
1 | CCIS Class | Nov 30, 2011

GPU COMPUTING RESEARCH WITH
OPENCL
Studying Future Workloads and Devices

Perhaad Mistry, Dana Schaa, Enqiang Sun,
Rafael Ubal, Yash Ukidave, David Kaeli

Dept of Electrical and Computer Engineering
Northeastern University

CCIS Class - CS 6240

2 | CCIS Class | Nov 30, 2011

TOPICS

 Introduction to OpenCL and GPU Computing

 Speeded Up Robust Features
 HAPTIC - OpenCL Heterogeneous Application Profiling & Introspection Capabilities

3 | CCIS Class | Nov 30, 2011

MOTIVATION TO STUDY GPU COMPUTING

More than 65% of Americans played a video game in 2009 –
economies of scale
Manufacturers include NVIDIA, AMD/ATI, IBM-Cell
Very competitive commodities market

4 | CCIS Class | Nov 30, 2011

MOTIVATION TO STUDY GPU COMPUTING

Theoretical Peaks Don’t matter Much
How do you write an application that performs well ??

5 | CCIS Class | Nov 30, 2011

GPU COMPUTING - A wide range of GPU applications

"  3D image analysis
"  Adaptive radiation therapy
"  Acoustics
"  Astronomy
"  Audio
"  Automobile vision
"  Bioinfomatics
"  Biological simulation
"  Broadcast
"  Cellular automata
"  Fluid dynamics
" Computer vision
"  Cryptography
"  CT reconstruction
"  Data mining
"  Digital cinema / projections
"  Electromagnetic simulation
"  Equity training

"  Film
"  Financial
"  Languages
"  GIS
"  Holographics cinema
"  Machine learning
"  Mathematics research
"  Military
"  Mine planning
"  Molecular dynamics
"  MRI reconstruction
"  Multispectral imaging
"  N-body simulation
"  Network processing
"  Neural network
"  Oceanographic research
"  Optical inspection
"  Particle physics

"  Protein folding
"  Quantum chemistry
"  Ray tracing
"  Radar
"  Reservoir simulation
"  Robotic vision / AI
"  Robotic surgery
"  Satellite data analysis
"  Seismic imaging
"  Surgery simulation
"  Surveillance
"  Ultrasound
"  Video conferencing
"  Telescope
"  Video
"  Visualization
"  Wireless
"  X-Ray

6 | CCIS Class | Nov 30, 2011

CPU VS GPU ARCHITECTURES

Irregular data accesses
Focus on per thread performance
Space devoted to control logic instead of ALU
Efficiently handle control flow intensive workloads
Multi level caches used to hide latency

Regular data accesses
More ALUs and massively parallel
Throughput oriented

7 | CCIS Class | Nov 30, 2011

MODERN GPGPU ARCHITECTURE

 Generic many core GPU

–  Less space devoted to control logic and
caches

–  Large register files to support multiple thread
contexts

 Low latency hardware managed thread switching

 Large number of ALU per “core” with small user
managed cache per core

 Memory bus optimized for bandwidth

–  ~150 GBPS bandwidth allows us to service a
large number of ALUs simultaneously

On Board System Memory

High Bandwidth
bus to ALUs

S
im

ple
A

LU
s

Cache

8 | CCIS Class | Nov 30, 2011

NVIDIA GPU COMPUTE ARCHITECTURE

 Compute Unified Device Architecture

 Hierarchical architecture
 A device contains many multiprocessors

 Scalar “cuda cores” per multiprocessor
–  32 for Fermi

 Single instruction issue unit per
multiprocessor

 Many memory spaces

 GTX 480 - Compute 2.0 capability
–  15 Streaming Multiprocessors (SMs)

–  1 SM features 32 CUDA processors
–  480 CUDA processors

Dispatch Port

Operand Collector

FP
Unit Int Unit

Result Queue

CUDA Core

9 | CCIS Class | Nov 30, 2011

GPU MEMORY ARCHITECTURE

 Device Memory (GDDR)

