
1

Database Application Development

Chapter 6

2

Why Is This Important?

 So far, accessed DBMS “directly” through client tools

 Great for interactive use

 How can we access the DBMS from a program?

 Need an interface between programming language
and DBMS

 Many different options

 Our focus: JDBC

3

Overview

 SQL in application code

 Embedded SQL

 Cursors

 JDBC

 Stored procedures

4

SQL in Application Code

 SQL commands can be called from within a host
language (e.g., C++ or Java) program.

 SQL statements can refer to host variables (including
special variables used to return status).

 Must include a statement to connect to the right database.

 Two main integration approaches:

 Embed SQL in the host language (Embedded SQL, SQLJ)

 Create special API to call SQL commands (JDBC)

5

SQL in Application Code (Contd.)

 Impedance mismatch:

 SQL relations are (multi-) sets of records, with no a priori
bound on the number of records. No such data structure
existed traditionally in procedural programming languages
such as C.

 SQL supports a mechanism called a cursor to handle this.
• Cursor essentially is a more powerful iterator

6

Embedded SQL

 Approach: Embed SQL in the host language.

 A preprocessor converts SQL statements into special API
calls.

 Then a regular compiler is used to compile the code.

 Language constructs:

 Connecting to a database:
EXEC SQL CONNECT

 Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION

 Statements:
EXEC SQL Statement;

7

Embedded SQL in C: Variables

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

 Two special “error” variables:
 SQLCODE (long, is negative if an error has occurred)

 SQLSTATE (char[6], predefined codes for common errors)

8

Cursors

 Can declare a cursor on a relation or query
statement (which generates a relation).

 Can open a cursor and repeatedly fetch a tuple, then
move the cursor until all tuples have been retrieved.

 Can use a special clause, called ORDER BY, in queries that
are accessed through a cursor, to control the order in
which tuples are returned.

• Fields in ORDER BY clause must also appear in SELECT clause.

 Can also modify/delete tuple pointed to by a cursor.

9

Cursor: Get names of sailors who
reserved a red boat, in alphabetical
order

 Cannot replace S.sname by, say, S.sid in the ORDER
BY clause above (Why?)

 Can we add S.sid to the SELECT clause and replace
S.sname by S.sid in the ORDER BY clause?

EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
ORDER BY S.sname

10

Embedding SQL in C: An Example

char SQLSTATE[6];

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20]; short c_minrating; float c_age;

EXEC SQL END DECLARE SECTION

c_minrating = random();

EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age FROM Sailors S

WHERE S.rating > :c_minrating

ORDER BY S.sname;

do {

EXEC SQL FETCH sinfo INTO :c_sname, :c_age;

printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’);

EXEC SQL CLOSE sinfo;

11

Database APIs: Alternative to
embedding

 Rather than modify compiler, add library with database
calls (API)
 Advantage: executable is also DBMS-independent

 Embedded is SQL DBMS-independent only at source-code level

 Pass SQL strings from language, present result sets in a
language-friendly way
 Sun’s JDBC: Java API

 Supposedly DBMS-neutral
 A driver traps the calls and translates them into DBMS-specific

code

 Driver loaded dynamically and on-demand

 Database can be across a network

12

JDBC Architecture Components

 Application
 Initiates and terminates connections, submits SQL

statements

 Driver manager
 Loads JDBC driver, passes JDBC calls from app to correct

driver

 Driver
 Connects to data source, transmits requests and

returns/translates results and error codes

 Data source (DBMS)
 Processes SQL statements

13

JDBC Architecture (Pure Java)

 Left side: type 4 driver
 Allows direct call from client

to DBMS, pure Java

 Converts JDBC calls into
network protocol used by
DBMS

 Right side: type 3 driver
 Translates JDBC calls into

middleware protocol

 Middleware translates this to
DBMS protocol

 Useful when connecting to
many different DBMSes

Source: java.sun.com
14

JDBC Architecture (Not Pure Java)

 Left side: type 1 driver
 JDBC access via ODBC

drivers

 Each client using the
bridge must have ODBC
binary code

 Right side: type 2 driver
 Converts JDBC calls into

calls on the DBMS client
API

 Needs binary code on
client machine

Source: java.sun.com

15

JDBC Classes and Interfaces

 Steps to submit a database query:

