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Overview of Storage and Indexing

Chapter 8
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Why Is This Important?

 DB performance depends on time it takes to get the 
data from storage system and time to process

 Choosing the right index for faster access can speed 
up queries significantly

 Understanding why a query is slow helps finding a 
remedy

 Warning: DBMS is a complex system

 Cannot understand every little detail

 Our focus: Most important aspects, abstracted enough to 
make them “digestible”
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Data on External Storage

 Disks: Can retrieve random page at fixed cost
 But reading several consecutive pages is much cheaper than reading them 

in random order

 Tapes: Can only read pages in sequence
 Cheaper than disks; used for archival storage

 Flash memory: Starting to replace disks due to much faster random 
access
 Writes still slow, size often too small for DB applications

 File organization: Method of arranging a file of records on external 
storage.
 Record id (rid) is sufficient to physically locate record
 Index: data structure for finding the ids of records with given values faster

 Architecture: Buffer manager stages pages from external storage to 
main memory buffer pool. File and index layers make calls to the 
buffer manager.
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Components of a Disk 

 Platters spin
 E.g., 10K rpm

 Arm assembly is moved 
in or out to position a 
head on a desired track.

 Tracks under heads  
make a cylinder.

 Only one head reads or 
writes at any one time.

 Block size is a multiple             
of sector size (which is 
fixed).
 512 bytes (old), 4096 

bytes (new)

Platters

Spindle

Disk head

Arm movement

Arm assembly

Tracks

Sector
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Accessing a Disk Page

 Time to access (read/write) a disk block:

 Seek time (moving arms to position disk head on track)

 Rotational delay (waiting for block to rotate under head)

 Transfer time (actually moving data to/from disk surface)

 Seek time and rotational delay dominate.

 Seek time typically a little below 9msec (consumer disks)

 Rotational delay around 4msec on average (7.2K rpm disk)

 Transfer rate disk-to-buffer of 70MB/sec (sustained)

 Key to lower I/O cost: reduce seek/rotation delays.

 Hardware vs. software solutions?
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Records on a Disk Page

 Rid = <page#, slot#>

 Can move records on page without changing rid.

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . .            2         1

20 16 24 N

# slots
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Possible File Organizations

 Heap (random order) files
 Suitable when typical access is a file scan retrieving all 

records.

 Sorted Files
 Best if records must be retrieved in some order, or only a 

`range’ of records is needed.

 Indexes = data structures to organize records via 
trees or hashing.
 Like sorted files, they speed up searches for a subset of 

records, based on values in certain (“search key”) fields

 Updates are much faster than in sorted files.

8

Indexes

 An index on a file speeds up selections on the search 
key fields for the index.

 Any subset of the fields of a relation can be the search key 
for an index on the relation.

 Search key is not the same as key (minimal set of fields 
that uniquely identify a record in a relation).

 An index contains a collection of data entries, and 
supports efficient retrieval of all data entries k* with 
a given key value k.

 Given data entry k*, we can find record with key k in at 
most one disk I/O.  (Details soon…)
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B+ Tree Indexes

 Balanced index: all root-to-leaf paths have same length
 For n data entries, tree has height log n

 Leaf pages contain data entries, and are chained (prev & next)
 Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages 

(Sorted by search key)

Leaf
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Example B+ Tree

 Find 28*? 29*? All > 15* and < 30*

 Insert/delete:  Find data entry in leaf, then change it. 
Need to adjust parent sometimes.

 And change sometimes propagates up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <=  17 Entries >  17

Note how data entries

in leaf level are sorted
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Hash-Based Indexes

 Good for equality selections. 

 Index is a collection of buckets. 

 Bucket = primary page plus zero or more overflow pages. 

 Buckets contain data entries. 

 Hashing function h:  h(r) = bucket in which (data 
entry for) record r belongs.

 h looks at the search key fields of r.

 No need for “index entries” in this scheme.
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Static Hashing

 # primary pages fixed, allocated sequentially, never de-
allocated; overflow pages if needed.

 h(k) mod N = bucket to which data entry with key k 
belongs. (N = # of buckets)
 h(key) = (a * key + b) usually works well

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1
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Alternatives for Data Entry k* in Index

 In a data entry k* we can store:

1. Data record with key value k, or

2. <k, rid of data record with search key value k>, or

3. <k, list of rids of data records with search key k>

 Choice of alternative for data entries is orthogonal to 
the indexing technique used to locate data entries 
with a given key value k.

