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Parallel Nested Loops 

• For each tuple si in S 
– For each tuple tj in T 

• If si=tj, then add (si,tj) to output 

• Create partitions S1, S2, T1, and T2 

• Have processors work on (S1,T1), (S1,T2), (S2,T1), and 
(S2,T2) 
– Can build appropriate local index on chunk if desired 

• Nice and easy, but… 
– How to choose chunk sizes for given S, T, and #processors? 

– There is data duplication, possibly a lot of it 
• Especially undesirable for highly selective joins with small result 
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Parallel Partition-Based 

• Create n partitions of S by hashing each S-tuple s, e.g., to 
bucket number (s mod n) 

• Create n partitions of T in the same way 
• Run join algorithm on each pair of corresponding partitions 

 
• Can create partitions of S and T in parallel 
• Choose n = number of processors 
• Each processor locally can choose favorite join algorithm 
• No data replication, but… 

– Does not work well for skewed data 
– Limited parallelism if range of values is small 

62 

More Join Thoughts 

• What about non-equi join? 

– Find pairs (si,tj) that satisfy a predicate like 
inequality, band, or similarity (e.g., when s and t 
are documents) 

• Hash-partitioning will not work any more 

• Now things are becoming really tricky… 

• We will discuss these issues in a future 
lecture. 
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Median 

• Find the median of a set of integers 

• Holistic aggregate function 
– Chunk assigned to a processor might contain 

mostly smaller or mostly larger values, and the 
processor does not know this without 
communicating extensively with the others 

• Parallel implementation might not do much 
better than sequential one 

• Efficient approximation algorithms exist 
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Parallel Office Tools 

• Parallelize Word, Excel, email client? 

• Impossible without rewriting them as multi-
threaded applications 

– Seem to naturally have low degree of parallelism 

• Leverage economies of scale: n processors (or 
cores) support n desktop users by hosting the 
service in the Cloud 

– E.g., Google docs 
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Before exploring parallel algorithms in more 
depth, how do we know if our parallel 
algorithm or implementation actually does 
well or not? 
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Measures Of Success 

• If sequential version takes time t, then parallel 
version on n processors should take time t/n 

– Speedup = sequentialTime / parallelTime 

– Note: job, i.e., work to be done, is fixed 

• Response time should stay constant if number of 
processors increases at same rate as “amount of 
work” 

– Scaleup = workDoneParallel / workDoneSequential 

– Note: time to work on job is fixed 
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Things to Consider: Amdahl’s Law 

• Consider job taking sequential time 1 and 
consisting of two sequential tasks taking time t1 
and 1-t1, respectively 

• Assume we can perfectly parallelize the first task 
on n processors 
– Parallel time: t1/n + (1 – t1) 

• Speedup = 1 / (1 – t1(n-1)/n) 
– t1=0.9, n=2: speedup = 1.81 
– t1=0.9, n=10: speedup = 5.3 
– t1=0.9, n=100: speedup = 9.2 
– Max. possible speedup for t1=0.9 is 1/(1-0.9) = 10 
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Implications of Amdahl’s Law 

• Parallelize the tasks that take the longest 

• Sequential steps limit maximum possible speedup 
– Communication between tasks, e.g., to transmit 

intermediate results, can inherently limit speedup, no 
matter how well the tasks themselves can be 
parallelized 

• If fraction x of the job is inherently sequential, 
speedup can never exceed 1/x 
– No point running this on an excessive number of 

processors 
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Performance Metrics 

• Total execution time 
– Part of both speedup and scaleup 

• Total resources (maybe only of type X) 
consumed 

• Total amount of money paid 

• Total energy consumed 

• Optimize some combination of the above 
– E.g., minimize total execution time, subject to a 

money budget constraint 
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Popular Strategies 

• Load balancing 
– Avoid overloading one processor while other is idle 
– Careful: if better balancing increases total load, it 

might not be worth it 
– Careful: optimizes for response time, but not 

necessarily other metrics like $ paid 

• Static load balancing 
– Need cost analyzer like in DBMS 

• Dynamic load balancing 
– Easy: Web search 
– Hard: join 
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Let’s see how MapReduce works. 
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MapReduce 

• Proposed by Google in research paper 

– Jeffrey Dean and Sanjay Ghemawat. MapReduce: 
Simplified Data Processing on Large Clusters. 
OSDI'04: Sixth Symposium on Operating System 
Design and Implementation, San Francisco, CA, 
December, 2004 

• MapReduce implementations like Hadoop 
differ in details, but main principles are the 
same 
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Overview 

