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TOPICS 

 Introduction to OpenCL and GPU Computing 

 Speeded Up Robust Features 
 HAPTIC - OpenCL Heterogeneous Application Profiling & Introspection Capabilities 
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MOTIVATION TO STUDY GPU COMPUTING 

More than 65% of Americans played a video game in 2009 – 
economies of scale 
Manufacturers include NVIDIA, AMD/ATI, IBM-Cell  
Very competitive commodities market 
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MOTIVATION TO STUDY GPU COMPUTING 

Theoretical Peaks Don’t matter Much 
How do you write an application that performs well ?? 
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GPU COMPUTING -  A wide range of GPU applications 

"   3D image analysis 
"   Adaptive radiation therapy 
"   Acoustics 
"   Astronomy 
"   Audio 
"   Automobile vision 
"   Bioinfomatics 
"   Biological simulation 
"   Broadcast 
"   Cellular automata 
"   Fluid dynamics 
"  Computer vision 
"   Cryptography 
"   CT reconstruction 
"   Data mining 
"   Digital cinema / projections 
"   Electromagnetic simulation 
"   Equity training 

"  Film 
"   Financial 
"   Languages 
"   GIS 
"   Holographics cinema 
"   Machine learning 
"   Mathematics research 
"   Military 
"   Mine planning 
"   Molecular dynamics 
"   MRI reconstruction 
"   Multispectral imaging 
"   N-body simulation 
"   Network processing 
"   Neural network 
"   Oceanographic research 
"   Optical inspection 
"   Particle physics 

"   Protein folding 
"   Quantum chemistry 
"   Ray tracing 
"   Radar 
"   Reservoir simulation 
"   Robotic vision / AI 
"   Robotic surgery 
"   Satellite data analysis 
"   Seismic imaging 
"   Surgery simulation 
"   Surveillance 
"   Ultrasound 
"   Video conferencing 
"   Telescope 
"   Video 
"   Visualization 
"   Wireless 
"   X-Ray 
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CPU VS GPU ARCHITECTURES 

Irregular data accesses 
Focus on per thread performance 
Space devoted  to control logic instead of  ALU 
Efficiently handle control flow intensive workloads 
Multi level caches used to hide latency 
 

Regular data accesses 
More ALUs and massively parallel 
Throughput oriented 



7 | CCIS Class |  Nov 30, 2011 

MODERN GPGPU ARCHITECTURE 

 Generic many core GPU 

–  Less space devoted to control logic and 
caches 

–  Large register files to support multiple thread 
contexts 

 Low latency hardware managed thread switching 

 Large number of ALU per “core” with small user 
managed cache per core  

 Memory bus optimized for  bandwidth  

–  ~150 GBPS bandwidth allows us to service a 
large number of ALUs simultaneously  
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NVIDIA GPU COMPUTE ARCHITECTURE  

 Compute Unified Device Architecture 

 Hierarchical architecture 
 A device contains many multiprocessors 

 Scalar “cuda cores” per multiprocessor  
–  32 for Fermi 

 Single instruction issue unit per 
multiprocessor 

 Many memory spaces 

 GTX 480 - Compute 2.0 capability 
–  15 Streaming Multiprocessors (SMs) 

–  1 SM features 32 CUDA processors 
–  480  CUDA processors 

Dispatch Port 

Operand Collector 

FP 
Unit Int Unit 

Result Queue 

CUDA Core 
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GPU MEMORY ARCHITECTURE 

 Device Memory (GDDR) 

–  Large memory with a high bandwidth link to 
multiprocessor 

 Registers on chip (~16k) 

–  Large number of registers enable low overhead 
context switching and massive multithreading 

 Shared memory ( on chip) 
–  Shared between scalar cores 

–  Low latency and banked 
 Constant and texture memory  

–  Read only and cached 



10 | CCIS Class |  Nov 30, 2011 

A “TRANSPARENTLY” SCALABLE ARCHITECTURE 

Same program will be 
scalable across devices 

The programming model maps 
easily to underlying architecture 

Scalable programming model 
 
Program consists of 
independent blocks of threads 
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AN OPTIMAL GPGPU PROGRAM 

 From the discussion on hardware we see that an ideal kernel for a GPU: 