–  Large memory with a high bandwidth link to
multiprocessor

 Registers on chip (~16k)

–  Large number of registers enable low overhead
context switching and massive multithreading

 Shared memory (on chip)
–  Shared between scalar cores

–  Low latency and banked
 Constant and texture memory

–  Read only and cached

10 | CCIS Class | Nov 30, 2011

A “TRANSPARENTLY” SCALABLE ARCHITECTURE

Same program will be
scalable across devices

The programming model maps
easily to underlying architecture

Scalable programming model

Program consists of
independent blocks of threads

11 | CCIS Class | Nov 30, 2011

AN OPTIMAL GPGPU PROGRAM

 From the discussion on hardware we see that an ideal kernel for a GPU:

–  Has thousands of independent pieces of work
 Uses all available compute units

 Allows interleaving for latency hiding

–  Is amenable to instruction stream sharing
 Maps to SIMD execution by preventing divergence between work items

–  Has high arithmetic intensity
 Ratio of math operations to memory access is high

 Not limited by memory bandwidth

 Note that these caveats apply to all GPUs

12 | CCIS Class | Nov 30, 2011

OPENCL – THE FUTURE FOR MANY-CORE COMPUTING

 OpenCL (Open Computing Language) released in 2008
- Developed by Khronos Group – a non-profit

 A framework similar to CUDA for writing programs that
execute on heterogeneous systems

 Allows CPU and GPU to work together for faster and
more efficient processing

 Modeled as four parts:

–  Platform Model
–  Execution Model

–  Memory Model
–  Programming Model

 Kernels — execute on heterogeneous devices
–  Same kernel on multiple devices such as CPUs,

GPUs, DSPs, FPGAs, etc

13 | CCIS Class | Nov 30, 2011

OPENCL – CONFORMANT COMPANIES

Over 300+ OpenCL 1.1 Compliant Devices
Altera, TI coming up…
OpenCL 1.2 announced at SC 11

14 | CCIS Class | Nov 30, 2011

OPENCL - THE BIG PICTURE

15 | CCIS Class | Nov 30, 2011

GPU MEMORY MODEL IN OPENCL

 For both AMD, Nvidia GPUs a subset of
hardware memory exposed in OpenCL

 Configurable shared memory is usable as local
memory

–  Local memory used to share data between
items of a work group at lower latency than
global memory

 Private memory utilizes registers per work item

Global Memory

Private
Memory

Workitem 1

Private
Memory

Workitem 1

Compute Unit 1

Local Memory

Global / Constant Memory Data Cache

Local Memory

Private
Memory

Workitem 1

Private
Memory

Workitem 1

Compute Unit N

Compute Device

Compute Device Memory

16 | CCIS Class | Nov 30, 2011

OPENCL EXAMPLE - BASIC MATRIX MULTIPLICATION

 Non-blocking matrix multiplication
–  Doesn’t use local memory

 Each element of matrix reads its own data independently

 Serial matrix multiplication

 Reuse code from image rotation

–  Create context, command queues and compile program
–  Only need one more input memory object for 2nd matrix

for(int i = 0; i < Ha; i++)
 for(int j = 0; j < Wb; j++){
 c[i][j] = 0;
 for(int k = 0; k < Wa; k++)
 c[i][j] += a[i][k] + b[k][j]
 }

17 | CCIS Class | Nov 30, 2011

SIMPLE MATRIX MULTIPLICATION

__kernel void simpleMultiply(
__global float* c,
int Wa, int Wb,
__global float* a, __global float* b)
{

 //Get global position in Y direction
 int row = get_global_id(1);
 //Get global position in X direction
 int col = get_global_id(0);
 float sum = 0.0f;
 //Calculate result of one element
 for (int i = 0; i < Wa; i++) {
 sum += a[row*Wa+i] * b[i*Wb+col];
 }
 c[row*Wb+col] = sum;
}

