Database Application Development

Why Is This Important? =

< So far, accessed DBMS “directly” through client tools
= Great for interactive use
< How can we access the DBMS from a program?

< Need an interface between programming language
and DBMS

Chapter 6 . .
< Many different options
% Our focus: JDBC
1 2
Overview S SQl in Application Code B

< SQL in application code
< Embedded SQL

< Cursors

< JDBC

% Stored procedures

< SQL commands can be called from within a host
language (e.g., C++ or Java) program.

= SQL statements can refer to host variables (including
special variables used to return status).
= Must include a statement to connect to the right database.

< Two main integration approaches:
= Embed SQL in the host language (Embedded SQL, SQU)
= Create special API to call SQL commands (JDBC)

SQL in Application Code (Contd.) =

% Impedance mismatch:
= SQL relations are (multi-) sets of records, with no a priori
bound on the number of records. No such data structure
existed traditionally in procedural programming languages
such as C.
= SQL supports a mechanism called a cursor to handle this.
® Cursor essentially is a more powerful iterator

Embedded SQL =

< Approach: Embed SQL in the host language.

= A preprocessor converts SQL statements into special API
calls.

= Then a regular compiler is used to compile the code.
< Language constructs:
= Connecting to a database:
EXEC SQL CONNECT
= Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION
= Statements:
EXEC SQL Statement;

Embedded SQL in C: Variables '-"s‘-

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

< Two special “error” variables:
= SQLCODE (long, is negative if an error has occurred)
= SQLSTATE (char[6], predefined codes for common errors)

Cursors L

< Can declare a cursor on a relation or query
statement (which generates a relation).

< Can open a cursor and repeatedly fetch a tuple, then
move the cursor until all tuples have been retrieved.

= Can use a special clause, called ORDER BY, in queries that
are accessed through a cursor, to control the order in
which tuples are returned.
* Fields in ORDER BY clause must also appear in SELECT clause.

< Can also modify/delete tuple pointed to by a cursor.

Cursor: Get names of sailors who @“
reserved a red boat, in alphabetical N
order

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
ORDER BY S.sname

< Cannot replace S.sname by, say, S.sid in the ORDER
BY clause above (Why?)

< Can we add S.sid to the SELECT clause and replace
S.sname by S.sid in the ORDER BY clause?

Q}\

B

Embedding SQL in C: An Example

char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTION
c_minrating = random();
EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age FROM Sailors S
WHERE S.rating > :c_minrating
ORDER BY S.sname;
do {
EXEC SQL FETCH sinfo INTO :c_sname, :c_age;
printf(“%s is %d years old\n”, c_sname, c_age);
} while (SQLSTATE != ‘02000’);

EXEC SQL CLOSE sinfo;
o N
Database APIs: Alternative to = . R
. N JDBC Architecture Components e
embedding

< Rather than modify compiler, add library with database
calls (API1)
= Advantage: executable is also DBMS-independent
= Embedded is SQL DBMS-independent only at source-code level
% Pass SQL strings from language, present result sets in a
language-friendly way
= Sun’s JDBC: Java API
% Supposedly DBMS-neutral

= Adriver traps the calls and translates them into DBMS-specific
code

= Driver loaded dynamically and on-demand
= Database can be across a network

< Application
= |nitiates and terminates connections, submits SQL
statements

< Driver manager

= |oads JDBC driver, passes JDBC calls from app to correct
driver

< Driver

= Connects to data source, transmits requests and
returns/translates results and error codes

% Data source (DBMS)
= Processes SQL statements

2

‘.E""

JDBC Architecture (Pure Java)

“
i

< Left side: type 4 driver

= Allows direct call from client
to DBMS, pure Java JORC AEY

= Converts JDBC calls into

JDBC Driver
network protocol used by s
DBMS

% Right side: type 3 driver #7
Rl Jova

JDBC Driver

22
& O

Source: java.sun.com

= Translates JDBC calls into
middleware protocol

= Middleware translates this to
DBMS protocol

= Useful when connecting to
many different DBMSes

13

< Left side: type 1 driver
= JDBC access via ODBC
drivers
= Each client using the
bridge must have ODBC

binary code /
. . . JDBEC.ODEC
< Right side: type 2 driver
|

= Converts JDBC calls into

JOBC Driver
|

calls on the DBMS client

API s

= Needs binary code on ’/
client machine

Source: java.sun.com

JDBC Classes and Interfaces

% Steps to submit a database query:
= Load the JDBC driver
= Connect to the data source
= Execute SQL statements

