

Relational Algebra

Chapter 4, Part A

- Relational algebra supports expressive queries by composing fairly simple operators.
- Only few operators needed
- ❖ We need to know the operators for the schema refinement discussion.

Relational Query Languages

- * Query languages: Allow manipulation and retrieval of data from a database.
- * Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for optimization.
- Query Languages != programming languages
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Relational Algebra: More operational, very useful for representing execution plans.
- Relational Calculus: Lets users describe WHAT they want, rather than HOW to compute it. (Non-operational, declarative.)

Preliminaries

- ❖ A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed · But query will run regardless of instance.
 - The schema for the result of a given query is also fixed • Determined by definition of query language constructs.
- · Positional vs. named-field notation:
 - Positional notation easier for formal definitions, namedfield notation more readable.
 - Both used in SQL

Example Instances

"Sailors" and "Reserves" relations for our examples.

❖ We'll use positional or named field notation, assume that names of fields in query results are 'inherited' from names of fields in query input relations.

			1 20
R1	<u>sid</u>	<u>bid</u>	<u>day</u>
	22	101	10/10/96
	58	103	11/12/96

S1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

- ❖ Basic operations:
 - Selection (σ): Selects a subset of rows from relation.
 - Projection (π): Deletes columns from relation.
 - Cross-product (×): Allows us to combine two relations.
 - Set-difference (): Tuples in reln. 1, but not in reln. 2.
 - Union (\cup): Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, join, division, renaming: Not essential, but (very) useful.
- Since each operation returns a relation, operations can be composed (Algebra is "closed")

Projection

- * Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation.
- Projection operator has to eliminate duplicates. (Why?)
 - Note: real systems typically do not eliminate duplicates unless the user explicitly asks for it. (Why not?)

	3	(E)
sname	rating	7
yuppy	9	
lubber	8	
guppy	5	
rusty	10	
	,	~~`

 $\pi_{sname,rating}(S2)$

age
35.0
55.5

 $\pi_{age}(S2)$

Selection

- Selects rows that satisfy the selection condition.
- No duplicates in result (Why?)
- ❖ Schema of result is identical to schema of input relation.
- Operator composition example.

			3/4	S
sid	sname	rating	age	ľ
28	yuppy	9	35.0	ľ
58	rusty	10	35.0	

 $\sigma_{rating>8}$ (S2)

sname	rating
yuppy	9
rusty	10

 $\pi_{sname,rating}(\sigma_{rating>8}(S2))$

Union, Intersection, Set-Difference

- * All of these operations take two input relations, which must be union-compatible:
 - Same number of fields.
 - 'Corresponding' fields have the same type.
- * What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0
	2.	1-52	•

sia	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0
	S	S1∩S2	

Cross-Product

* Result schema has one field per field of S1 and R1, with field

names 'inherited' if possible. Conflict: Both S1 and R1 have a field called sid

. Each row of S1 is paired with each row of R1.

u	milet. Both 51 and N1 have a held called sid.						
	(sid)	sname	rating	age	(sid)	bid	day
	22	dustin	7	45.0	22	101	10/10/96
	22	dustin	7	45.0	58	103	11/12/96
	31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
	58	rusty	10	35.0	22	101	10/10/96
	58	rustv	10	35.0	58	103	11/12/96

 Renaming operator (*C* is the output):

 $\rho(C(1\rightarrow \text{sid}1.5\rightarrow \text{sid}2),S1\times R1)$

Joins

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$
 $R1$

- * Result schema same as that of cross-product.
- * Fewer tuples than cross-product, might be able to compute it more efficiently
- Sometimes called a theta-join.

Joins

* Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating			
22	dustin	7	45.0	101	10/10/96 11/12/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

- * Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- * Natural Join: Equijoin on all common fields.

Division

- Not supported as a primitive operator, but useful for expressing queries like:
 - Find sailors who have reserved all boats.
- Let A have 2 fields, x and y; B have only field y:
 - A/B = $\langle x \rangle \mid \forall \langle y \rangle \in B : \exists \langle x, y \rangle \in A$
 - A/B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A.
 - Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.
- In general, x and y can be any lists of attributes
 - y is the list of fields in B, and x∪y is the list of fields of A.

Examples of Division A/B

pno

p2

p4

B3

Expressing A/B Using Basic Operators

- * Division is not essential op; just a useful shorthand.
 - Also true of joins, but joins are so common that systems implement joins specially.
- ❖ Idea: For A/B, compute all x values that are not 'disqualified' by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A.

Disqualified x values: $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$

A/B: $\pi_{\kappa}(A)$ – all disqualified tuples

Find names of sailors who've reserved boat #103

* Solution 2: $\rho(Temp1, \sigma_{bid=103}^{Reserves})$ $\rho(Temp2,Temp1 \bowtie Sailors)$ π_{sname} (Temp2)

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Find names of sailors who've reserved a red boat

 $\pi_{\mathit{sname}}((\sigma_{\mathit{color}='\mathit{red}'}\!\mathit{Boats}) \bowtie \mathsf{Re}\mathit{serves} \bowtie \mathit{Sailors})$

* A more efficient solution:

 $\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$

A query optimizer can find this, given the first solution.

Find sailors who've reserved a red or a green boat

$$\rho(Tempboats, (\sigma_{color='red \lor color='green'}Boats))$$

$$\pi_{sname}$$
(Tempboats \bowtie Reserves \bowtie Sailors)

- Can also define Tempboats using union. (How?)
- ❖ What happens if ∨ is replaced by ∧ in this query?

Find sailors who've reserved a red and a green boat

- * Previous approach won't work
 - Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho(Tempred,\pi_{sid}((\sigma_{color='red'}Boats)\bowtie \mathsf{Re}\mathit{serves}))$$

$$\rho(Tempgreen, \pi_{sid}((\sigma_{color='green'}Boats) \bowtie Reserves))$$

$$\pi_{\mathit{sname}}((\mathit{Tempred} \cap \mathit{Tempgreen}) \bowtie \mathit{Sailors})$$

20

Find the names of sailors who've reserved all boats

$$\rho(Tempsids,(\pi_{sid\ hid}^{Reserves})/(\pi_{hid}^{Boats}))$$

$$\pi_{sname}$$
(Tempsids \bowtie Sailors)

To find sailors who've reserved all 'Interlake' boats:

...
$$/\pi$$
 bid bname='Interlake' Boats)

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- * Relational algebra is more operational
 - Useful as internal representation for query evaluation plans.
- Several ways of expressing a given query
 - A query optimizer should choose the most efficient version.

22