A

B

C

Wb

Ha

Wb

row

col

Wa

Hb

18 | CCIS Class | Nov 30, 2011

STEP0: INITIALIZE DEVICE

 Declare context
 Choose a device from context
 Using device and context create a command queue

cl_context myctx = clCreateContextFromType (
 0, CL_DEVICE_TYPE_GPU,
 NULL, NULL, &ciErrNum);

cl_commandqueue myqueue ;
myqueue = clCreateCommandQueue(

 myctx, device, 0, &ciErrNum);

ciErrNum = clGetDeviceIDs (0,
 CL_DEVICE_TYPE_GPU,
 1, &device, cl_uint *num_devices)

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

19 | CCIS Class | Nov 30, 2011

STEP1: CREATE BUFFERS

 Create buffers on device

 Input data is read-only
 Output data is write-only

 Transfer input data to the device

cl_mem d_a = clCreateBuffer(myctx,
 CL_MEM_READ_ONLY, mem_size,
 NULL, &ciErrNum);

ciErrNum = clEnqueueWriteBuffer (
 myqueue , d_a, CL_TRUE, 0, mem_size,
 (void *)src_image, 0, NULL, NULL)

cl_mem d_c = clCreateBuffer(myctx,
 CL_MEM_WRITE_ONLY, mem_size,
 NULL, &ciErrNum);

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

20 | CCIS Class | Nov 30, 2011

 // create the program
 cl_program myprog = clCreateProgramWithSource

 (myctx,1, (const char **)&source,
 &program_length, &ciErrNum);

// build the program
ciErrNum = clBuildProgram(myprog, 0,

 NULL, NULL, NULL, NULL);

//Use the “image_rotate” function as the kernel
cl_kernel mykernel = clCreateKernel (

 myprog , “image_rotate” , error_code)

STEP2: BUILD PROGRAM, SELECT KERNEL

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

21 | CCIS Class | Nov 30, 2011

STEP3: SET ARGUMENTS, ENQUEUE KERNEL

// Set Arguments
clSetKernelArg(mykernel, 0, sizeof(cl_mem), (void *)&d_a);
clSetKernelArg(mykernel, 1, sizeof(cl_mem), (void *)&d_b);
clSetKernelArg(mykernel, 2, sizeof(cl_int), (void *)&W);
…

//Set local and global workgroup sizes
size_t localws[2] = {16,16} ;
size_t globalws[2] = {W, H};//Assume divisible by 16

// execute kernel
clEnqueueNDRangeKernel(

 myqueue , myKernel, 2, 0, globalws, localws,
 0, NULL, NULL);

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

22 | CCIS Class | Nov 30, 2011

STEP4: READ BACK RESULT

 Only necessary for data required on the host

 Data output from one kernel can be reused for another
kernel

–  Avoid redundant host-device IO

// copy results from device back to host
clEnqueueReadBuffer(

 myctx, d_op,
 CL_TRUE, //Blocking Read Back
 0, mem_size, (void *) op_data,

 NULL, NULL, NULL);

Query Platform

Query Devices

Command Queue

Create Buffers

Compile Program

Compile Kernel

Execute Kernel

Set Arguments

P
la

tfo
rm

La

ye
r

R
un

tim
e

La
ye

r

C
om

pi
le

r

23 | CCIS Class | Nov 30, 2011

SUMMARY - STEPS PORTING TO OPENCL

 Create standalone C / C++ version

 Multi-threaded CPU version (debugging,
partitioning)

 Simple OpenCL version

 Optimize OpenCL version for underlying hardware
 No reason why an application should have only 1

kernel

 Use the right processor for the job

Host

Kernel 1

Device

Grid 1

Block	

(0, 0)

Block	

(1, 0)

Block	

(2, 0)

Block	

(0, 1)

Block	

(1, 1)

Block	

(2, 1)

Kernel 2
Grid 2

Block	

(0, 0)

Block	

(1, 0)

Block	

(0, 2)

Block	

(0, 1)

Block	

(1, 1)

Block	

(1, 2)