–  Has thousands of independent pieces of work 
 Uses all available compute units 

 Allows interleaving for latency hiding 

–  Is amenable to instruction stream sharing 
 Maps to SIMD execution by preventing divergence between work items 

–  Has high arithmetic intensity 
 Ratio of math operations to memory access is high 

 Not limited by memory bandwidth 

 Note that these caveats apply to all GPUs 
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OPENCL – THE FUTURE FOR MANY-CORE COMPUTING  

 OpenCL (Open Computing Language) released in 2008 
- Developed by Khronos Group – a non-profit 

 A framework similar to CUDA for writing programs that 
execute on heterogeneous systems 

 Allows CPU and GPU to work together for faster and 
more efficient processing 

 Modeled as four parts: 

–  Platform Model 
–  Execution Model 

–  Memory Model 
–  Programming Model 

 Kernels — execute on heterogeneous devices 
–  Same kernel on multiple devices such as CPUs, 

GPUs, DSPs, FPGAs, etc 
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OPENCL – CONFORMANT COMPANIES  

Over 300+ OpenCL 1.1 Compliant Devices 
Altera, TI coming up… 
OpenCL 1.2 announced at SC 11 
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OPENCL - THE BIG PICTURE 
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GPU MEMORY MODEL IN OPENCL 

 For both AMD, Nvidia GPUs a subset of 
hardware memory exposed in OpenCL 

 Configurable shared memory is usable as local 
memory  

–  Local memory used to share data between 
items of a work group at lower latency than 
global memory  

 Private memory utilizes registers per work item 

Global Memory 
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Workitem 1 
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Local Memory 
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Private  
Memory 
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Compute Unit  N 

Compute Device 

Compute Device Memory 
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OPENCL EXAMPLE - BASIC MATRIX MULTIPLICATION 

 Non-blocking matrix multiplication 
–  Doesn’t use local memory 

 Each element of matrix reads its own data independently 

 Serial matrix multiplication 
 
 
 
 
 
 
 Reuse code from image rotation 

–  Create context, command queues and compile program 
–  Only need one more input memory object for 2nd matrix 

for(int i = 0; i < Ha; i++) 
 for(int j = 0; j < Wb; j++){ 
  c[i][j] = 0; 
  for(int k = 0; k < Wa; k++)   
   c[i][j] +=  a[i][k] + b[k][j] 
 } 
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SIMPLE MATRIX MULTIPLICATION 

__kernel void simpleMultiply(  
__global float* c,  
int Wa, int Wb,  
__global float* a, __global float* b) 
{ 
 
    //Get global position in Y direction 
    int row = get_global_id(1); 
    //Get global position in X direction 
    int col   = get_global_id(0);  
    float sum = 0.0f;  
    //Calculate result of one element 
    for (int i = 0; i < Wa; i++)  { 
        sum += a[row*Wa+i] * b[i*Wb+col]; 
    } 
    c[row*Wb+col] = sum; 
} 

A 

B 

C 

Wb 

Ha 

Wb 

row 

col 

Wa 

Hb 



18 | CCIS Class |  Nov 30, 2011 

STEP0: INITIALIZE DEVICE 

 Declare context  
 Choose a device from context 
 Using device and context create a  command queue 

cl_context myctx = clCreateContextFromType (
 0, CL_DEVICE_TYPE_GPU,  
 NULL, NULL, &ciErrNum); 

cl_commandqueue myqueue ; 
myqueue = clCreateCommandQueue(  

 myctx, device, 0, &ciErrNum); 

ciErrNum = clGetDeviceIDs (0,  
 CL_DEVICE_TYPE_GPU,  
 1, &device,  cl_uint *num_devices) 

Query Platform 

Query Devices 

Command Queue 

Create Buffers 

Compile Program 
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STEP1: CREATE BUFFERS 

 Create buffers on device 

 Input data is read-only 
 Output data is write-only 

 Transfer input data to the device 

cl_mem d_a = clCreateBuffer( myctx, 
 CL_MEM_READ_ONLY, mem_size,  
 NULL, &ciErrNum); 

ciErrNum = clEnqueueWriteBuffer (   
 myqueue , d_a, CL_TRUE, 0, mem_size, 
 (void *)src_image, 0, NULL,  NULL) 

cl_mem d_c = clCreateBuffer( myctx, 
 CL_MEM_WRITE_ONLY, mem_size, 
 NULL, &ciErrNum); 
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 // create the program    
 cl_program myprog = clCreateProgramWithSource 