 Typically, index contains auxiliary information that directs 
searches to the desired data entries
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Alternative 1 for Data Entries

 Actual data record stored in index

 Index structure is a file organization for data records 
(instead of a Heap file or sorted file).

 At most one index on a given collection of data 
records can use Alternative 1.

 Otherwise, data records are duplicated, leading to 
redundant storage and potential inconsistency.

 If data records are very large,  # of pages containing 
data entries is high.  Implies size of auxiliary 
information in the index is also large, typically. 
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Alternatives 2 and 3 for Data Entries

 Data entries typically much smaller than data 
records. So, better than Alternative 1 with large data 
records, especially if search keys are small.
 Portion of index structure used to direct search, which 

depends on size of data entries, is much smaller than with 
Alternative 1.

 Alternative 3 more compact than Alternative 2, but 
leads to variable-sized data entries even if search 
keys are of fixed length.

 Extra cost for accessing data records in another file
 Index only return rids
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Index Classification

 Primary vs. secondary: If search key contains primary 
key, then called primary index.
 Unique index: Search key contains a candidate key.

 Clustered vs. unclustered: If order of data records is the 
same as, or `close to’, order of data entries, then called 
clustered index.
 Alternative 1 implies clustered

• In practice, clustered also implies Alternative 1 (since sorted files are 
rare).

 A file can be clustered on at most one search key.

 Cost of retrieving data records through index varies greatly 
based on whether index is clustered or not.
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Clustered vs. Unclustered Index

 Suppose Alternative 2 is used for data entries, and that the 
data records are stored in a Heap file.
 To build clustered index, first sort the Heap file (with some free space 

on each page for future inserts).  
 Overflow pages may be needed for inserts. (Thus, order of data 

records is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED
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Cost Model for Our Analysis

 We ignore CPU costs, for simplicity:

 B:  The number of data pages (“blocks”)

 R:  Number of records per page

 D:  (Average) time to read or write a single disk page

 Measuring number of page I/O’s ignores gains of 
pre-fetching a sequence of pages; thus, even I/O cost 
is only approximated.   

 Average-case analysis; based on several simplifying 
assumptions.

Good enough to show the overall trends!
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Comparing File Organizations

 Heap files (random order; insert at eof)

 Sorted files, sorted on attributes <age, sal> 

 Clustered B+ tree file, Alternative 1, search key <age, 
sal>

 Heap file with unclustered B + tree index on search 
key <age, sal>

 Heap file with unclustered hash index on search key 
<age, sal>
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Operations to Compare

 Scan: Fetch all records from disk

 Equality search

 Range selection

 Insert a record

 Delete a record
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Assumptions in Our Analysis

 Heap Files:

 Equality selection on key; exactly one match.

 Sorted Files:

 Files compacted after deletions.

 Indexes: 

 Alternatives 2, 3: data entry size = 10% of record size

 Tree: 67% occupancy (this is typical).
• Implies file size =  1.5 data size

 Hash: No overflow buckets.
• 80% page occupancy => File size = 1.25 data size
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Assumptions (contd.)

 Scans: 

 Leaf levels of a tree-index are chained.

 Index data-entries plus actual file scanned for unclustered 
indexes.

 Range searches:

 We use tree indexes to restrict the set of data records 
fetched, but ignore hash indexes.
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I/O Cost of Operations 

Scan Equality Range Insert Delete

Heap file BD 0.5BD BD 2D Search + D

Sorted file BD D log2B D(log2B +
#pgs w. match recs)

Search + BD Search + BD

Clustered 
index

1.5BD DlogF1.5B D(logF 1.5B +
#pgs w. match recs)

Search + D Search + D

Unclustered
tree index
+ Heap file

BD(R+0.15) D(1+logF 0.15B) D(logF 0.15B +
#pgs w. match recs)

Search + 3D Search + 3D

Unclustered
hash index
+ Heap file

BD(R+0.125) 2D BD 4D 4D

Several assumptions underlie these (rough) estimates!
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Choice of Indexes

 What indexes should we create?

