9/22/2011

Grep

Find all lines matching some pattern

No need to combine anything

— Reduce is not needed, i.e., just identity function

Map takes line and outputs it if it matches the
pattern

Map could also take an entire document and emit
all matching lines

— Not a good idea if there is a single large document,
but works well if there are many documents

URL Access Frequency

Web log shows individual URL accesses

Essentially the same Word Count

Map can work with individual URL access

records, or with an entire log file

— Word Count analogy: work with individual words
or with documents

* Reduce combines the partial counts for each

URL

Reverse Web-Link Graph

For each URL, find all pages (URLs) pointing to it
(incoming links)

Problem: Web page has only outgoing links
Need all (anySource, P) links for each page P

— Suggests Reduce with P as the key, source as value
Map: for page source, create all (target, source)
pairs for each link to a target found in page

Reduce: since target is key, will receive all sources
pointing to that target

Inverted Index

* For each word, create list of documents
(document IDs) containing it

* Same as reverse Web-link graph problem
— “Source URL” is now “document ID”
— “Target URL” is now “word”

* Can augment this to create list of (document
ID, position) pairs for each word

— Map emits (word, (document ID, position)) while
parsing a document

Distributed Sorting

Does not look like a good match for MapReduce
Send arbitrary data subset to reduce task?

— How to merge them? Need another MapReduce
phase.

Can Map do pre-sorting and Reduce the merging?
— Use set of input records as Map input

— Map pre-sorts it and single reducer merges them

— Does not scale!

We need to get multiple reducers involved

— What should we use as the intermediate key?

Distributed Sorting, Revisited

* MapReduce environment guarantees that for
each reduce task the assigned set of intermediate
keys is processed in key order
— After receiving all (key2, val2) pairs from mappers,

reducer sorts them by key2, then calls Reduce on each
(key2, list(val2)) group

* Can leverage this guarantee for sorting
— Map outputs (sortKey, record) for each record
— Reduce simply emits the records unchanged
— Make sure there is only a single reducer machine

* So far so good, but this still does not scale




9/22/2011

Distributed Sorting, Revisited Again

* Quicksort-style partitioning

* For simplicity, consider case with 2 machines
— Goal: each machine sorts about half of the data

* Assuming we can find the median record, assign
all smaller records to machine 1, all others to
machine 2
— Can find approximate median by using random

sampling

* Sort locally on each machine, then “concatenate”

output

Partitioning Sort in MapReduce

Consider 2 reducers for simplicity
Run MapReduce job to find approximate median
of data

— Hadoop also offers InputSampler

* Runs on client and is only useful if data is sampled from few
splits, i.e., splits themselves should contain random data
samples

Map outputs (sortKey, record) for an input record

All sortKey < median are assigned to reduce task
1, all others to reduce task 2

Reduce just outputs the record component

Partitioning Sort in MapReduce

* Why does this work?

* Machine 1 gets all records less than median and
sorts them correctly because it sorts by key

* Machine 2 similarly produces a sorted list of all
records greater than or equal to median

* What about concatenating the output?

— Not necessary, except for many small files (big files are
broken up anyway)

* Generalizes obviously to more reducers

Handling Mapper Failures

Master pings every worker periodically

Workers who do not respond in time are marked

as failed

Mapper’s in-progress and completed tasks are

reset to idle state

— Can be assigned to other mapper

— Completed tasks are re-executed because result is
stored on mapper’s local disk

Reducers are notified about mapper failure, so

that they can read the data from the replacement

mapper

Handling Reducer Failures

* Failed reducers identified through ping as well
* Reducer’s in-progress tasks are reset to idle
state
— Can be assigned to other reducer

— No need to restart completed reduce tasks,
because result is written to distributed file system

Handling Master Failure

Failure unlikely, because it is just a single
machine

Can simply abort MapReduce computation

— Users re-submit aborted jobs when new master
process is up

Alternative: master writes periodic

checkpoints of its data structures so that it can

be re-started from checkpointed state