 Load the JDBC driver

 Connect to the data source

 Execute SQL statements

 Important: make sure you include the driver in the
classpath

 Driver jar file sqljdbc4.jar needs to be in the classpath

 Should be there by default on Windows lab machines

16

Connecting to A DBMS

private Connection getDBConnection() {
Connection con = null;
try {

// Load the driver
Class.forName(myDbDriver).newInstance();

} catch (InstantiationException e) { e.printStackTrace();
} catch (IllegalAccessException e) { e.printStackTrace();
} catch (ClassNotFoundException e) { e.printStackTrace(); }

try {
String connectionURL = “myURL”;
con = DriverManager.getConnection(connectionURL);

} catch (SQLException e) { e.printStackTrace(); }

return con;
}

17

Connection Data

 MSFT JDBC driver for SQL Server
 dbDriver = "com.microsoft.sqlserver.jdbc.SQLServerDriver“;

 connectionURL = “jdbc:sqlserver://address:1433;” +
“databaseName=XYZ;user=YOU;password=SECRET;”;

 In the JDBC API 4.0, the DriverManager.getConnection
method is enhanced to load JDBC drivers automatically.
 Do not need to call the Class.forName method to register or load the

driver when using the sqljdbc4.jar class library.

 When the getConnection method of the DriverManager class
is called, an appropriate driver is located from the set of
registered JDBC drivers.
 sqljdbc4.jar file includes "META-INF/services/java.sql.Driver" file,

which contains the com.microsoft.sqlserver.jdbc.SQLServerDriver as a
registered driver.

18

Connections in JDBC

 Notice: We interact with a data source through
sessions.

 Each connection identifies a logical session.

 JDBC URL: jdbc:<subprotocol>:<otherParameters>

 Multiple users: each has his/her own session(s)

19

Important Imports For JDBC

 import java.sql.Connection;

 import java.sql.DriverManager;

 import java.sql.ResultSet;

 import java.sql.SQLException;

 import java.sql.Statement;

20

Running A Simple SQL Query
public List getSpeciesNames() {

Connection con = getDBConnection();
List species = new ArrayList();

try {
Statement S = con.createStatement();
// Get query results
ResultSet rs = S.executeQuery(

"SELECT DISTINCT " + speciesColName
+ " FROM " + scoresTableName);

// Copy results into list
while (rs.next()) {

String speciesName = rs.getString(speciesColName);
species.add(speciesName);

}
rs.close();
con.close();

} catch (SQLException e) { e.printStackTrace(); }
return species;

}

21

Connection Interface

 Can set auto-commit mode
 Auto-commit on: each statement considered its own

transaction, no need for explicit commit()

 boolean getAutoCommit(),
void setAutoCommit(boolean autoCommit)

 Can set transaction isolation level
 Connection.TRANSACTION_READ_UNCOMMITTED,

Connection.TRANSACTION_READ_COMMITTED,
Connection.TRANSACTION_REPEATABLE_READ, or
Connection.TRANSACTION_SERIALIZABLE

 int getTransactionIsolation(),
void setTransactionIsolation(int level)

 Isolation, auto-commit covered later, for now use default

22

Connection Interface (Contd.)

 Better performance possible for read-only access

 boolean isReadOnly(),
void setReadOnly(boolean readOnly)

 Check whether connection is still open

 boolean isClosed(),
void close()

 Commit or abort transaction

 Use only when autoCommit is false

 void commit(),
void rollback()

23

Statement Interface

 Used to execute SQL statement and return its results
 execute(String sql) to execute any SQL statement
 executeQuery(String sql) to obtain single ResultSet object
 executeUpdate(String sql) for INSERT, UPDATE, or DELETE

 Sub-interface PreparedStatement
 Precompiled SQL statement for efficiently executing a

statement multiple times.
 Structure fixed, parameters determined at runtime

• PreparedStatement pstmt = connection.prepareStatement("UPDATE
EMPLOYEES SET SALARY = ? WHERE ID = ?");

• pstmt.setBigDecimal(1, 153833.00); pstmt.setInt(2, 110592);

 Sub-interface CallableStatement
• For calling SQL stored procedures through standard way for all

RDBMSes

24

SQL Stored Procedures

 What is a stored procedure?

