ek

Schema Refinement and
Normal Forms

Chapter 19

The Evils of Redundancy) g

< Redundancy is at the root of several problems
associated with relational schemas:
= Redundant storage
= Insert, delete, update anomalies
< Integrity constraints can be used to identify schemas
with such problems and to suggest refinements.
< Main refinement technique: decomposition
= Replacing ABCD with, say, AB and BCD, or ACD and ABD.
< Decomposition should be used judiciously:
= |s there reason to decompose a relation?
= What problems (if any) does the decomposition cause?

Example: Constraints on Entity Set) §§|

< Consider a relation obtained from Hourly_Emps:
= Hourly_Emps (ssn, name, lot, rating, hrly_wages,
hrs_worked)
< Notation: We will denote this relation schema by
listing the attributes: SNLRWH
= This is really the set of attributes {S,N,L,R,W,H}.
= Sometimes, we will refer to all attributes of a relation by
using the relation name. (e.g., Hourly_Emps for SNLRWH)
% Some FDs on Hourly_Emps:
= ssnis the key: S—>SNLRWH
= rating determines hrly_wages: R—W

&k

< Many ways to model a given scenario in a database

Why Is This Important?

<+ How do we find the best one?
< We will discuss objective criteria for evaluating
database design quality
= Formally define desired properties
= Algorithms for determining if a database has these
properties
= Algorithms for fixing problems

Functional Dependencies (FDs)) §§|

% A functional dependency X—Y holds over relation R
if, for every allowable instance r of R:
= tler, t2er, my(tl) = m,(t2) implies m,(t1) = m,(t2)
= |.e., given two tuples in r, if the X values agree, then the Y
values must also agree. (X and Y are sets of attributes.)

< An FD is a statement about all allowable relations.
= Must be identified based on semantics of application.

= Given some allowable instance r1 of R, we can check if it
violates some FD f, but we cannot tell if f holds over R.

% Kis a candidate key for R means that K—>R
= However, K—R does not require K to be minimal.

@

Wages

R W
8 10 =
5

7

Example (Contd.)

Hourly_Emps2 ‘
S| N

L R ‘H
123-22-3666 |Attishoo |48 8 |40
231-31-5368 |Smiley 22 8 |30
131-24-3650 | Smethurst |35 5 |30

Are the two smaller
tables better?

< Problems in single “wide”
table due to R>W:

. Uhpdateanomaly:ﬁanfwe 434-26-3751 |Guldu 35 5 |32
W in just tl irst

tupleof SNLRWH? 612-67-4134 |Madayan |35 |8 |40

= |nsertion anomaly: What S N L W H

if we want to insert an R
employee and don't know |193.7.3666 |Attishoo |48 8 |10 |40
the hourly wage for his
rating? 231-31-5368 | Smiley 22 '8 10 |30
5
5
8

Sjl‘.;‘ie"a’}fe”,f,g]i'je:e'm’}th 131-24-3650 |Smethurst 35 5 7 |30
rating 5, we lose the 434-26-3751 | Guldu 35 732
10 140

wage for rating 5. 612-67-4134 Madayan |35

information about the
6

Reasoning About FDs) &|

< Given some FDs, we can infer additional FDs:
= ssn—did, did—lot implies ssn—lot
< An FD fis implied by a set of FDs F if f holds whenever all
FDs in F hold.
= F*=closure of F; is the set of all FDs that are implied by F.
< Armstrong’s Axioms (X, Y, Z are sets of attributes):
= Reflexivity: If XY, then Y—X.
= Augmentation: If X—Y, then XZ—YZ for any Z.
= Transitivity: If X—>Y and Y—Z, then X—Z.
% These are sound (generate only FDs in F*) and complete
(generate all FDs in F*) inference rules for FDs.

Reasoning About FDs (Contd.)) &|

< Computing the closure of a set of FDs can be expensive.
= Size of closure is exponential in # attributes
< Typically, we just want to check if a given FD X—>Y is in
the closure of a set of FDs F. An efficient algorithm:

= Compute attribute closure of X (denoted X*) wrt F:
* Set of all attributes A such that X—>A is in F+
* There is a linear time algorithm to compute this.

= Checkif Yisin X*

% Does F = {A—>B, B—>C, CD—E} imply A—>E?
= |.e,is A—>E inthe closure F*? Equivalently, is E in A+?

&k

% Returning to the issue of schema refinement, the first
question to ask is whether any refinement is needed.

Normal Forms

% If a relation is in a certain normal form (BCNF, 3NF etc.),
it is known that certain kinds of problems are avoided or
minimized.

