
1

Overview of Storage and Indexing

Chapter 8

2

Why Is This Important?

 DB performance depends on time it takes to get the
data from storage system and time to process

 Choosing the right index for faster access can speed
up queries significantly

 Understanding why a query is slow helps finding a
remedy

 Warning: DBMS is a complex system

 Cannot understand every little detail

 Our focus: Most important aspects, abstracted enough to
make them “digestible”

3

Data on External Storage

 Disks: Can retrieve random page at fixed cost
 But reading several consecutive pages is much cheaper than reading them

in random order

 Tapes: Can only read pages in sequence
 Cheaper than disks; used for archival storage

 Flash memory: Starting to replace disks due to much faster random
access
 Writes still slow, size often too small for DB applications

 File organization: Method of arranging a file of records on external
storage.
 Record id (rid) is sufficient to physically locate record
 Index: data structure for finding the ids of records with given values faster

 Architecture: Buffer manager stages pages from external storage to
main memory buffer pool. File and index layers make calls to the
buffer manager.

4

Components of a Disk

 Platters spin
 E.g., 10K rpm

 Arm assembly is moved
in or out to position a
head on a desired track.

 Tracks under heads
make a cylinder.

 Only one head reads or
writes at any one time.

 Block size is a multiple
of sector size (which is
fixed).
 512 bytes (old), 4096

bytes (new)

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector

5

Accessing a Disk Page

 Time to access (read/write) a disk block:

 Seek time (moving arms to position disk head on track)

 Rotational delay (waiting for block to rotate under head)

 Transfer time (actually moving data to/from disk surface)

 Seek time and rotational delay dominate.

 Seek time typically a little below 9msec (consumer disks)

 Rotational delay around 4msec on average (7.2K rpm disk)

 Transfer rate disk-to-buffer of 70MB/sec (sustained)

 Key to lower I/O cost: reduce seek/rotation delays.

 Hardware vs. software solutions?

6

Records on a Disk Page

 Rid = <page#, slot#>

 Can move records on page without changing rid.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1

20 16 24 N

slots

7

Possible File Organizations

 Heap (random order) files
 Suitable when typical access is a file scan retrieving all

records.

 Sorted Files
 Best if records must be retrieved in some order, or only a

`range’ of records is needed.

 Indexes = data structures to organize records via
trees or hashing.
 Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields

 Updates are much faster than in sorted files.

8

Indexes

 An index on a file speeds up selections on the search
key fields for the index.

 Any subset of the fields of a relation can be the search key
for an index on the relation.

 Search key is not the same as key (minimal set of fields
that uniquely identify a record in a relation).

 An index contains a collection of data entries, and
supports efficient retrieval of all data entries k* with
a given key value k.

 Given data entry k*, we can find record with key k in at
most one disk I/O. (Details soon…)

9

B+ Tree Indexes

 Balanced index: all root-to-leaf paths have same length
 For n data entries, tree has height log n

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

10

Example B+ Tree

 Find 28*? 29*? All > 15* and < 30*

 Insert/delete: Find data entry in leaf, then change it.
Need to adjust parent sometimes.

 And change sometimes propagates up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

11

Hash-Based Indexes

 Good for equality selections.

 Index is a collection of buckets.

 Bucket = primary page plus zero or more overflow pages.

 Buckets contain data entries.

 Hashing function h: h(r) = bucket in which (data
entry for) record r belongs.

 h looks at the search key fields of r.

 No need for “index entries” in this scheme.

12

Static Hashing

 # primary pages fixed, allocated sequentially, never de-
allocated; overflow pages if needed.

 h(k) mod N = bucket to which data entry with key k
belongs. (N = # of buckets)
 h(key) = (a * key + b) usually works well

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

13

Alternatives for Data Entry k* in Index

 In a data entry k* we can store:

1. Data record with key value k, or

2. <k, rid of data record with search key value k>, or

3. <k, list of rids of data records with search key k>

 Choice of alternative for data entries is orthogonal to
the indexing technique used to locate data entries
with a given key value k.

