
1

Schema Refinement and
Normal Forms

Chapter 19

2

Why Is This Important?

 Many ways to model a given scenario in a database

 How do we find the best one?

 We will discuss objective criteria for evaluating
database design quality

 Formally define desired properties

 Algorithms for determining if a database has these
properties

 Algorithms for fixing problems

3

The Evils of Redundancy

 Redundancy is at the root of several problems
associated with relational schemas:
 Redundant storage

 Insert, delete, update anomalies

 Integrity constraints can be used to identify schemas
with such problems and to suggest refinements.

 Main refinement technique: decomposition
 Replacing ABCD with, say, AB and BCD, or ACD and ABD.

 Decomposition should be used judiciously:
 Is there reason to decompose a relation?

 What problems (if any) does the decomposition cause?

4

Functional Dependencies (FDs)

 A functional dependency XY holds over relation R
if, for every allowable instance r of R:
 t1r, t2r, X(t1) = X(t2) implies Y(t1) = Y(t2)

 I.e., given two tuples in r, if the X values agree, then the Y
values must also agree. (X and Y are sets of attributes.)

 An FD is a statement about all allowable relations.
 Must be identified based on semantics of application.

 Given some allowable instance r1 of R, we can check if it
violates some FD f, but we cannot tell if f holds over R.

 K is a candidate key for R means that KR
 However, KR does not require K to be minimal.

5

Example: Constraints on Entity Set

 Consider a relation obtained from Hourly_Emps:
 Hourly_Emps (ssn, name, lot, rating, hrly_wages,

hrs_worked)

 Notation: We will denote this relation schema by
listing the attributes: SNLRWH
 This is really the set of attributes {S,N,L,R,W,H}.

 Sometimes, we will refer to all attributes of a relation by
using the relation name. (e.g., Hourly_Emps for SNLRWH)

 Some FDs on Hourly_Emps:
 ssn is the key: SSNLRWH

 rating determines hrly_wages: RW

6

Example (Contd.)

 Problems in single “wide”
table due to RW:
 Update anomaly: Can we

change W in just the first
tuple of SNLRWH?

 Insertion anomaly: What
if we want to insert an
employee and don’t know
the hourly wage for his
rating?

 Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the
wage for rating 5.

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7
Hourly_Emps2

Wages

Are the two smaller

tables better?

7

Reasoning About FDs

 Given some FDs, we can infer additional FDs:

 ssndid, didlot implies ssnlot

 An FD f is implied by a set of FDs F if f holds whenever all
FDs in F hold.

 F+ = closure of F; is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):

 Reflexivity: If XY, then YX.

 Augmentation: If XY, then XZYZ for any Z.

 Transitivity: If XY and YZ, then XZ.

 These are sound (generate only FDs in F+) and complete
(generate all FDs in F+) inference rules for FDs.

8

Reasoning About FDs (Contd.)

 Additional rules (that follow from the AA):

 Union: If XY and XZ, then XYZ

 Decomposition: If XYZ, then XY and XZ

 Example: Contracts(cid, sid, jid, did, pid, qty, value) and:

 C is the key: CCSJDPQV

 Project purchases each part using single contract: JPC

 Dept purchases at most one part from a supplier: SDP

 JP C, CCSJDPQV imply JPCSJDPQV

 SDP implies SDJJP

 SDJJP, JPCSJDPQV imply SDJCSJDPQV

9

Reasoning About FDs (Contd.)

 Computing the closure of a set of FDs can be expensive.

 Size of closure is exponential in # attributes

 Typically, we just want to check if a given FD XY is in
the closure of a set of FDs F. An efficient algorithm:

 Compute attribute closure of X (denoted X+) wrt F:

• Set of all attributes A such that XA is in F+

• There is a linear time algorithm to compute this.

 Check if Y is in X+

 Does F = {AB, BC, CDE} imply AE?

 I.e, is AE in the closure F+? Equivalently, is E in A+?

10

So, What Do We Do Now With FDs?

 Essential for identifying problems in a database
design

 Provide a way for “fixing” the problem

 Key concept: normal forms

 A relation that is in a certain normal form has certain
desirable properties

11

Normal Forms

 Returning to the issue of schema refinement, the first
question to ask is whether any refinement is needed.