S
eq

ue
nt

ia
l

 C
od

e

SPEEDED UP ROBUST FEATURES

Computer Vision Applications
Perhaad Mistry, Dana Schaa, Enqiang Sun, David Kaeli
Northeastern University

25 | CCIS Class | Nov 30, 2011

SPEEDED UP ROBUST FEATURES (SURF)

 “Summarize” an image into a number of “interest points”

–  Robust features - Simple to compute, small
–  More insensitive to changes in image like scale, rotation

–  Open source – Highly optimized
 Applications: Object recognition, tracking , image stitching etc

 http://code.google.com/p/clsurf/

SURF

I-point
float2 Pixel Position

float Orientation
float Scale

float Descriptor[64]

Speeded-Up Robust Features (SURF), Herbert Bay et. al.

26 | CCIS Class | Nov 30, 2011

SPEEDED UP ROBUST FEATURES (SURF)

 Integral image: (2 kernels) 4 calls

–  Scan, transpose in 2 dimensions
 Hessian: (2 Kernels) 8 calls

–  Groups of convolutions
 Non max suppression: (1 kernel) 5 calls

–  Maxima and minima from convolution
 Orientation: (2 kernels) 2 calls

–  Local intensity gradients for rotation
invariance

 Descriptors: (2 kernels) 2 calls

–  Haar descriptors around each i-point SURF is a multi-kernel pipeline where each
stage contributes a part of each feature

27 | CCIS Class | Nov 30, 2011

SURF APPLICATIONS

 Applications using SURF’s generated features

 Image Search - Compare descriptors of different features using simple Euclidean distance
 Video Stabilization - Compare orientation values of different features

28 | CCIS Class | Nov 30, 2011

PERFORMANCE CHARACTERISTICS OF SURF

 Performance is hard to predict because of variable feature counts

–  Feature count decides the workgroup sizes down the pipeline

 We aim to study SURF’s performance when embedded into applications
–  Not always as clean as embedding a spmv kernel in a solver

 Many OpenCL kernels of varying complexity

–  10 kernels varying from 5 lines to 280 lines
–  Kernels called multiple times

 Number of kernel calls unknown until runtime

29 | CCIS Class | Nov 30, 2011

INDIVIDUAL KERNEL PERFORMANCE

 Optimization steps for kernels

–  Timing of each kernel across frames
 Events show a consistent view across

devices

–  Individual timings are not representative
–  Createdescriptors is longest kernel

–  However BuildHessian is called more
–  Hard to find without profiling

 Reducing the number of kernel calls may
be as beneficial as applying platform
specific optimization

 Profiling allows us to pursue feedback-
driven optimization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TI
m

e
(m

s)

Kernel Name

Individual Kernel Execution Duration

AMD GPU

Nvidia GPU

30 | CCIS Class | Nov 30, 2011

WHY ARE WE TALKING ABOUT SURF ?

 Especially since we haven’t seen any OpenCL kernels or host code

 Performance Characteristics of SURF
–  Data driven performance necessitates profiling at runtime

–  Input arguments threshold determine performance
 Commonly used as a algorithm kernel within an application

–  Applications include stabilization of a video, image searching, motion tracking, etc.
–  Same algorithm used for different applications with different input parameters

 Number of convolutions

 Thresholds

 Improve the state of the art in performance analysis tools for interesting workloads

–  Improve performance for complex and irregular applications and algorithms

31 | CCIS Class | Nov 30, 2011

HAPTIC
OpenCL Heterogeneous Application Profiling &
Introspection Capabilities

Perhaad Mistry, David Kaeli

Department of Electrical and Computer Engineering
Northeastern University

32 | CCIS Class | Nov 30, 2011

MOTIVATION FOR PROFILING CAPABILITIES WITHIN A HETEROGENEOUS APPLICATION

 Library developer cannot predict all applications where his/her library will be used

 Algorithms whose performance is dependent on factors other than “data size”
–  Analysis is required at runtime by the library to learn about the application