 ( myctx,1, (const char **)&source, 
  &program_length, &ciErrNum); 

// build the program     
ciErrNum = clBuildProgram( myprog, 0,  

  NULL, NULL, NULL, NULL); 

//Use the “image_rotate” function as the kernel  
cl_kernel mykernel = clCreateKernel ( 

 myprog , “image_rotate” ,  error_code) 

STEP2: BUILD PROGRAM, SELECT KERNEL 

Query Platform 

Query Devices 

Command Queue 

Create Buffers 

Compile Program 
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STEP3: SET ARGUMENTS, ENQUEUE KERNEL 

// Set Arguments 
clSetKernelArg(mykernel, 0, sizeof(cl_mem), (void *)&d_a);  
clSetKernelArg(mykernel, 1, sizeof(cl_mem),  (void *)&d_b); 
clSetKernelArg(mykernel, 2, sizeof(cl_int),  (void *)&W); 
… 
 
 
 
//Set local and global workgroup sizes 
size_t localws[2] = {16,16} ;  
size_t globalws[2] = {W, H};//Assume divisible by 16 
 
 
// execute kernel 
clEnqueueNDRangeKernel(  

 myqueue , myKernel, 2, 0, globalws, localws,  
                0, NULL, NULL); 
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STEP4: READ BACK RESULT 

 Only necessary for data  required on the host 

 Data output from one kernel can be reused for another 
kernel  

–  Avoid redundant host-device IO 

// copy results from device back to host 
clEnqueueReadBuffer( 

 myctx, d_op,  
 CL_TRUE,  //Blocking Read Back 
 0, mem_size,  (void *) op_data,  

                   NULL, NULL, NULL); 
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SUMMARY - STEPS PORTING TO OPENCL 

 Create standalone C / C++ version  

 Multi-threaded CPU version (debugging, 
partitioning) 

 Simple OpenCL version 

 Optimize OpenCL version for underlying hardware 
 No reason why an application should have only 1 

kernel 

 Use the right processor for the job 
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SPEEDED UP ROBUST FEATURES 
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SPEEDED UP ROBUST FEATURES (SURF) 

 “Summarize” an image into a number of “interest points” 

–  Robust features - Simple to compute, small 
–  More insensitive to changes in image like scale, rotation 

–  Open source – Highly optimized 
 Applications: Object recognition, tracking , image stitching etc  

 http://code.google.com/p/clsurf/ 
 

SURF 

I-point 
float2  Pixel Position 

float Orientation 
float Scale 

float Descriptor[64] 

Speeded-Up Robust Features (SURF), Herbert Bay et. al. 
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SPEEDED UP ROBUST FEATURES (SURF) 

 Integral image: (2 kernels)  4 calls 

–  Scan, transpose in 2 dimensions 
 Hessian: (2 Kernels) 8 calls 

–  Groups of convolutions 
 Non max suppression: (1 kernel) 5 calls 

–  Maxima and minima from convolution 
 Orientation: (2 kernels) 2 calls 

–  Local intensity gradients for rotation 
invariance 

 Descriptors: (2 kernels) 2 calls 

–  Haar descriptors around each i-point SURF is a multi-kernel pipeline where each 
stage contributes a part of each feature 
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SURF APPLICATIONS 

 Applications using SURF’s generated features  

 Image Search - Compare descriptors of different features using simple Euclidean distance 
 Video Stabilization - Compare orientation values of different features  
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PERFORMANCE CHARACTERISTICS OF SURF 

 Performance is hard to predict because of variable feature counts 

–  Feature count decides the workgroup sizes down the pipeline 

 We aim to study SURF’s performance when embedded into applications 
–  Not always as clean as embedding a spmv kernel in a solver 

 Many OpenCL kernels of varying complexity 

–  10 kernels varying from 5 lines to 280 lines 
–  Kernels called multiple times 

 Number of kernel calls unknown until runtime 
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INDIVIDUAL KERNEL PERFORMANCE 

 Optimization steps for kernels 

–  Timing of each kernel across frames 
 Events show a consistent view across 

devices 

–  Individual timings are not representative 
–  Createdescriptors is longest kernel 

–  However BuildHessian is called more 
–  Hard to find without profiling 

 Reducing the number of  kernel calls may 
be as beneficial as applying platform 
specific optimization 

 Profiling allows us to pursue feedback-
driven optimization 
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WHY ARE WE TALKING ABOUT SURF ? 