 If a relation is in a certain normal form (BCNF, 3NF etc.),
it is known that certain kinds of problems are avoided or
minimized.

 Helps deciding whether decomposing the relation will help.

 Role of FDs in detecting redundancy:

 Consider a relation R with three attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given AB: Several tuples could have the same A value, and if so,
they all have the same B value.

12

Boyce-Codd Normal Form (BCNF)

 Reln R with FDs F is in BCNF if, for all XA in F+

 AX (called a trivial FD), or

 X is a superkey for R.

 In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.
 R is free of any redundancy caused by FDs alone.

• No field of any tuple can be inferred (using only FDs) from the values
in the other fields in the relation instance

• For XA, consider two tuples with the same
X value.

• They should have the same A value. Redundancy?

• No. Since R is in BCNF, X is a superkey and hence
the “two” tuples must be identical.

X Y A

x y1 a

x y2 ?

13

Problems Prevented By BCNF

 If BCNF is violated by (non-trivial) FD XA, one of the
following holds:
 X is a subset of some key K.

• We store (X, A) pairs redundantly.

• E.g., Reserves(S, B, D, C) with SBD as only key and FD SC
• Credit card number of a sailor stored for each reservation

 X is not a proper subset of any key.
• Redundant storage of (X, A) pairs as above

• And there is a chain of FDs KXA, which means that we cannot
associate an X value with a K value unless we also associate an A value
with an X value.

• E.g., Hourly_Emps(S, N, L, R, W, H) with S as only key and FD RW
• Have chain SRW, hence cannot record the fact that employee S has

rating R without knowing the hourly wage for that rating

14

Third Normal Form (3NF)

 Reln R with FDs F is in 3NF if, for all XA in F+

 AX (called a trivial FD), or

 X is a superkey for R, or

 A is part of some key for R.

 Minimality of a key is crucial in third condition above.

 If R is in BCNF, is it automatically in 3NF? What about the
other direction?

 If R is in 3NF, some redundancy is possible.
 3NF is a compromise, used when BCNF is not achievable (e.g.,

no ``good’’ decomposition, or performance considerations).

 Lossless-join, dependency-preserving decomposition of R into a
collection of 3NF relations is always possible. (covered soon)

15

What Does 3NF Achieve?

 Prevents same problems as BCNF, except for FDs where
A is part of some key
 Consider FD XA where X is no superkey, but A is part of some

key
 E.g., Reserves(S, B, D, C) with only key SBD and FDs SC and

CS is in 3NF
• Notice: same example as before, but adding CS made it 3NF

• Why? Since CS and SBD is a key, CBD is also a key. Hence for SC, C is
part of a key

• Redundancy problem: for each reservation of sailor S, same (S, C) pair
is stored.

 BCNF did not suffer from this redundancy problem.
 So, why do we need 3NF? Let’s look at decompositions

first.

16

Footnote About Other Normal Forms

 1NF: every field contains only atomic values, i.e., no
lists or sets

 2NF: 1NF, and all attributes that are not part of any
candidate key are functionally dependent on the
whole of every candidate key
 3NF implies 2NF

 4NF: prevents redundancy from multi-valued
dependencies (see book)

 5NF: addresses redundancy based on join
dependencies, which generalize multi-valued
dependencies (see book)

17

Decomposition of a Relation Schema

 Suppose relation R contains attributes A1,..., An. A
decomposition of R replaces R by two or more
relations such that:

 Each new relation schema contains a subset of the
attributes of R (and no attributes that do not appear in R),
and

 Every attribute of R appears as an attribute of at least one
of the new relations.

 Intuition: decomposing R means we will store
instances of the relation schemes produced by the
decomposition, instead of instances of R.

18

Example Decomposition

 Decompositions should be used only when needed.
 Let SNLRWH have FDs SSNLRWH and RW

 Second FD causes violation of 3NF
• W values repeatedly associated with R values.