< Important: make sure you include the driver in the
classpath
= Driver jar file sqljdbc4.jar needs to be in the classpath
= Should be there by default on Windows lab machines

Connecting to A DBMS

private Connection getDBConnection() {
Connection con = null;
try {
// Load the driver
Class.forName(myDbDriver).newlInstance();

} catch (InstantiationException e) { e.printStackTrace();
} catch (IllegalAccessException e) { e.printStackTrace();
} catch (ClassNotFoundException e) { e.printStackTrace(); }

try{
String connectionURL = “myURL”;
con = DriverManager.getC i ionURL);

} catch (SQLException e) { e.printStackTrace(); }

return con;

Connection Data

< MSFT JDBC driver for SQL Server
= dbDriver = "com.microsoft.sqlserver.jdbc.SQLServerDriver”;
= connectionURL = “jdbc:sglserver://address:1433;” +
“databaseName=XYZ;user=YOU;password=SECRET;”;
% In the JDBC API 4.0, the DriverManager.getConnection
method is enhanced to load JDBC drivers automatically.
= Do not need to call the Class.forName method to register or load the
driver when using the sqljdbc4.jar class library.
< When the getConnection method of the DriverManager class
is called, an appropriate driver is located from the set of
registered JDBC drivers.

= sqljdbc4.jar file includes "META-INF/services/java.sql.Driver" file,
which contains the com.microsoft.sqlserver.jdbc.SQLServerDriver as a
registered driver.

Connections in JDBC

< Notice: We interact with a data source through
sessions.

< Each connection identifies a logical session.
= JDBC URL: jdbc:<subprotocol>:<otherParameters>

< Multiple users: each has his/her own session(s)

Important Imports For JDBC [

< import java.sql.Connection;

< import java.sql.DriverManager;
< import java.sql.ResultSet;

< import java.sql.SQLException;
< import java.sgl.Statement;

Running A Simple SQL Query L

public List getSpeciesNames() {
Connection con = getDBConnection();
List species = new ArrayList();

try {
Statement S = con.createStatement();
// Get query results
ResultSet rs = S.executeQuery(
"SELECT DISTINCT " + speciesColName
+" FROM " + scoresTableName);
// Copy results into list
while (rs.next()) {
String = rs.getStri iesColName);
species.add(speciesName);

rs.close();

con.close();
} catch (SQLException e) { e.printStackTrace(); }
return species;

Connection Interface =

% Can set auto-commit mode
= Auto-commit on: each statement considered its own
transaction, no need for explicit commit()
= boolean getAutoCommit(),
void setAutoCommit(boolean autoCommit)
% Can set transaction isolation level
= Connection.TRANSACTION_READ_UNCOMMITTED,
Connection.TRANSACTION_READ_COMMITTED,
Connection. TRANSACTION_REPEATABLE_READ, or
Connection. TRANSACTION_SERIALIZABLE
= int getTransactionlsolation(),
void setTransactionlsolation(int level)

< Isolation, auto-commit covered later, for now use default

21

Connection Interface (Contd.) =

< Better performance possible for read-only access
= boolean isReadOnly(),
void setReadOnly(boolean readOnly)
% Check whether connection is still open
= boolean isClosed(),
void close()
< Commit or abort transaction
= Use only when autoCommit is false

= void commit(),
void rollback()

Statement Interface Bt

< Used to execute SQL statement and return its results
= execute(String sql) to execute any SQL statement
= executeQuery(String sql) to obtain single ResultSet object
= executeUpdate(String sql) for INSERT, UPDATE, or DELETE
% Sub-interface PreparedStatement
= Precompiled SQL statement for efficiently executing a
statement multiple times.
= Structure fixed, parameters determined at runtime

¢ PreparedStatement pstmt = connection.prepareStatement("UPDATE
EMPLOYEES SET SALARY = ? WHERE ID = ?");

* pstmt.setBigDecimal(1, 153833.00); pstmt.setint(2, 110592);
= Sub-interface CallableStatement

e For calling SQL stored procedures through standard way for all
RDBMSes

23

SQL Stored Procedures =

< What is a stored procedure?
= Program executed through a single SQL statement
= Executed in the process space of the server