 Which relations should have indexes?

 What field(s) should be the search key?

 Should we build several indexes?

 For each index, what kind of an index should it be?

 Clustered?

 Hash or tree?  
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Choice of Indexes (Contd.)

 One approach: Consider the most important queries
in turn. Consider the best plan using the current 
indexes, and see if a better plan is possible with an 
additional index. If so, create it.

 Must understand how a DBMS evaluates queries and 
creates query evaluation plans.

 Before creating an index, must also consider the 
impact on updates in the workload.

 Trade-off: Indexes can make queries go faster, updates 
slower.  Require disk space, too.
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Index Selection Guidelines

 Attributes in WHERE clause are candidates for index keys.
 Exact match condition suggests hash index.
 Range query suggests tree index.

• Clustering is especially useful for range queries; can also help on equality 
queries if there are many duplicates.

 Multi-attribute search keys should be considered when a 
WHERE clause contains several conditions.
 Order of attributes is important for range queries.
 Such indexes can sometimes enable index-only strategies for 

important queries: when only indexed attributes are needed.
• For index-only strategies, clustering is not important.

 Try to choose indexes that benefit many queries.
 Since only one index can be clustered per relation, choose it 

based on important queries that would benefit the most from 
clustering.
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Examples of Clustered Indexes

 B+ tree index on E.age can be 
used to get qualifying tuples.
 How selective is the condition?

 Is the index clustered?

 Consider the GROUP BY query.
 If many tuples have E.age > 10, 

using E.age index and sorting the 
retrieved tuples may be costly.

 Clustered E.dno index may be 
better!

 Equality queries and duplicates:
 Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps
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Indexes with Composite Search Keys 

 Composite Search Keys: Search 
on a combination of fields.
 Equality query: Every field value 

is equal to a constant. E.g. wrt
<sal,age> index:

• age=20 and sal =75

 Range query: Some field value is 
not a constant. E.g.:

• age =20; or age=20 and sal > 10

 Data entries in index sorted by 
search key to support range 
queries.
 Lexicographic order, or

 Spatial order.

sue 13 75

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.
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Composite Search Keys

 To retrieve Emp records with age=30 AND sal=4000, 
an index on <age,sal> would be better than an index 
on age alone or an index on sal.

 Choice of index key orthogonal to clustering etc.

 If condition is  20<age<30  AND  3000<sal<5000: 

 Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is  age=30  AND  3000<sal<5000: 

 Clustered <age,sal> index much better than <sal,age> 
index.

 Composite indexes are larger, updated more often.
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Index-Only Plans

 Some queries 
can be 
answered 
without 
retrieving any 
tuples from 
one or more 
of the 
relations 
involved, if a 
suitable index 
is available.

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY  E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY  E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE  E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>

Tree index!

<E.age,E.sal>
or

<E.sal,E.age>

Tree index!
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Summary

 Many alternative file organizations exist, each 
appropriate in some situation.

 If selection queries are frequent, sorting the file or 
building an index is important.

 Hash-based indexes only good for equality search.

 Sorted files and tree-based indexes best for range search; 
also good for equality search. 

• Files rarely kept sorted in practice; B+ tree index is better.

 Index is a collection of data entries plus a way to 
quickly find entries with given key values.
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Summary (Contd.)

 Data entries can be actual data records, <key, rid> 
pairs, or <key, rid-list> pairs.

 Choice orthogonal to indexing technique used to locate 
data entries with a given key value.

 Can have several indexes on a given file of data 
records, each with a different search key.

 Indexes can be classified as clustered vs. unclustered
and primary vs. secondary.

 Differences have important consequences for 
utility/performance.
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Summary (Contd.)

 Understanding the nature of the workload and 
performance goals essential to developing a good design.
 What are the important queries and updates?

 What attributes and relations are involved? 

 Indexes must be chosen to speed up important queries 
(and perhaps some updates).
 Index maintenance overhead on updates to key fields.

 Choose indexes that can help many queries, if possible.

 Build indexes to support index-only strategies.

 Clustering is an important decision; only one index on a given 
relation can be clustered!

 Order of fields in composite index key can be important.