 Especially since we haven’t seen any OpenCL kernels or host code 

 Performance Characteristics of SURF 
–  Data driven performance necessitates profiling at runtime 

–  Input arguments threshold determine performance 
 Commonly used as a algorithm kernel within an application 

–  Applications include stabilization of a video, image searching, motion tracking, etc. 
–  Same algorithm used for different applications with different input parameters  

 Number of convolutions  

 Thresholds 

 Improve the state of the art in performance analysis tools for interesting workloads 

–  Improve performance for complex and irregular applications and algorithms 
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HAPTIC 
OpenCL Heterogeneous Application Profiling & 
Introspection Capabilities 

Perhaad Mistry, David Kaeli 
 
Department of Electrical and Computer Engineering 
Northeastern University 
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MOTIVATION FOR PROFILING CAPABILITIES WITHIN A HETEROGENEOUS APPLICATION 

 Library developer cannot predict all applications where his/her library will be used 

 Algorithms whose performance is dependent on factors other than “data size” 
–  Analysis is required at runtime by the library to learn about the application 

 

Feature Based Image Search Feature driven video Stabilization 
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PERFORMANCE OPTIMIZATION STEPS IN OPENCL TODAY 

 A continuous process, restricted to development stage for OpenCL / CUDA 

 Kernel writer needs to know about how his kernel will be used which leads to over-conservative 
assumptions while coding 

–  Types of algorithms where you don’t know OP characteristics  

–  Decides format and location of OP data structures 
–  Simple example bucket sort, where each bucket has to be a big size and the number of buckets 

–  Data driven performance problems are hard to catch 
 Once the kernel is written, no framework exists that monitors performance of the kernel 

 
 Write 

Kernels  

Run kernels  
in vendor’s 

profiler 

Map Kernel 
performance to 

source code 

Repeat till you grow old / change project 
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OPENCL EVENTS 

 OpenCL provides not only cross platform applications, but also mechanisms to create tools for 
parallel computing 

 Events are an interface to understanding OpenCL performance 

–  Event objects (cl_event) used to determine command status 

 OpenCL enqueue methods return event objects 
–  Provides for command level control and synchronization  

Command State Description 
CL_QUEUED  Command is in a queue 
CL_SUBMITTED Command has been submitted to device 
CL_RUNNING Command is currently executing on device 
CL_COMPLETE Command has finished execution 

Command states as visible from OpenCL events 

cl_int clEnqueueNDRangeKernel (
 cl_command_queue queue, 
 cl_kernel kernel, cl_uint work_dim, 

  const size_t *global_work_offset, 
  const size_t *global_work_size, 
  const size_t *local_work_size, 
  cl_uint num_events_in_wait_list, 
  const cl_event *event_wait_list, 
  cl_event *event) 
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OPENCL PROFILING   

 Events provide rich runtime information 

–  Not just timestamps 
 Supports schedulers across multiple families 

of different devices (CPUs, GPUs, APUs) 

 Implementation challenges 
–  Capturing the notion of application phase 

–  Minimizing profiling overhead 
 Present implementation builds groups of 

events with user-provided identifier 
cl_event cl_event cl_event 

Event Table Name Data 
Results, Analysis, 

Feedback 

References to event objects 

clGetEventinfo 

cl_event 
COMMAND_QUEUE 

COMMAND_TYPE 

EXEC_STATUS 

Host-Device 
IO Kernels Device-Host 

IO 

Profiler Region of Interest 
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SURF 

Image Search using SURF features  in a nearest neighbor OpenCL kernel 
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KERNEL TIMELINE IN SURF 