% Advantages:

= Can encapsulate application logic while staying “close” to
the data

= Reuse of application logic by different users

= Avoid tuple-at-a-time return of records through cursors
* Only final result is returned to Java app

N
Example Stored Procedure e
CREATE PROCEDURE getReservations
@Name varchar(50),
AS
SET NOCOUNT ON;
SELECT bid, date
FROM Reserves R, Sailors S
WHERE R.sid = S.sid
AND S.name = @Name;
GO

Syntax for SQL Server, will be different for other DBMS

Calling A Stored Procedure B

EXECUTE getReservations ‘Joe’;

--Or

EXEC getReservations @Name = ‘Joe’;

GO

-- Or, if this procedure is the first statement within a batch:
getReservations ‘Joe’;

Stored Procedure with Output e
Parameters

CREATE PROCEDURE getReservationCnt
@SailorID int,
@ResCnt int OUT

AS
SET NOCOUNT ON;
SET @ResCnt = (SELECT COUNT(*)
FROM Reserves R
WHERE R.sid = @SailorID);
GO

27

Calling Stored Procedures with Output &

DECLARE @ResCnt int
EXECUTE getReservationCnt 101, @ResCnt OUT
PRINT ‘The sailor made *
+ RTRIM(CAST(@ResCnt AS varchar(20)))
+ ‘reservations.'

N
Calling Stored Procedures from JDBC &

CallableStatement cs = null;
try {
// Procedure without parameters
cs = con.prepareCall(“{call myStoredProcName}”);
cs.execute();
// Procedure with input parameters only
cs = connection.prepareCall("{call getReservations(?)}");
cs.setString(1, “Joe”);
cs.execute();
// Procedure with input and output parameters
cs = connection.prepareCall("{call getReservationCnt(?, ?)}");
cs.setint(1, 101);
cs.registerOutParameter(2, Types.INT);
// For parameters that are used for both input and output,
// have both the set and registerOutParameter statement
cs.execute();
int result = cs.getint(2);
} catch (SQLException e) { }
29

ResultSet Interface \

< Maintains a cursor, initially positioned before first row
+ Next() method advances cursor, returns false if no more
rows
« Default: not updateable, cursor can only move forward
= Can be changed, of course
= Can update database by updating ResultSet
* Update column values of current row or delete entire row
* Insert new row by setting values of special “insert row”
+ GetString(), getBoolean() etc. to retrieve values in
columns

o

= Access through column number or name

o, o,
Matching Java and SQL Data Types ‘= Exceptions and Warnings B
SQL Type Java class ResultSet get method
BIT Boolean getBoolean() < Most of java.sql can throw an SQLException if an
CHAR String getString() error occurs.
VARCHAR | String getString() + SQLWarning is a subclass of SQLException
DOUBLE Double getDouble() * Notas severe
FLOAT Double getDouble() = Not thrown and their existence has to be explicitly tested
INTEGER Integer getInt()
REAL Double getFloat()
DATE java.sql.Date getDate()
TIME java.sql.Time getTime()
TIMESTAMP |java.sql.TimeStamp | getTimestamp()
31 32
Exceptions and Warnings (Contd.) % Examining Database Metadata N
try itmt:con createStatement(); < DatabaseMetaData object gives information about
warning=con.getWarnings(); the database system and the catalog.
while(warning != null) {
// handle SQLWarnings;
) warning = warning.getNextWarning(): DatabaseMetaData md = con.getMetaData();
con.clearWarnings(); // Print information about the driver
32:1';Xge:lf::zsta\;f;?;i;"ss(;r'ng); System.out.printin(“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());
}//end try
catch(SQLException SQLe) {
// handle the exception
}
33 34
Database Metadata (Contd.) B Summary Bt

DatabaseMetaData md=con.getMetaData();

ResultSet trs=md.getTables(null,null,null,null);

String tableName;

While(trs.next()) {
tableName = trs.getString(“TABLE_NAME”");
System.out.printIn(“Table: “ + tableName);
// Print all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.printin(crs.getString(“COLUMN_NAME” + “,

35

< Embedded SQL allows execution of parameterized
static queries within a host language

% Cursor mechanism allows retrieval of one record at a
time and bridges impedance mismatch between host
language and SQL

% APIs such as JDBC introduce a layer of abstraction
between application and DBMS

% Stored procedures execute application logic directly
at the server