 Program executed through a single SQL statement

 Executed in the process space of the server

 Advantages:

 Can encapsulate application logic while staying “close” to
the data

 Reuse of application logic by different users

 Avoid tuple-at-a-time return of records through cursors
• Only final result is returned to Java app

25

Example Stored Procedure

CREATE PROCEDURE getReservations
@Name varchar(50),

AS
SET NOCOUNT ON;
SELECT bid, date
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

AND S.name = @Name;
GO

Syntax for SQL Server, will be different for other DBMS

26

Calling A Stored Procedure

EXECUTE getReservations ‘Joe’;
-- Or
EXEC getReservations @Name = ‘Joe’;
GO
-- Or, if this procedure is the first statement within a batch:
getReservations ‘Joe’;

27

Stored Procedure with Output
Parameters

CREATE PROCEDURE getReservationCnt
@SailorID int,
@ResCnt int OUT

AS
SET NOCOUNT ON;
SET @ResCnt = (SELECT COUNT(*)

FROM Reserves R
WHERE R.sid = @SailorID);

GO

28

Calling Stored Procedures with Output

DECLARE @ResCnt int
EXECUTE getReservationCnt 101, @ResCnt OUT
PRINT ‘The sailor made ‘

+ RTRIM(CAST(@ResCnt AS varchar(20)))
+ ‘ reservations.'

29

Calling Stored Procedures from JDBC
CallableStatement cs = null;
try {

// Procedure without parameters
cs = con.prepareCall(“{call myStoredProcName}”);
cs.execute();
// Procedure with input parameters only
cs = connection.prepareCall("{call getReservations(?)}");
cs.setString(1, “Joe”);
cs.execute();
// Procedure with input and output parameters
cs = connection.prepareCall("{call getReservationCnt(?, ?)}");
cs.setInt(1, 101);
cs.registerOutParameter(2, Types.INT);
// For parameters that are used for both input and output,
// have both the set and registerOutParameter statement
cs.execute();
int result = cs.getInt(2);

} catch (SQLException e) { }

30

ResultSet Interface

 Maintains a cursor, initially positioned before first row

 Next() method advances cursor, returns false if no more
rows

 Default: not updateable, cursor can only move forward

 Can be changed, of course

 Can update database by updating ResultSet

• Update column values of current row or delete entire row

• Insert new row by setting values of special “insert row”

 GetString(), getBoolean() etc. to retrieve values in
columns

 Access through column number or name

31

Matching Java and SQL Data Types

getTimestamp()java.sql.TimeStampTIMESTAMP

getTime()java.sql.TimeTIME

getDate()java.sql.DateDATE

getFloat()DoubleREAL

getInt()IntegerINTEGER

getDouble()DoubleFLOAT

getDouble()DoubleDOUBLE

getString()StringVARCHAR

getString()StringCHAR

getBoolean()BooleanBIT

ResultSet get methodJava classSQL Type

32

Exceptions and Warnings

 Most of java.sql can throw an SQLException if an
error occurs.

 SQLWarning is a subclass of SQLException

 Not as severe

 Not thrown and their existence has to be explicitly tested

33

Exceptions and Warnings (Contd.)

try {
stmt=con.createStatement();
warning=con.getWarnings();
while(warning != null) {

// handle SQLWarnings;
warning = warning.getNextWarning():

}
con.clearWarnings();
stmt.executeUpdate(queryString);
warning = con.getWarnings();
…

} //end try
catch(SQLException SQLe) {

// handle the exception
}

34

Examining Database Metadata

 DatabaseMetaData object gives information about
the database system and the catalog.

DatabaseMetaData md = con.getMetaData();

// Print information about the driver

System.out.println(“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

35

Database Metadata (Contd.)

DatabaseMetaData md=con.getMetaData();
ResultSet trs=md.getTables(null,null,null,null);
String tableName;
While(trs.next()) {

tableName = trs.getString(“TABLE_NAME”);
System.out.println(“Table: “ + tableName);
// Print all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.println(crs.getString(“COLUMN_NAME” + “,
“);
}

}
36

Summary

 Embedded SQL allows execution of parameterized
static queries within a host language

 Cursor mechanism allows retrieval of one record at a
time and bridges impedance mismatch between host
language and SQL

 APIs such as JDBC introduce a layer of abstraction
between application and DBMS

 Stored procedures execute application logic directly
at the server