= Helps deciding whether decomposing the relation will help.
< Role of FDs in detecting redundancy:
= Consider a relation R with three attributes, ABC.

* No FDs hold: There is no redundancy here.

* Given A—B: Several tuples could have the same A value, and if so,
they all have the same B value.

Reasoning About FDs (Contd.)) %§|

< Additional rules (that follow from the AA):
= Union: If X—=Y and X—Z, then X—>YZ
= Decomposition: If X—>YZ, then X—Y and X—Z
< Example: Contracts(cid, sid, jid, did, pid, qty, value) and:
= Cisthe key: C—CSIDPQV
= Project purchases each part using single contract: JP—C
= Dept purchases at most one part from a supplier: SD—P
% JP— C, C—CSIDPQV imply JP—CSIDPQV
% SD—P implies SDJ—JP
% SDJ—>JP, IP—>CSIDPQV imply SDJ—CSIDPQV

So, What Do We Do Now With FDs? §§|

< Essential for identifying problems in a database
design
< Provide a way for “fixing” the problem

% Key concept: normal forms

= Arelation that is in a certain normal form has certain
desirable properties

Boyce-Codd Normal Form (BCNF) — %l\ﬁ

< Reln R with FDs F is in BCNF if, for all X—A in F*

= AeX (called a trivial FD), or

= Xis a superkey for R.
% In other words, R is in BCNF if the only non-trivial FDs

that hold over R are key constraints.

= Ris free of any redundancy caused by FDs alone.
No field of any tuple can be inferred (using only FDs) from the values
in the other fields in the relation instance
For X—A, consider two tuples with the same X Y A
Xvalue. —T——
They should have the same A value. Redundancy? | X |Y1 @
No. Since R is in BCNF, X iga superkey and hence X y2 »)
the “two” tuples must be identical.

.

.

Problems Prevented By BCNF) &|

< If BCNF is violated by (non-trivial) FD X—A, one of the
following holds:
= Xis a subset of some key K.
* We store (X, A) pairs redundantly.
* E.g., Reserves(S, B, D, C) with SBD as only key and FD S—C
* Credit card number of a sailor stored for each reservation
= Xis not a proper subset of any key.
* Redundant storage of (X, A) pairs as above
* And there is a chain of FDs K—>X—A, which means that we cannot
associate an X value with a K value unless we also associate an A value
with an X value.
* E.g., Hourly_Emps(S, N, L, R, W, H) with S as only key and FD R—>W

* Have chain S>R—W, hence cannot record the fact that employee S has
rating R without knowing the hourly wage for that rating

What Does 3NF Achieve? h %l

< Prevents same problems as BCNF, except for FDs where
A is part of some key
= Consider FD X—A where X is no superkey, but A is part of some

key
= E.g., Reserves(S, B, D, C) with only key SBD and FDs S—C and
C—S isin 3NF

* Notice: same example as before, but adding C—S made it 3NF
* Why? Since C—S and SBD is a key, CBD is also a key. Hence for S—C, Cis
part of a key

* Redundancy problem: for each reservation of sailor S, same (S, C) pair
is stored.

< BCNF did not suffer from this redundancy problem.

< So, why do we need 3NF? Let’s look at decompositions
first.

Decomposition of a Relation Schema) gi\J

% Suppose relation R contains attributes Al,..., An. A
decomposition of R replaces R by two or more
relations such that:

= Each new relation schema contains a subset of the
attributes of R (and no attributes that do not appear in R),
and

= Every attribute of R appears as an attribute of at least one
of the new relations.
% Intuition: decomposing R means we will store
instances of the relation schemes produced by the
decomposition, instead of instances of R.

Third Normal Form (3NF)) %§|

% Reln R with FDs F is in 3NF if, for all X—>A in F*
= AeX (called a trivial FD), or
= Xis a superkey for R, or
= Ais part of some key for R.
% Minimality of a key is crucial in third condition above.
< If Ris in BCNF, is it automatically in 3NF? What about the
other direction?
% If Ris in 3NF, some redundancy is possible.
= 3NFis a compromise, used when BCNF is not achievable (e.g.,
no “‘good” decomposition, or performance considerations).
= Lossless-join, dependency-preserving decomposition of R into a
collection of 3NF relations is always possible. (covered soon)

Footnote About Other Normal Forms b §§|

< 1NF: every field contains only atomic values, i.e., no
lists or sets

< 2NF: 1NF, and all attributes that are not part of any
candidate key are functionally dependent on the
whole of every candidate key
= 3NF implies 2NF

< ANF: prevents redundancy from multi-valued
dependencies (see book)

< 5NF: addresses redundancy based on join
dependencies, which generalize multi-valued
dependencies (see book)

&)

< Decompositions should be used only when needed.
= Let SNLRWH have FDs S—SNLRWH and R—>W
= Second FD causes violation of 3NF
* W values repeatedly associated with R values.
= Easiest fix: create a relation RW to store these associations
and remove W from the main schema:
* |.e., we decompose SNLRWH into SNLRH and RW
< Each SNLRWH tuple will now be projected into two
tuples, SNLRH and RW, each stored in the
corresponding relation
= Are there any potential problems with this approach?