 Easiest fix: create a relation RW to store these associations
and remove W from the main schema:

• I.e., we decompose SNLRWH into SNLRH and RW

 Each SNLRWH tuple will now be projected into two
tuples, SNLRH and RW, each stored in the
corresponding relation
 Are there any potential problems with this approach?

19

Problems with Decompositions

 Three potential problems to consider:

 Some queries become more expensive.

• E.g., how much did sailor Joe earn? (salary = W*H)

 Given instances of the decomposed relations, we may not
be able to reconstruct the corresponding instance of the
original relation.

• Fortunately, not the case in the SNLRWH example.

 Checking some dependencies may require joining the
instances of the decomposed relations.

• Fortunately, not the case in the SNLRWH example.

 Tradeoff: Must consider these issues vs. redundancy.

20

Reconstructing A Relation

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8Original table

Decomposition

Joined back together

What went wrong?

21

Lossless Join Decompositions

 Decomposition of R into X and Y is lossless-join w.r.t.
a set of FDs F if, for every instance r that satisfies F:

 X(R) ⋈ Y(R) = R

 It is always true that R  X(R) ⋈ Y(R)

 In general, the other direction does not hold.

 If it does, the decomposition is lossless-join.

 Definition extended to decomposition into three or
more relations in a straightforward way.

 It is essential that all decompositions used to deal
with redundancy be lossless. Why?

22

More on Lossless Join

 The decomposition of R
into X and Y is lossless-join
w.r.t. F if and only if the
closure of F contains:

 X  Y  X, or

 X  Y  Y

 Special case:

 For FD U  V, the
decomposition of R into UV
and R  V is lossless-join.

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

23

Dependency-Preserving Decomposition

 Consider CSJDPQV, C is key, JPC and SDP.
 BCNF decomposition: CSJDQV and SDP

 Problem: Checking JPC now requires a join.

 Dependency-preserving decomposition (intuition):
 Can enforce all FDs by examining a single relation instance on

each insertion or modification of a tuple (do not need to join
multiple relation instances)

 Formal definition requires notion of a projection of a set
of FDs F over R:
 If R is decomposed into X and Y, the projection of F onto X

(denoted FX) is the set of all FDs UV in F+ (closure of F) such
that U and V both are in X.

24

Dependency Preserving Decompositions
(Contd.)

 Decomposition of R into X and Y is dependency-
preserving if (FX  FY)+ = F+

 I.e., if we consider only dependencies in the closure F+ that
can be checked in X without considering Y, and in Y
without considering X, these imply all dependencies in F+.

 Important to consider F+, not F, in this definition:
 ABC, AB, BC, CA, decomposed into AB and BC.

 Is this dependency preserving? Is CA preserved?

 Dependency preserving does not imply lossless join:
 ABC, AB, decomposed into AB and BC.

 And vice-versa. (Example?)

25

Decomposition into BCNF

 Consider relation R with FDs F. If XY violates BCNF,
decompose R into RY and XY.
 Repeated application of this idea will give us a collection of

relations that are in BCNF
• Lossless join decomposition and guaranteed to terminate.

 E.g., CSJDPQV, key C, JPC, SDP, JS

 To deal with SDP, decompose into SDP and CSJDQV.

 To deal with JS, decompose CSJDQV into JS and CJDQV.

 In general, several dependencies may cause violation
of BCNF. The order in which we ``deal with’’ them
could lead to very different sets of relations.

26

BCNF and Dependency Preservation

 In general, there may not be a dependency-preserving
decomposition into BCNF.

 E.g., CSZ with CSZ and ZC

 Not in BCNF, but cannot decompose while preserving CSZ.

 Similarly, decomposition of CSJDQV into SDP, JS and
CJDQV is not dependency preserving (w.r.t. the FDs
JPC, SDP and JS). Why?
 Note: adding relation JPC gives us a dependency-preserving

decomposition into BCNF.

• Problem: redundancy across relations. Each relation by itself is in
BCNF (i.e., no redundancy within relation), but JPC’s tuples can be
obtained by joining CSJDQV and SDP.

27

Decomposition into 3NF

 Algorithm for lossless-join decomposition into BCNF
can be used to obtain a lossless-join decomposition
into 3NF (typically, can stop earlier).