 Typically, index contains auxiliary information that directs
searches to the desired data entries

14

Alternative 1 for Data Entries

 Actual data record stored in index

 Index structure is a file organization for data records
(instead of a Heap file or sorted file).

 At most one index on a given collection of data
records can use Alternative 1.

 Otherwise, data records are duplicated, leading to
redundant storage and potential inconsistency.

 If data records are very large, # of pages containing
data entries is high. Implies size of auxiliary
information in the index is also large, typically.

15

Alternatives 2 and 3 for Data Entries

 Data entries typically much smaller than data
records. So, better than Alternative 1 with large data
records, especially if search keys are small.
 Portion of index structure used to direct search, which

depends on size of data entries, is much smaller than with
Alternative 1.

 Alternative 3 more compact than Alternative 2, but
leads to variable-sized data entries even if search
keys are of fixed length.

 Extra cost for accessing data records in another file
 Index only return rids

16

Index Classification

 Primary vs. secondary: If search key contains primary
key, then called primary index.
 Unique index: Search key contains a candidate key.

 Clustered vs. unclustered: If order of data records is the
same as, or `close to’, order of data entries, then called
clustered index.
 Alternative 1 implies clustered

• In practice, clustered also implies Alternative 1 (since sorted files are
rare).

 A file can be clustered on at most one search key.

 Cost of retrieving data records through index varies greatly
based on whether index is clustered or not.

17

Clustered vs. Unclustered Index

 Suppose Alternative 2 is used for data entries, and that the
data records are stored in a Heap file.
 To build clustered index, first sort the Heap file (with some free space

on each page for future inserts).
 Overflow pages may be needed for inserts. (Thus, order of data

records is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

18

Cost Model for Our Analysis

 We ignore CPU costs, for simplicity:

 B: The number of data pages (“blocks”)

 R: Number of records per page

 D: (Average) time to read or write a single disk page

 Measuring number of page I/O’s ignores gains of
pre-fetching a sequence of pages; thus, even I/O cost
is only approximated.

 Average-case analysis; based on several simplifying
assumptions.

Good enough to show the overall trends!

19

Comparing File Organizations

 Heap files (random order; insert at eof)

 Sorted files, sorted on attributes <age, sal>

 Clustered B+ tree file, Alternative 1, search key <age,
sal>

 Heap file with unclustered B + tree index on search
key <age, sal>

 Heap file with unclustered hash index on search key
<age, sal>

20

Operations to Compare

 Scan: Fetch all records from disk

 Equality search

 Range selection

 Insert a record

 Delete a record

21

Assumptions in Our Analysis

 Heap Files:

 Equality selection on key; exactly one match.

 Sorted Files:

 Files compacted after deletions.

 Indexes:

 Alternatives 2, 3: data entry size = 10% of record size

 Tree: 67% occupancy (this is typical).
• Implies file size = 1.5 data size

 Hash: No overflow buckets.
• 80% page occupancy => File size = 1.25 data size

22

Assumptions (contd.)

 Scans:

 Leaf levels of a tree-index are chained.

 Index data-entries plus actual file scanned for unclustered
indexes.

 Range searches:

 We use tree indexes to restrict the set of data records
fetched, but ignore hash indexes.

23

I/O Cost of Operations

Scan Equality Range Insert Delete

Heap file BD 0.5BD BD 2D Search + D

Sorted file BD D log2B D(log2B +
#pgs w. match recs)

Search + BD Search + BD

Clustered
index

1.5BD DlogF1.5B D(logF 1.5B +
#pgs w. match recs)

Search + D Search + D

Unclustered
tree index
+ Heap file

BD(R+0.15) D(1+logF 0.15B) D(logF 0.15B +
#pgs w. match recs)

Search + 3D Search + 3D

Unclustered
hash index
+ Heap file

BD(R+0.125) 2D BD 4D 4D

Several assumptions underlie these (rough) estimates!