Example Decomposition

Problems with Decompositions) &|

< Three potential problems to consider:
= Some queries become more expensive.
* E.g., how much did sailor Joe earn? (salary = W*H)
= Given instances of the decomposed relations, we may not
be able to reconstruct the corresponding instance of the
original relation.
* Fortunately, not the case in the SNLRWH example.
= Checking some dependencies may require joining the
instances of the decomposed relations.
* Fortunately, not the case in the SNLRWH example.

< Tradeoff: Must consider these issues vs. redundancy.

&k

% Decomposition of R into X and Y is lossless-join w.r.t.

a set of FDs F if, for every instance r that satisfies F:
* m,(R) < m,(R) = R

% Itis always true that R < m,(R) > m,(R)
= |n general, the other direction does not hold.
= |f it does, the decomposition is lossless-join.

% Definition extended to decomposition into three or
more relations in a straightforward way.

< It is essential that all decompositions used to deal
with redundancy be lossless. Why?

Lossless Join Decompositions

RS

RS

21

&k

Reconstructing A Relation

A B| B C
Decomposition 411 g E 2
Original table 702 ‘2 8
AlB|C 1
11233 Joined back together
4 |5 16
7 12 |8
o
7 12 |3
20
. A B
More on Lossless Join 112
A B C 45
< The decomposition of R 1 12 13 702
into Xand Y is lossless-join |4 |5 |g »
w.r.t. F if and only if the 7 12 8 C
closure of F contains: 3
= XNY—>X, or g

=XNY->Y
% Special case:
= ForFDU -V, the

decomposition of R into UV
and R — V is lossless-join.

\ N o N |m

Dependency-Preserving Decomposition) gi\J

< Consider CSIDPQV, C is key, JP—>C and SD—P.
= BCNF decomposition: CSJDQV and SDP
= Problem: Checking JP—C now requires a join.
< Dependency-preserving decomposition (intuition):
= Can enforce all FDs by examining a single relation instance on
each insertion or modification of a tuple (do not need to join
multiple relation instances)
< Formal definition requires notion of a projection of a set
of FDs F over R:
= |f Ris decomposed into X and Y, the projection of F onto X
(denoted Fy) is the set of all FDs U—V in F* (closure of F) such
that U and V both are in X.

23

Dependency Preserving Decomposition%
(Contd.)

< Decomposition of R into X and Y is dependency-
preserving if (Fy U Fy)* = F*
= |.e., if we consider only dependencies in the closure F* that
can be checked in X without considering Y, and in Y
without considering X, these imply all dependencies in F*.

< Important to consider F*, not F, in this definition:
= ABC, A—>B, B—C, C—A, decomposed into AB and BC.
= |s this dependency preserving? Is C—A preserved?

< Dependency preserving does not imply lossless join:
= ABC, A—B, decomposed into AB and BC.

< And vice-versa. (Example?)

24

Decomposition into BCNF) &|

< Consider relation R with FDs F. If X—Y violates BCNF,
decompose R into R—Y and XY.
= Repeated application of this idea will give us a collection of
relations that are in BCNF
* Lossless join decomposition and guaranteed to terminate.
= E.g., CSIDPQYV, key C, JP—C, SD—P,]S
= To deal with SD—P, decompose into SDP and CS/DQV.
= To deal with J—>S, decompose CSJDQV into JS and CJ/DQV.
< In general, several dependencies may cause violation
of BCNF. The order in which we ““deal with”” them
could lead to very different sets of relations.

Decomposition into 3NF) &|

< Algorithm for lossless-join decomposition into BCNF
can be used to obtain a lossless-join decomposition
into 3NF (typically, can stop earlier).
< To ensure dependency preservation, one idea:
= |f X—>Y is not preserved, add relation XY.
= Problem is that XY may violate 3NF.
= What can we do then?

< Refinement: Instead of the given set of FDs F, work
with the minimal cover for F.