• MapReduce = programming model and 
associated implementation for processing large 
data sets 

• Programmer essentially just specifies two 
(sequential) functions: map and reduce 

• Program execution is automatically parallelized 
on large clusters of commodity PCs 

– MapReduce could be implemented on different 
architectures, but Google proposed it for clusters 
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Overview 

• Clever abstraction that is a good fit for many 
real-world problems 

• Programmer focuses on algorithm itself 

• Runtime system takes care of all messy details 

– Partitioning of input data 

– Scheduling program execution 

– Handling machine failures 

– Managing inter-machine communication 

75 

Programming Model 

• Transforms set of input key-value pairs to set of 
output values (notice small modification 
compared to paper) 

• Map: (k1, v1)  list (k2, v2) 

• MapReduce library groups all intermediate pairs 
with same key together 

• Reduce: (k2, list (v2))  list (k3, v3) 
– Usually zero or one output value per group 

– Intermediate values supplied via iterator (to handle 
lists that do not fit in memory) 
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Example: Word Count 

• Insight: can count each document in parallel, then 
aggregate counts 

• Final aggregation has to happen in Reduce 
– Need count per word, hence use word itself as 

intermediate key (k2) 

– Intermediate counts are the intermediate values (v2) 

• Parallel counting can happen in Map 
– For each document, output set of pairs, each being a word 

in the document and its frequency of occurrence in the 
document 

– Alternative: output (word, “1”) for each word encountered 
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Word Count in MapReduce 
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map(String key, String value): 
  // key: document name 
  // value: document contents 
  for each word w in value: 
    EmitIntermediate(w, "1"); 

Count number of occurrences of each word in a document collection: 

reduce(String key, Iterator values): 
  // key: a word 
  // values: a list of counts 
  int result = 0; 
  for each v in values: 
    result += ParseInt(v); 
  Emit(AsString(result)); 

Almost all the coding needed 
(need also MapReduce specification object with names of input and 
output files, and optional tuning parameters) 
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Execution Overview 

• Data is stored in files 
– Files are partitioned into smaller splits, typically 64MB 
– Splits are stored (usually also replicated) on different 

cluster machines 

• Master node controls program execution and 
keeps track of progress 
– Does not participate in data processing 

• Some workers will execute the Map function, let’s 
call them mappers 

• Some workers will execute the Reduce function, 
let’s call them reducers 
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Execution Overview 

• Master assigns map and reduce tasks to workers, taking 
data location into account 

• Mapper reads an assigned file split and writes intermediate 
key-value pairs to local disk 

• Mapper informs master about result locations, who in turn 
informs the reducers 

• Reducers pull data from appropriate mapper disk location 
• After map phase is completed, reducers sort their data by 

key 
• For each key, Reduce function is executed and output is 

appended to final output file 
• When all reduce tasks are completed, master wakes up 

user program 
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Execution Overview Master Data Structures 

• Master keeps track of status of each map and 
reduce task and who is working on it 

– Idle, in-progress, or completed 

• Master stores location and size of output of 
each completed map task 

– Pushes information incrementally to workers with 
in-progress reduce tasks 
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Example: Equi-Join 

• Given two data sets S=(s1,s2,…) and T=(t1,t2,…) 
of integers, find all pairs (si,tj) where si.A=tj.A 

• Can only combine the si and tj in Reduce 
– To ensure that the right tuples end up in the same 

Reduce invocation, use join attribute A as 
intermediate key (k2) 

– Intermediate value is actual tuple to be joined 

• Map needs to output (s.A, s) for each S-tuple s 
(similar for T-tuples) 
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Equi-Join in MapReduce 

• Join condition: S.A=T.A 
• Map(s) = (s.A, s); Map(t) = (t.A, t) 
• Reduce computes Cartesian product of set of S-tuples and set of T-tuples with 

same key 
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Comments 

• Programming model might appear very limited 

• But, map and reduce can do anything with their 
input 

– Could implement a Turing machine inside… 

– …which could compute anything, but… 

– …would not result in a good parallel implementation. 

• Challenge: find best MapReduce implementation 
for a given problem 
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Basic MapReduce Program Design 

• Tasks that can be performed independently on a 
data object, large number of them: Map 

• Tasks that require combining of multiple data 
objects: Reduce 

• Sometimes it is easier to start program design 
with Map, sometimes with Reduce 

• Select keys and values such that the right objects 
end up together in the same Reduce invocation 

• Might have to partition a complex task into 
multiple MapReduce sub-tasks 
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