25

Choice of Indexes

 What indexes should we create?

 Which relations should have indexes?

 What field(s) should be the search key?

 Should we build several indexes?

 For each index, what kind of an index should it be?

 Clustered?

 Hash or tree?

26

Choice of Indexes (Contd.)

 One approach: Consider the most important queries
in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.

 Must understand how a DBMS evaluates queries and
creates query evaluation plans.

 Before creating an index, must also consider the
impact on updates in the workload.

 Trade-off: Indexes can make queries go faster, updates
slower. Require disk space, too.

27

Index Selection Guidelines

 Attributes in WHERE clause are candidates for index keys.
 Exact match condition suggests hash index.
 Range query suggests tree index.

• Clustering is especially useful for range queries; can also help on equality
queries if there are many duplicates.

 Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
 Order of attributes is important for range queries.
 Such indexes can sometimes enable index-only strategies for

important queries: when only indexed attributes are needed.
• For index-only strategies, clustering is not important.

 Try to choose indexes that benefit many queries.
 Since only one index can be clustered per relation, choose it

based on important queries that would benefit the most from
clustering.

28

Examples of Clustered Indexes

 B+ tree index on E.age can be
used to get qualifying tuples.
 How selective is the condition?

 Is the index clustered?

 Consider the GROUP BY query.
 If many tuples have E.age > 10,

using E.age index and sorting the
retrieved tuples may be costly.

 Clustered E.dno index may be
better!

 Equality queries and duplicates:
 Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

29

Indexes with Composite Search Keys

 Composite Search Keys: Search
on a combination of fields.
 Equality query: Every field value

is equal to a constant. E.g. wrt
<sal,age> index:

• age=20 and sal =75

 Range query: Some field value is
not a constant. E.g.:

• age =20; or age=20 and sal > 10

 Data entries in index sorted by
search key to support range
queries.
 Lexicographic order, or

 Spatial order.

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

30

Composite Search Keys

 To retrieve Emp records with age=30 AND sal=4000,
an index on <age,sal> would be better than an index
on age alone or an index on sal.

 Choice of index key orthogonal to clustering etc.

 If condition is 20<age<30 AND 3000<sal<5000:

 Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is age=30 AND 3000<sal<5000:

 Clustered <age,sal> index much better than <sal,age>
index.

 Composite indexes are larger, updated more often.

31

Index-Only Plans

 Some queries
can be
answered
without
retrieving any
tuples from
one or more
of the
relations
involved, if a
suitable index
is available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E.age,E.sal>
or

<E.sal,E.age>

Tree index!

34

Summary

 Many alternative file organizations exist, each
appropriate in some situation.

 If selection queries are frequent, sorting the file or
building an index is important.

 Hash-based indexes only good for equality search.

 Sorted files and tree-based indexes best for range search;
also good for equality search.

• Files rarely kept sorted in practice; B+ tree index is better.

 Index is a collection of data entries plus a way to
quickly find entries with given key values.

35

Summary (Contd.)

 Data entries can be actual data records, <key, rid>
pairs, or <key, rid-list> pairs.

 Choice orthogonal to indexing technique used to locate
data entries with a given key value.

 Can have several indexes on a given file of data
records, each with a different search key.

 Indexes can be classified as clustered vs. unclustered
and primary vs. secondary.

 Differences have important consequences for
utility/performance.

36

Summary (Contd.)

 Understanding the nature of the workload and
performance goals essential to developing a good design.
 What are the important queries and updates?

 What attributes and relations are involved?

 Indexes must be chosen to speed up important queries
(and perhaps some updates).
 Index maintenance overhead on updates to key fields.

 Choose indexes that can help many queries, if possible.

 Build indexes to support index-only strategies.

 Clustering is an important decision; only one index on a given
relation can be clustered!

 Order of fields in composite index key can be important.