Feature Based Image Search Feature driven video Stabilization

33 | CCIS Class | Nov 30, 2011

PERFORMANCE OPTIMIZATION STEPS IN OPENCL TODAY

 A continuous process, restricted to development stage for OpenCL / CUDA

 Kernel writer needs to know about how his kernel will be used which leads to over-conservative
assumptions while coding

–  Types of algorithms where you don’t know OP characteristics

–  Decides format and location of OP data structures
–  Simple example bucket sort, where each bucket has to be a big size and the number of buckets

–  Data driven performance problems are hard to catch
 Once the kernel is written, no framework exists that monitors performance of the kernel

 Write

Kernels

Run kernels
in vendor’s

profiler

Map Kernel
performance to

source code

Repeat till you grow old / change project

34 | CCIS Class | Nov 30, 2011

OPENCL EVENTS

 OpenCL provides not only cross platform applications, but also mechanisms to create tools for
parallel computing

 Events are an interface to understanding OpenCL performance

–  Event objects (cl_event) used to determine command status

 OpenCL enqueue methods return event objects
–  Provides for command level control and synchronization

Command State Description
CL_QUEUED Command is in a queue
CL_SUBMITTED Command has been submitted to device
CL_RUNNING Command is currently executing on device
CL_COMPLETE Command has finished execution

Command states as visible from OpenCL events

cl_int clEnqueueNDRangeKernel (
 cl_command_queue queue,
 cl_kernel kernel, cl_uint work_dim,

 const size_t *global_work_offset,
 const size_t *global_work_size,
 const size_t *local_work_size,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

35 | CCIS Class | Nov 30, 2011

OPENCL PROFILING

 Events provide rich runtime information

–  Not just timestamps
 Supports schedulers across multiple families

of different devices (CPUs, GPUs, APUs)

 Implementation challenges
–  Capturing the notion of application phase

–  Minimizing profiling overhead
 Present implementation builds groups of

events with user-provided identifier
cl_event cl_event cl_event

Event Table Name Data
Results, Analysis,

Feedback

References to event objects

clGetEventinfo

cl_event
COMMAND_QUEUE

COMMAND_TYPE

EXEC_STATUS

Host-Device
IO Kernels Device-Host

IO

Profiler Region of Interest

36 | CCIS Class | Nov 30, 2011

SURF

Image Search using SURF features in a nearest neighbor OpenCL kernel

Feature
Comparison

Approximated Filters

S
U

R
F

vector <ipoints>

OPENCL PROFILER IN SURF APPLICATION

A
pp

lic
at

io
n

Integral
Image

Hessian
Residues

Non-Max
Suppression Orientation SURF64

Descriptors

float2 Pixel Position
float Orientation

float Scale
float Descriptor[64]

cl_event cl_event cl_event cl_event cl_event

oc
l-p

ro
fil

er

OpenCL Profiler Profiler Results
Application Driver

37 | CCIS Class | Nov 30, 2011

KERNEL TIMELINE IN SURF

 Application view of SURF

–  Kernel pipelined over data set
–  Averaged event time stamps for a

data set

 Exposes optimization opportunities
–  Cumulative time of small kernel

–  High kernel call count
–  Device – host IO duration is

insignificant in pipeline

 Used to estimate host idle time once
kernels are enqueued

Similar traces on any OpenCL compliant device

Kernel Wait Time
Kernel Execution Time

38 | CCIS Class | Nov 30, 2011

SURF PERFORMANCE FOR DIFFERENT APPLICATIONS

 Different applications on top of SURF

–  Stabilization
–  Image Search

 Search Application:
–  Create-Descriptor is the bottleneck

–  Split kernel on multiple devices
 Stabilization Application:

–  Build-Hessian is the bottleneck
–  Reduce the number of kernel calls

0

5

10

15

20

25

30

35

40

%
 ti

m
e

of
 to

ta
l

ex
ec

ut
io

n

Kernel Name

Percentage time of each kernel of SURF (AMD 5870)

