed Sorting, Revisited 

• MapReduce environment guarantees that for 
each reduce task the assigned set of intermediate 
keys is processed in key order 
– After receiving all (key2, val2) pairs from mappers, 

reducer sorts them by key2, then calls Reduce on each 
(key2, list(val2)) group 

• Can leverage this guarantee for sorting 
– Map outputs (sortKey, record) for each record 
– Reduce simply emits the records unchanged 
– Make sure there is only a single reducer machine 

• So far so good, but this still does not scale 

92 



9/22/2011 

2 

Distributed Sorting, Revisited Again 

• Quicksort-style partitioning 

• For simplicity, consider case with 2 machines 
– Goal: each machine sorts about half of the data 

• Assuming we can find the median record, assign 
all smaller records to machine 1, all others to 
machine 2 
– Can find approximate median by using random 

sampling 

• Sort locally on each machine, then “concatenate” 
output 

93 

Partitioning Sort in MapReduce 

• Consider 2 reducers for simplicity 
• Run MapReduce job to find approximate median 

of data 
– Hadoop also offers InputSampler 

• Runs on client and is only useful if data is sampled from few 
splits, i.e., splits themselves should contain random data 
samples 

• Map outputs (sortKey, record) for an input record 
• All sortKey < median are assigned to reduce task 

1, all others to reduce task 2 
• Reduce just outputs the record component 

94 

Partitioning Sort in MapReduce 

• Why does this work? 

• Machine 1 gets all records less than median and 
sorts them correctly because it sorts by key 

• Machine 2 similarly produces a sorted list of all 
records greater than or equal to median 

• What about concatenating the output? 
– Not necessary, except for many small files (big files are 

broken up anyway) 

• Generalizes obviously to more reducers 

95 

Handling Mapper Failures 

• Master pings every worker periodically 
• Workers who do not respond in time are marked 

as failed 
• Mapper’s in-progress and completed tasks are 

reset to idle state 
– Can be assigned to other mapper 
– Completed tasks are re-executed because result is 

stored on mapper’s local disk 

• Reducers are notified about mapper failure, so 
that they can read the data from the replacement 
mapper 

96 

Handling Reducer Failures 

• Failed reducers identified through ping as well 

• Reducer’s in-progress tasks are reset to idle 
state 

– Can be assigned to other reducer 

– No need to restart completed reduce tasks, 
because result is written to distributed file system 

97 

Handling Master Failure 

• Failure unlikely, because it is just a single 
machine 

• Can simply abort MapReduce computation 

– Users re-submit aborted jobs when new master 
process is up 

• Alternative: master writes periodic 
checkpoints of its data structures so that it can 
be re-started from checkpointed state 

98 


