9/15/2011

Parallel Nested Loops

For each tuple s;in S
— Foreach tuple t;in T

* If s=t;, then add (s t;) to output
Create partitions S, S,, T, and T,
Have processors work on (S;,T,), (S,,T,), (S,,T;), and
(S,T2)
— Can build appropriate local index on chunk if desired
Nice and easy, but...
— How to choose chunk sizes for given S, T, and #processors?
— There is data duplication, possibly a lot of it

* Especially undesirable for highly selective joins with small result

Parallel Partition-Based

Create n partitions of S by hashing each S-tuple s, e.g., to
bucket number (s mod n)

Create n partitions of T in the same way
Run join algorithm on each pair of corresponding partitions

Can create partitions of S and T in parallel

Choose n = number of processors

Each processor locally can choose favorite join algorithm
No data replication, but...

— Does not work well for skewed data

— Limited parallelism if range of values is small

More Join Thoughts

What about non-equi join?

— Find pairs (s, t;) that satisfy a predicate like
inequality, band, or similarity (e.g., when s and t
are documents)

Hash-partitioning will not work any more
Now things are becoming really tricky...

We will discuss these issues in a future
lecture.

Median

Find the median of a set of integers

Holistic aggregate function

— Chunk assigned to a processor might contain
mostly smaller or mostly larger values, and the
processor does not know this without
communicating extensively with the others

Parallel implementation might not do much

better than sequential one

Efficient approximation algorithms exist

Parallel Office Tools

Parallelize Word, Excel, email client?
Impossible without rewriting them as multi-
threaded applications

— Seem to naturally have low degree of parallelism
Leverage economies of scale: n processors (or
cores) support n desktop users by hosting the
service in the Cloud

— E.g., Google docs

Before exploring parallel algorithms in more
depth, how do we know if our parallel
algorithm or implementation actually does
well or not?

9/15/2011

Measures Of Success

* If sequential version takes time t, then parallel
version on n processors should take time t/n
— Speedup = sequentialTime / parallelTime
— Note: job, i.e., work to be done, is fixed

Response time should stay constant if number of
processors increases at same rate as “amount of
work”

— Scaleup = workDoneParallel / workDoneSequential

— Note: time to work on job is fixed

Things to Consider: Amdahl’s Law

Consider job taking sequential time 1 and
consisting of two sequential tasks taking time t,
and 1-t;, respectively

Assume we can perfectly parallelize the first task
on n processors

— Parallel time: t;/n + (1-t,)

Speedup =1/ (1-t,(n-1)/n)

—t,=0.9, n=2: speedup = 1.81

—t,=0.9, n=10: speedup =5.3

—1,=0.9, n=100: speedup = 9.2

— Max. possible speedup for t,=0.9 is 1/(1-0.9) = 10

Implications of Amdahl’s Law

Parallelize the tasks that take the longest
Sequential steps limit maximum possible speedup

— Communication between tasks, e.g., to transmit
intermediate results, can inherently limit speedup, no
matter how well the tasks themselves can be
parallelized

If fraction x of the job is inherently sequential,
speedup can never exceed 1/x

— No point running this on an excessive number of
processors

Performance Metrics

Total execution time

— Part of both speedup and scaleup

Total resources (maybe only of type X)
consumed

Total amount of money paid

Total energy consumed

Optimize some combination of the above

— E.g., minimize total execution time, subject to a
money budget constraint

Popular Strategies

Load balancing
— Avoid overloading one processor while other is idle

— Careful: if better balancing increases total load, it
might not be worth it

— Careful: optimizes for response time, but not
necessarily other metrics like $ paid

* Static load balancing

— Need cost analyzer like in DBMS
* Dynamic load balancing

— Easy: Web search

— Hard: join

Let’s see how MapReduce works.

9/15/2011

MapReduce

* Proposed by Google in research paper

— Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters.
0OSDI'04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA,
December, 2004

* MapReduce implementations like Hadoop
differ in details, but main principles are the
same

Overview

* MapReduce = programming model and
associated implementation for processing large
data sets

* Programmer essentially just specifies two
(sequential) functions: map and reduce

* Program execution is automatically parallelized
on large clusters of commodity PCs

— MapReduce could be implemented on different
architectures, but Google proposed it for clusters

Overview

Clever abstraction that is a good fit for many
real-world problems

* Programmer focuses on algorithm itself

* Runtime system takes care of all messy details
— Partitioning of input data

— Scheduling program execution

— Handling machine failures

— Managing inter-machine communication

Programming Model

Transforms set of input key-value pairs to set of

output values (notice small modification

compared to paper)

* Map: (k1, v1) — list (k2, v2)

* MapReduce library groups all intermediate pairs
with same key together

* Reduce: (k2, list (v2)) — list (k3, v3)

— Usually zero or one output value per group

— Intermediate values supplied via iterator (to handle
lists that do not fit in memory)

Example: Word Count

Insight: can count each document in parallel, then
aggregate counts
Final aggregation has to happen in Reduce

— Need count per word, hence use word itself as
intermediate key (k2)

— Intermediate counts are the intermediate values (v2)
Parallel counting can happen in Map

— For each document, output set of pairs, each being a word
in the document and its frequency of occurrence in the
document

— Alternative: output (word, “1”) for each word encountered

Word Count in MapReduce

Count number of occurrences of each word in a document collection:

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each vin values:
result += Parselnt(v);
Emit(AsString(result));

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, "1");

Almost all the coding needed
(need also MapReduce specification object with names of input and
output files, and optional tuning parameters)

9/15/2011

Execution Overview

* Data is stored in files
— Files are partitioned into smaller splits, typically 64MB
— Splits are stored (usually also replicated) on different

cluster machines

* Master node controls program execution and
keeps track of progress
— Does not participate in data processing

* Some workers will execute the Map function, let’s
call them mappers

* Some workers will execute the Reduce function,
let’s call them reducers

Execution Overview

Master assigns map and reduce tasks to workers, taking
data location into account

Mapper reads an assigned file split and writes intermediate
key-value pairs to local disk

Mapper informs master about result locations, who in turn
informs the reducers

Reducers pull data from appropriate mapper disk location
After map phase is completed, reducers sort their data by
key

For each key, Reduce function is executed and output is
appended to final output file

When all reduce tasks are completed, master wakes up
user program

Execution Overview

oatput
file 1

Input Map Intermediste files Reduce Output
files phusc ton loxal disks) pliase filcs

Master Data Structures

Master keeps track of status of each map and
reduce task and who is working on it

— Idle, in-progress, or completed

Master stores location and size of output of
each completed map task

— Pushes information incrementally to workers with
in-progress reduce tasks

Example: Equi-Join

* Given two data sets S=(s,,s,,...) and T=(t,t,,...)
of integers, find all pairs (s, t;) where s.A=t,. A
* Can only combine the s; and t; in Reduce

— To ensure that the right tuples end up in the same
Reduce invocation, use join attribute A as
intermediate key (k2)

— Intermediate value is actual tuple to be joined
* Map needs to output (s.A, s) for each S-tuple s
(similar for T-tuples)

Equi-Join in MapReduce

Join condition: S.A=T.A

Map(s) = (s.A, s); Map(t) = (t.A,)

Reduce computes Cartesian product of set of S-tuples and set of T-tuples with
same key

DFS nodes Mappers Reducers DFS nodes

i
Iy
list(k2,v2)

Transfer Map Transfer Reduce Transfer
Input Map Output Reduce Output

9/15/2011

Comments

* Programming model might appear very limited
* But, map and reduce can do anything with their
input
— Could implement a Turing machine inside...
— ...which could compute anything, but...
— ...would not result in a good parallel implementation.
* Challenge: find best MapReduce implementation
for a given problem

Basic MapReduce Program Design

Tasks that can be performed independently on a
data object, large number of them: Map

Tasks that require combining of multiple data
objects: Reduce

* Sometimes it is easier to start program design
with Map, sometimes with Reduce

Select keys and values such that the right objects
end up together in the same Reduce invocation

* Might have to partition a complex task into
multiple MapReduce sub-tasks