Search-Appn

Stabilizn-Appn

39 | CCIS Class | Nov 30, 2011

PROFILER OVERHEAD

 Baseline: profiling disabled in command queue

–  Overhead for different videos
 Simple techniques to minimize overhead

–  Grow event list once and reuse data
structures

 Query events after frame

–  Allows for variable granularity of
performance measurement

 We show the worst case overhead for SURF
–  Profiling all kernels for every frame

39

Consistent overhead seen - per platform

0

500

1000

1500

2000

2500

3000

0

5

10

15

20

25

30

35

40

45

 'Woz' 'RBC' 'Vortices' 'UtrcRoom'

Ti
m

e
(m

s)

TI
m

e
(m

s)

Video Data Set

Profiling Overhead / frame for Different Data Sets

NV wo prof NV with prof AMD GPU wo prof

AMD GPU w prof CPU wo prof (Sec Axis) CPU w prof (Sec Axis)

40 | CCIS Class | Nov 30, 2011

ANALYSIS DEVICES - PRELIMINARY WORK

 Motivated by the fact that the GPU is rapidly
disappearing under libraries and frameworks

–  A core library writer doesn’t know each
high level application

 Specialization of an underlying OpenCL
system based on domain specific information

–  A specialized compute device known as a
“Analysis Device”

 Exploit extra OpenCL devices to work on
computation that can help performance

–  Preprocessing passes
–  Data transformation

–  Data value monitoring
The system consists OpenCL profilers (discussed
previously) which monitor application performance on the
compute device
Present granularity limited to on a OpenCL kernel basis

41 | CCIS Class | Nov 30, 2011

ANALYSIS DEVICES – PROGRAMMING VIEW

 Test applications developed use SURF as a
example underlying computational kernel pipeline
whose behavior is configurable

 Rules are prewritten OpenCL kernels whose
execution could improve the application

 Example Specializations – for SURF
–  Turn ON / OFF pipeline stages

–  Change frequency of SURF calls for invariant
data

–  Change thresholds of SURF which changes
the number of features

 Can be used to hide access to source code and
deep architectural optimization details

–  While providing knobs to specialize a
computational pipeline to an application

42 | CCIS Class | Nov 30, 2011

SUMMARY!

 Most of this work motivated by an interesting case of data dependent parallelism performance (clSURF)

 clSURF currently runs on CPUs, GPUs and APUs
 Profiling plays an increasingly important role in heterogeneous environments

 The OpenCL specification provides a useful interface to understand application performance
 Similar information provided for different devices

 Compliments existing tools such as the APP Profiler and Nvidia OpenCL Profiler
 Language extensions provide a path to high performance

 Enables static and dynamic profiling and feedback directed optimization

43 | CCIS Class | Nov 30, 2011

EXTRA HOMEWORK FOR NO REWARD

 clSURF code download

–  http://code.google.com/p/clsurf

 Haptic Download
–  http://code.google.com/p/clhaptic

 For more information about GPU research in NUCAR

–  www.ece.neu.edu/groups/nucar/GPU/

44 | CCIS Class | Nov 30, 2011

WE ARE THANKFUL FOR OUR GENEROUS SPONSORS J

45 | CCIS Class | Nov 30, 2011

Thank You !
Questions or Comments ?
Perhaad Mistry

 pmistry@ece.neu.edu

46 | CCIS Class | Nov 30, 2011

INFORMATION AND REFERENCES

 http://developer.amd.com/zones/OpenCLZone/universities/Pages/default.aspx

 General Programming
–  Beyond Programmable Shading – David Leubke

–  Decomposition Techniques for Parallel Programming – Vivek Sarkar
–  CUDA Textures & Image Registration - Richard Ansorge

–  Setting up CUDA within Windows Visual Studio
–  http://www.ademiller.com/blogs/tech/2011/03/using-cuda-and-thrust-with-visual-studio-2010/

–  SDK examples: Histogram64, Matmul, SimpleTextures
 SURF Related

–  http://code.google.com/p/clsurf/
–  http://www.chrisevansdev.com/computer-vision-opensurf.html

–  http://developer.amd.com/afds/assets/presentations/2123_final.pdf