 Application view of SURF 

–  Kernel pipelined over data set 
–  Averaged event time stamps for a 

data set 

 Exposes optimization opportunities 
–  Cumulative time of small kernel  

–  High kernel call count  
–  Device – host IO duration is 

insignificant in pipeline  

 Used to estimate host idle time once 
kernels are enqueued 

Similar traces on any OpenCL compliant device 

Kernel Wait Time 
Kernel Execution Time  
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SURF PERFORMANCE FOR DIFFERENT APPLICATIONS 

 Different applications on top of SURF  

–  Stabilization 
–  Image Search 

 Search Application: 
–  Create-Descriptor is the bottleneck 

–  Split kernel on multiple devices 
 Stabilization Application:  

–  Build-Hessian is the bottleneck  
–  Reduce the number of kernel calls 
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PROFILER OVERHEAD 

 Baseline: profiling disabled in command queue 

–  Overhead for different videos 
 Simple techniques to minimize overhead   

–  Grow event list once and reuse data 
structures 

 Query events after frame    

–  Allows for variable granularity of 
performance measurement 

 We show the worst case overhead for SURF 
–  Profiling all kernels for every frame 
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ANALYSIS DEVICES - PRELIMINARY WORK 

 Motivated by the fact that the GPU is rapidly 
disappearing under libraries and frameworks 

–  A core library writer doesn’t know each 
high level application 

 Specialization of an underlying OpenCL 
system based on domain specific information 

–  A specialized compute device known as a 
“Analysis Device” 

 Exploit extra OpenCL devices to work on 
computation that can help performance 

–  Preprocessing passes 
–  Data transformation 

–  Data value monitoring 
The system consists OpenCL profilers (discussed 
previously) which monitor application performance on the 
compute device  
Present granularity limited to on a OpenCL kernel basis 
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ANALYSIS DEVICES – PROGRAMMING VIEW  

 Test applications developed use SURF as a 
example underlying computational kernel pipeline 
whose behavior is configurable 

 Rules are prewritten OpenCL kernels whose 
execution could improve the application 

 Example Specializations – for SURF 
–  Turn ON / OFF pipeline stages 

–  Change frequency of SURF calls for invariant 
data 

–  Change thresholds of SURF which changes 
the number of features 

 Can be used to hide access to source code and 
deep architectural optimization details  

–  While providing knobs to specialize a 
computational pipeline to an application 
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SUMMARY!

 Most of this work motivated by an interesting case of data dependent parallelism performance (clSURF) 

 clSURF currently runs on CPUs, GPUs and APUs 
 Profiling plays an increasingly important role in heterogeneous environments 

 The OpenCL specification provides a useful interface to understand application performance 
 Similar information provided for different devices 

 Compliments existing tools such as the APP Profiler and Nvidia OpenCL Profiler 
 Language extensions provide a path to high performance 

 Enables static and dynamic profiling and feedback directed optimization 
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EXTRA HOMEWORK FOR NO REWARD 

 clSURF code download   

–  http://code.google.com/p/clsurf 

 Haptic Download 
–  http://code.google.com/p/clhaptic 

 For more information about GPU research in NUCAR  

–  www.ece.neu.edu/groups/nucar/GPU/ 
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WE ARE THANKFUL FOR OUR GENEROUS SPONSORS J 
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Thank You ! 
Questions or Comments ? 
Perhaad Mistry 
 
 pmistry@ece.neu.edu 
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INFORMATION AND REFERENCES 

 http://developer.amd.com/zones/OpenCLZone/universities/Pages/default.aspx 

 General Programming 
–  Beyond Programmable Shading – David Leubke 

–  Decomposition Techniques for Parallel Programming – Vivek Sarkar 
–  CUDA Textures & Image Registration - Richard Ansorge 

–  Setting up CUDA within Windows Visual Studio 
–  http://www.ademiller.com/blogs/tech/2011/03/using-cuda-and-thrust-with-visual-studio-2010/ 

–  SDK examples: Histogram64, Matmul, SimpleTextures 
 SURF Related 

–  http://code.google.com/p/clsurf/ 
–  http://www.chrisevansdev.com/computer-vision-opensurf.html 

–  http://developer.amd.com/afds/assets/presentations/2123_final.pdf 