 To ensure dependency preservation, one idea:

 If XY is not preserved, add relation XY.

 Problem is that XY may violate 3NF.

 What can we do then?

 Refinement: Instead of the given set of FDs F, work
with the minimal cover for F.

28

Minimal Cover for a Set of FDs

 Minimal cover G for a set of FDs F:

 Closure of F = closure of G.

 Right hand side of each FD in G is a single attribute.

 If we modify G by deleting an FD or by deleting attributes
from an FD in G, the closure changes.

 Intuitively, every FD in G is needed, and ``as small as
possible’’ in order to get the same closure as F.

 E.g., AB, ABCDE, EFGH, ACDFEG has the
following minimal cover:

 AB, ACDE, EFG and EFH

29

Finding The Minimal Cover

 F = {AB, ABCDE, EFGH, ACDFEG}

 Decomposition to have single attribute on right side

 AB, ABCDE, EFG, EFH, ACDFE, ACDFG

 Check if any attribute on left side can be deleted
without changing closure

 AB, ABCDE, EFG, EFH, ACDFE, ACDFG

 Delete FDs that are implied by others

 AB, ACDE, EFG, EFH, ACDE, ACDFG
• ACDFG from ACDE, EFG

30

Dependency-Preserving Decomposition
into 3NF

 Using minimal cover F of given FD set, we can now achieve a lossless-join,
dependency-preserving decomposition into 3NF.

1. Lossless-join decomposition until all smaller relations are in 3NF
2. For each FD XA in F that is not preserved, add relation XA
 Result is lossless-join (X is superkey of XA) and dependency-preserving

(obviously), but is it still in 3NF?
 All relations after step 1 are in 3NF, but what about XA?
 XA is not a problem for 3NF because X is a superkey of XA
 What if another FD on XA is a problem for 3NF?

• Any FD on XA can only contain attributes from X{A}
• If right-hand side of FD in FXA contains A, left must be X (otherwise XA would not have

been in minimal cover)
• If right-hand side does not contain A, it must be a subset of X, i.e., is a subset of a key

• Why is X a key? It is a superkey, but is it minimal?
• Yes: if X’X was a key, then XA would not have been in the minimal cover and X’A

would have been there

 Why not use the same algorithm for lossless-join, dependency –
preserving decomposition into BCNF?

31

Update on DB Design Process

 Create ER diagram

 Translate ER diagram into set of relations

 Check relations for redundancy problems (not in
3NF, BCNF)

 Perform decomposition to fix problems

 Update ER diagram

32

Refining Entity Sets

 Consider Hourly_Emps(ssn, name, lot, rating,
hourly_wages, hours_worked)
 FDs: SSNLRWH and RW

 Assume designer created entity set Hourly_Emps as
above
 Redundancy problem with RW
 Could not discover it in ER diagram (only shows primary key

constraints)

 To fix redundancy problem, create new entity set
Wage_Table(rating, hourly_wages)
 Add relationship to connect Hourly_Emps2(S, N, L, H) and

Wage_Table(R, W)

 Similar for refining of relationship sets (see book)

33

Identifying Entity Attributes

 1st diagram translated
 Workers(S,N,L,D,S)
 Departments(D,M,B)
 Lots associated with

workers.

 Suppose all workers in a
dept are assigned the
same lot: didlot
 Redundancy!

 Fixed by:
 Workers2(S,N,D,S)
 Dept_Lots(D,L)
 Departments(D,M,B)

 Can fine-tune this:
 Workers2(S,N,D,S)
 Departments(D,M,B,L)

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

lot

dname

budget

did

since
name

Works_In DepartmentsEmployees

ssn

Before:

After:

34

Summary of Schema Refinement

 If a relation is in BCNF, it is free of redundancies that
can be detected using FDs. Thus, trying to ensure
that all relations are in BCNF is a good heuristic.

 If a relation is not in BCNF, we can try to decompose
it into a collection of BCNF relations.

 Must consider whether all FDs are preserved. If a lossless-
join, dependency preserving decomposition into BCNF is
not possible (or unsuitable, given typical queries), consider
decomposition into 3NF.

 Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