27

Finding The Minimal Cover

< F ={A—B, ABCD—E, EF—GH, ACDF—EG}

< Decomposition to have single attribute on right side
* A—B, ABCD—E, EF—G, EF—>H, ACDF—E, ACDF—>G
< Check if any attribute on left side can be deleted
without changing closure
= A—>B, ABCD—E, EF—>G, EF—>H, ACDF—E, ACDF—>G
< Delete FDs that are implied by others

= A—B, ACD—E, EF—G, EF—>H, AEB—E, ACBFG
* ACDF—G from ACD—E, EF>G

29

BCNF and Dependency Preservation %§|

% In general, there may not be a dependency-preserving
decomposition into BCNF.
= E.g., CSZ with CS—Z and Z—C
= Not in BCNF, but cannot decompose while preserving CS—Z.
< Similarly, decomposition of CSJDQV into SDP, JS and
CJDQV is not dependency preserving (w.r.t. the FDs
JP—C, SD—P and J—>S). Why?

= Note: adding relation JPC gives us a dependency-preserving
decomposition into BCNF.
* Problem: redundancy across relations. Each relation by itself is in
BCNF (i.e., no redundancy within relation), but JPC’s tuples can be
obtained by joining CSIDQV and SDP.

26

Minimal Cover for a Set of FDs) §§|

< Minimal cover G for a set of FDs F:
= Closure of F = closure of G.
= Right hand side of each FD in G is a single attribute.
= |f we modify G by deleting an FD or by deleting attributes
from an FD in G, the closure changes.
% Intuitively, every FD in G is needed, and ““as small as
possible” in order to get the same closure as F.
% E.g.,, A—>B, ABCD—E, EF>GH, ACDF—EG has the
following minimal cover:
= A—B, ACD—E, EF>G and EF>H

28

Dependency-Preserving Decompositior@%

into 3NF

» Using minimal cover F of given FD set, we can now achieve a lossless-join,
dependency-preserving decomposition into 3NF.
1. Lossless-join decomposition until all smaller relations are in 3NF
2. Foreach FD X—A in F thatis not preserved, add relation XA
Result is lossless-join (X is superkey of XA) and dependency-preserving
(obviously), but is it still in 3NF?
- All relations after step 1 are in 3NF, but what about XA?
. X—A is not a problem for 3NF because X is a superkey of XA
= What if another FD on XA is a problem for 3NF?

« AnyFDon XA can only contain attributes from XU{A}

« Ifright-hand side of FD in Fy, contains A, left must be X (otherwise X—A would not have
been in minimal cover)

« Ifright-hand side does not contain A, it must be a subset of X, i.e., is a subset of a key

Why s X a key? It is a superkey, but is it minimal?
Yes: if X'cX was a key, then X—>A would not have been in the minimal cover and X'—>A
would have been there

Why not use the same algorithm for lossless-join, dependency —
preserving decomposition into BCNF?

Update on DB Design Process) &|

< Create ER diagram
< Translate ER diagram into set of relations

% Check relations for redundancy problems (not in
3NF, BCNF)

< Perform decomposition to fix problems
< Update ER diagram

31

Identifying Entity Attributes) &|

Before:
< 1st diagram translated
=T

Workers(S,N,L,D,S)
Departments(D,M,B) @
Lots associated with
workers.
% Suppose all workers in a ‘@

dept are assigned the
same lot: did—lot
® Redundancy!
+ Fixed by: After:
= Workers2(S,N,D,S)
= Dept_Lots(D,L)

= Departments(D,M,B) .

% Can fine-tune this: -
= Workers2(S,N,D,S)
= Departments(D,M,B,L)
Employees Deparlments

33

Refining Entity Sets) %§|

% Consider Hourly_Emps(ssn, name, lot, rating,
hourly_wages, hours_worked)
= FDs: S5>SNLRWH and R—>W
< Assume designer created entity set Hourly_Emps as
above
= Redundancy problem with R>W
= Could not discover it in ER diagram (only shows primary key
constraints)
% To fix redundancy problem, create new entity set
Wage_Table(rating, hourly_wages)
= Add relationship to connect Hourly_Emps2(S, N, L, H) and
Wage_Table(R, W)
< Similar for refining of relationship sets (see book)

Summary of Schema Refinement) §§|

< If a relation is in BCNF, it is free of redundancies that
can be detected using FDs. Thus, trying to ensure
that all relations are in BCNF is a good heuristic.

< If a relation is not in BCNF, we can try to decompose
it into a collection of BCNF relations.

= Must consider whether all FDs are preserved. If a lossless-
join, dependency preserving decomposition into BCNF is
not possible (or unsuitable, given typical queries), consider
decomposition into 3NF.

= Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

