

Relational Query Languages

* Query languages: Allow manipulation and retrieval of data from a database.
* Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
- Allows for optimization.
* Query Languages != programming languages
- QLs not expected to be "Turing complete".
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Why Is This Important?

* Once we have the data in a database, we want to access it.
* Relational algebra supports expressive queries by composing fairly simple operators.
* Only few operators needed
* We need to know the operators for the schema refinement discussion.

Formal Relational Query Languages

* Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- Relational Algebra: More operational, very useful for representing execution plans.
- Relational Calculus: Lets users describe WHAT they want, rather than HOW to compute it. (Non-operational, declarative.)

Preliminaries

A query is applied to relation instances, and the result of a query is also a relation instance.

- Schemas of input relations for a query are fixed
- But query will run regardless of instance
- The schema for the result of a given query is also fixed
- Determined by definition of query language constructs.
* Positional vs. named-field notation:
- Positional notation easier for formal definitions, namedfield notation more readable.
- Both used in SQL

Relational Algebra

* Basic operations:

- Selection (σ): Selects a subset of rows from relation.
- Projection (π): Deletes columns from relation.
- Cross-product (\times): Allows us to combine two relations
- Set-difference (-): Tuples in reln. 1, but not in reln. 2.
- Union (\cup) : Tuples in reln. 1 and in reln. 2.
* Additional operations:
- Intersection, join, division, renaming: Not essential, but (very) useful.
* Since each operation returns a relation, operations can be composed (Algebra is "closed")

Projection

* Deletes attributes that are not in projection list.
* Schema of result contains exactly the fields in the projection list, with the same names that they had in the input relation
* Projection operator has to eliminate duplicates. (Why?)
- Note: real systems typically do not eliminate duplicates unless the user explicitly asks for it. (Why not?)

Selection

* Selects rows that satisfy the selection condition.
* No duplicates in result (Why?)
* Schema of result is identical to schema of input relation.
* Operator
composition example.

$$
\begin{aligned}
& \sigma_{\text {rating }>8}(S 2) \\
& \begin{array}{|l|l|}
\hline \text { sname } & \text { rating } \\
\hline \begin{array}{l}
\text { yuppy } \\
\text { rusty }
\end{array} & 9 \\
\hline
\end{array} \\
& \pi_{\text {sname,rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)
\end{aligned}
$$

Union, Intersection, Set-Difference

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

What is the schema of result?
$S 1 \cup S 2$

sid	sname	rating	age
22	dustin	7	45.0

$S 1-S 2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0
$S 1 \cap S 2$			

Cross-Product

* Each row of S1 is paired with each row of R1
* Result schema has one field per field of S1 and R1, with field names 'inherited' if possible.
- Conflict: Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

[^0]
Joins

* Condition Join: $\quad R \bowtie{ }_{c} S=\sigma_{c}(R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
$S 1 \bowtie$ S1.sid $<$ R1.sid $R 1$						

* Result schema same as that of cross-product.
* Fewer tuples than cross-product, might be able to compute it more efficiently
* Sometimes called a theta-join.

Joins

*. Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$
$S 1 \bowtie \bowtie_{\text {sid }} R 1$					

* Result schema similar to cross-product, but only one copy of fields for which equality is specified.
* Natural Join: Equijoin on all common fields.

Division

* Not supported as a primitive operator, but useful for expressing queries like:
- Find sailors who have reserved all boats.
* Let A have 2 fields, x and y ; B have only field y :
- $\mathrm{A} / \mathrm{B}=\{\langle x\rangle \mid \forall\langle y\rangle \in B: \exists(x, y\rangle \in A\}$
- A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an xy tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A / B.
$\not \approx$ In general, x and y can be any lists of attributes
- y is the list of fields in B, and $x \cup y$ is the list of fields of A.

Examples of Division A / B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

A

pno	
p2	
p4	
B2	

B2

sno
s1
s2
s3
s4
$A / B 1$

sno
s1
s4

A/B3

Expressing A/B Using Basic Operators

* Division is not essential op; just a useful shorthand.
- Also true of joins, but joins are so common that systems implement joins specially.
* Idea: For A / B, compute all x values that are not 'disqualified' by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an xy tuple that is not in A .

Disqualified x values: $\pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$
$A / B: \pi_{x}(A)-$ all disqualified tuples

Find names of sailors who've reserved

 boat \#103* Solution 1: $\pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
$*$ Solution 2: $\rho\left(\right.$ Temp1, $\sigma_{b i d=103}$ Reserves $)$
ρ (Temp2,Temp $1 \bowtie$ Sailors)
$\pi_{\text {sname }}{ }{ }^{(\text {Temp } 2)}$
* Solution 3: $\pi_{\text {sname }}\left(\sigma_{\text {bid }=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Find names of sailors who've reserved a red boat

* Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color='red' }}\right.\right.$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
* A more efficient solution:
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color='red }}{ }^{\text {Boats }) \bowtie \operatorname{Res})} \bowtie\right.\right.\right.$ Sailors $)$
* A query optimizer can find this, given the first solution.

Find sailors who've reserved a red or a green boat

* Can identify all red or green boats, then find sailors who've reserved one of these boats:
$\rho\left(\right.$ Tempboats,($\sigma_{\text {color }=' r e d ' \vee c o l o r=' g r e e n ~}{ }^{\text {Boats })}$)
$\pi_{\text {sname }}{ }^{(\text {Tempboats } \bowtie \text { Reserves } \bowtie \text { Sailors })}$
* Can also define Tempboats using union. (How?)
\star What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

* Previous approach won't work
- Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

Summary

* The relational model has rigorously defined query languages that are simple and powerful.
* Relational algebra is more operational
- Useful as internal representation for query evaluation plans.
* Several ways of expressing a given query
- A query optimizer should choose the most efficient version.

$$
\ldots / \pi_{\text {bid }}\left(\sigma_{\text {bname }=\text { 'Interlake }}{ }^{, \text {Boats })}\right.
$$

[^0]: " $\frac{\text { Renaming operator }}{\text { (C is the output }):} \quad \rho(C(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), S 1 \times R 1)$ (C is the output):

