
1

Schema Refinement and
Normal Forms

Chapter 19

2

Why Is This Important?

 Many ways to model a given scenario in a database

 How do we find the best one?

 We will discuss objective criteria for evaluating
database design quality

 Formally define desired properties

 Algorithms for determining if a database has these
properties

 Algorithms for fixing problems

3

The Evils of Redundancy

 Redundancy is at the root of several problems
associated with relational schemas:
 Redundant storage

 Insert, delete, update anomalies

 Integrity constraints can be used to identify schemas
with such problems and to suggest refinements.

 Main refinement technique: decomposition
 Replacing ABCD with, say, AB and BCD, or ACD and ABD.

 Decomposition should be used judiciously:
 Is there reason to decompose a relation?

 What problems (if any) does the decomposition cause?

4

Functional Dependencies (FDs)

 A functional dependency XY holds over relation R
if, for every allowable instance r of R:
 t1r, t2r, X(t1) = X(t2) implies Y(t1) = Y(t2)

 I.e., given two tuples in r, if the X values agree, then the Y
values must also agree. (X and Y are sets of attributes.)

 An FD is a statement about all allowable relations.
 Must be identified based on semantics of application.

 Given some allowable instance r1 of R, we can check if it
violates some FD f, but we cannot tell if f holds over R.

 K is a candidate key for R means that KR
 However, KR does not require K to be minimal.

5

Example: Constraints on Entity Set

 Consider a relation obtained from Hourly_Emps:
 Hourly_Emps (ssn, name, lot, rating, hrly_wages,

hrs_worked)

 Notation: We will denote this relation schema by
listing the attributes: SNLRWH
 This is really the set of attributes {S,N,L,R,W,H}.

 Sometimes, we will refer to all attributes of a relation by
using the relation name. (e.g., Hourly_Emps for SNLRWH)

 Some FDs on Hourly_Emps:
 ssn is the key: SSNLRWH

 rating determines hrly_wages: RW

6

Example (Contd.)

 Problems in single “wide”
table due to RW:
 Update anomaly: Can we

change W in just the first
tuple of SNLRWH?

 Insertion anomaly: What
if we want to insert an
employee and don’t know
the hourly wage for his
rating?

 Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the
wage for rating 5.

S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7
Hourly_Emps2

Wages

Are the two smaller

tables better?

7

Reasoning About FDs

 Given some FDs, we can infer additional FDs:

 ssndid, didlot implies ssnlot

 An FD f is implied by a set of FDs F if f holds whenever all
FDs in F hold.

 F+ = closure of F; is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):

 Reflexivity: If XY, then YX.

 Augmentation: If XY, then XZYZ for any Z.

 Transitivity: If XY and YZ, then XZ.

 These are sound (generate only FDs in F+) and complete
(generate all FDs in F+) inference rules for FDs.

8

Reasoning About FDs (Contd.)

 Additional rules (that follow from the AA):

 Union: If XY and XZ, then XYZ

 Decomposition: If XYZ, then XY and XZ

 Example: Contracts(cid, sid, jid, did, pid, qty, value) and:

 C is the key: CCSJDPQV

 Project purchases each part using single contract: JPC

 Dept purchases at most one part from a supplier: SDP

 JP C, CCSJDPQV imply JPCSJDPQV

 SDP implies SDJJP

 SDJJP, JPCSJDPQV imply SDJCSJDPQV

9

Reasoning About FDs (Contd.)

 Computing the closure of a set of FDs can be expensive.

 Size of closure is exponential in # attributes

 Typically, we just want to check if a given FD XY is in
the closure of a set of FDs F. An efficient algorithm:

 Compute attribute closure of X (denoted X+) wrt F:

• Set of all attributes A such that XA is in F+

• There is a linear time algorithm to compute this.

 Check if Y is in X+

 Does F = {AB, BC, CDE} imply AE?

 I.e, is AE in the closure F+? Equivalently, is E in A+?

10

So, What Do We Do Now With FDs?

 Essential for identifying problems in a database
design

 Provide a way for “fixing” the problem

 Key concept: normal forms

 A relation that is in a certain normal form has certain
desirable properties

11

Normal Forms

 Returning to the issue of schema refinement, the first
question to ask is whether any refinement is needed.

 If a relation is in a certain normal form (BCNF, 3NF etc.),
it is known that certain kinds of problems are avoided or
minimized.

 Helps deciding whether decomposing the relation will help.

 Role of FDs in detecting redundancy:

 Consider a relation R with three attributes, ABC.

• No FDs hold: There is no redundancy here.

• Given AB: Several tuples could have the same A value, and if so,
they all have the same B value.

12

Boyce-Codd Normal Form (BCNF)

 Reln R with FDs F is in BCNF if, for all XA in F+

 AX (called a trivial FD), or

 X is a superkey for R.

 In other words, R is in BCNF if the only non-trivial FDs
that hold over R are key constraints.
 R is free of any redundancy caused by FDs alone.

• No field of any tuple can be inferred (using only FDs) from the values
in the other fields in the relation instance

• For XA, consider two tuples with the same
X value.

• They should have the same A value. Redundancy?

• No. Since R is in BCNF, X is a superkey and hence
the “two” tuples must be identical.

X Y A

x y1 a

x y2 ?

13

Problems Prevented By BCNF

 If BCNF is violated by (non-trivial) FD XA, one of the
following holds:
 X is a subset of some key K.

• We store (X, A) pairs redundantly.

• E.g., Reserves(S, B, D, C) with SBD as only key and FD SC
• Credit card number of a sailor stored for each reservation

 X is not a proper subset of any key.
• Redundant storage of (X, A) pairs as above

• And there is a chain of FDs KXA, which means that we cannot
associate an X value with a K value unless we also associate an A value
with an X value.

• E.g., Hourly_Emps(S, N, L, R, W, H) with S as only key and FD RW
• