
9/15/2011

1

Parallel Nested Loops

• For each tuple si in S
– For each tuple tj in T

• If si=tj, then add (si,tj) to output

• Create partitions S1, S2, T1, and T2

• Have processors work on (S1,T1), (S1,T2), (S2,T1), and
(S2,T2)
– Can build appropriate local index on chunk if desired

• Nice and easy, but…
– How to choose chunk sizes for given S, T, and #processors?

– There is data duplication, possibly a lot of it
• Especially undesirable for highly selective joins with small result

61

Parallel Partition-Based

• Create n partitions of S by hashing each S-tuple s, e.g., to
bucket number (s mod n)

• Create n partitions of T in the same way
• Run join algorithm on each pair of corresponding partitions

• Can create partitions of S and T in parallel
• Choose n = number of processors
• Each processor locally can choose favorite join algorithm
• No data replication, but…

– Does not work well for skewed data
– Limited parallelism if range of values is small

62

More Join Thoughts

• What about non-equi join?

– Find pairs (si,tj) that satisfy a predicate like
inequality, band, or similarity (e.g., when s and t
are documents)

• Hash-partitioning will not work any more

• Now things are becoming really tricky…

• We will discuss these issues in a future
lecture.

63

Median

• Find the median of a set of integers

• Holistic aggregate function
– Chunk assigned to a processor might contain

mostly smaller or mostly larger values, and the
processor does not know this without
communicating extensively with the others

• Parallel implementation might not do much
better than sequential one

• Efficient approximation algorithms exist

64

Parallel Office Tools

• Parallelize Word, Excel, email client?

• Impossible without rewriting them as multi-
threaded applications

– Seem to naturally have low degree of parallelism

• Leverage economies of scale: n processors (or
cores) support n desktop users by hosting the
service in the Cloud

– E.g., Google docs

65 66

Before exploring parallel algorithms in more
depth, how do we know if our parallel
algorithm or implementation actually does
well or not?

9/15/2011

2

Measures Of Success

• If sequential version takes time t, then parallel
version on n processors should take time t/n

– Speedup = sequentialTime / parallelTime

– Note: job, i.e., work to be done, is fixed

• Response time should stay constant if number of
processors increases at same rate as “amount of
work”

– Scaleup = workDoneParallel / workDoneSequential

– Note: time to work on job is fixed

67

Things to Consider: Amdahl’s Law

• Consider job taking sequential time 1 and
consisting of two sequential tasks taking time t1
and 1-t1, respectively

• Assume we can perfectly parallelize the first task
on n processors
– Parallel time: t1/n + (1 – t1)

• Speedup = 1 / (1 – t1(n-1)/n)
– t1=0.9, n=2: speedup = 1.81
– t1=0.9, n=10: speedup = 5.3
– t1=0.9, n=100: speedup = 9.2
– Max. possible speedup for t1=0.9 is 1/(1-0.9) = 10

68

Implications of Amdahl’s Law

• Parallelize the tasks that take the longest

• Sequential steps limit maximum possible speedup
– Communication between tasks, e.g., to transmit

intermediate results, can inherently limit speedup, no
matter how well the tasks themselves can be
parallelized

• If fraction x of the job is inherently sequential,
speedup can never exceed 1/x
– No point running this on an excessive number of

processors

69

Performance Metrics

• Total execution time
– Part of both speedup and scaleup

• Total resources (maybe only of type X)
consumed

• Total amount of money paid

• Total energy consumed

• Optimize some combination of the above
– E.g., minimize total execution time, subject to a

money budget constraint

70

Popular Strategies

• Load balancing
– Avoid overloading one processor while other is idle
– Careful: if better balancing increases total load, it

might not be worth it
– Careful: optimizes for response time, but not

necessarily other metrics like $ paid

• Static load balancing
– Need cost analyzer like in DBMS

• Dynamic load balancing
– Easy: Web search
– Hard: join

71 72

Let’s see how MapReduce works.

9/15/2011

3

MapReduce

• Proposed by Google in research paper

– Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters.
OSDI'04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA,
December, 2004

• MapReduce implementations like Hadoop
differ in details, but main principles are the
same

73

Overview

• MapReduce = programming model and
associated implementation for processing large
data sets

• Programmer essentially just specifies two
(sequential) functions: map and reduce

• Program execution is automatically parallelized
on large clusters of commodity PCs

– MapReduce could be implemented on different
architectures, but Google proposed it for clusters

74

Overview

• Clever abstraction that is a good fit for many
real-world problems

• Programmer focuses on algorithm itself

• Runtime system takes care of all messy details

– Partitioning of input data

– Scheduling program execution

– Handling machine failures

– Managing inter-machine communication

75

Programming Model

• Transforms set of input key-value pairs to set of
output values (notice small modification
compared to paper)

• Map: (k1, v1)  list (k2, v2)

• MapReduce library groups all intermediate pairs
with same key together

• Reduce: (k2, list (v2))  list (k3, v3)
– Usually zero or one output value per group

– Intermediate values supplied via iterator (to handle
lists that do not fit in memory)

76

Example: Word Count

• Insight: can count each document in parallel, then
aggregate counts

• Final aggregation has to happen in Reduce
– Need count per word, hence use word itself as

intermediate key (k2)

– Intermediate counts are the intermediate values (v2)

• Parallel counting can happen in Map
– For each document, output set of pairs, each being a word

in the document and its frequency of occurrence in the
document

– Alternative: output (word, “1”) for each word encountered

77

Word Count in MapReduce

78

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

Count number of occurrences of each word in a document collection:

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Almost all the coding needed
(need also MapReduce specification object with names of input and
output files, and optional tuning parameters)

9/15/2011

4

Execution Overview

• Data is stored in files
– Files are partitioned into smaller splits, typically 64MB
– Splits are stored (usually also replicated) on different

cluster machines

• Master node controls program execution and
keeps track of progress
– Does not participate in data processing

• Some workers will execute the Map function, let’s
call them mappers

• Some workers will execute the Reduce function,
let’s call them reducers

79

Execution Overview

• Master assigns map and reduce tasks to workers, taking
data location into account

• Mapper reads an assigned file split and writes intermediate
key-value pairs to local disk

• Mapper informs master about result locations, who in turn
informs the reducers

• Reducers pull data from appropriate mapper disk location
• After map phase is completed, reducers sort their data by

key
• For each key, Reduce function is executed and output is

appended to final output file
• When all reduce tasks are completed, master wakes up

user program

80

81

Execution Overview Master Data Structures

• Master keeps track of status of each map and
reduce task and who is working on it

– Idle, in-progress, or completed

• Master stores location and size of output of
each completed map task

– Pushes information incrementally to workers with
in-progress reduce tasks

82

Example: Equi-Join

• Given two data sets S=(s1,s2,…) and T=(t1,t2,…)
of integers, find all pairs (si,tj) where si.A=tj.A

• Can only combine the si and tj in Reduce
– To ensure that the right tuples end up in the same

Reduce invocation, use join attribute A as
intermediate key (k2)

– Intermediate value is actual tuple to be joined

• Map needs to output (s.A, s) for each S-tuple s
(similar for T-tuples)

83

DFS nodes

Transfer
Input

Map Transfer
Map Output

Reduce Transfer
Reduce Output

list(v3)
list(k2,v2)

(k2,list(v2))

(k1,v1)

DFS nodes Mappers Reducers

Equi-Join in MapReduce

• Join condition: S.A=T.A
• Map(s) = (s.A, s); Map(t) = (t.A, t)
• Reduce computes Cartesian product of set of S-tuples and set of T-tuples with

same key

84

s1,1

s1,1

1,(s1,1)

s5,1

s5,1

1,(s5,1)

1,(t3,1) t3,1
t3,1

t8,1

t8,1

1,(t8,1)

1,[(s5,1)(t3,1)(s1,1)(t8,1)]

(s5,t3)

(s1,t3)

(s1,t8)

(s5,t8)

s3,2

t1,2

s3,2

t1,2

2,[(s3,2)(t1,2)]

(s3,t1)

2,(t1,2)

2,(s3,2)

9/15/2011

5

Comments

• Programming model might appear very limited

• But, map and reduce can do anything with their
input

– Could implement a Turing machine inside…

– …which could compute anything, but…

– …would not result in a good parallel implementation.

• Challenge: find best MapReduce implementation
for a given problem

85

Basic MapReduce Program Design

• Tasks that can be performed independently on a
data object, large number of them: Map

• Tasks that require combining of multiple data
objects: Reduce

• Sometimes it is easier to start program design
with Map, sometimes with Reduce

• Select keys and values such that the right objects
end up together in the same Reduce invocation

• Might have to partition a complex task into
multiple MapReduce sub-tasks

86

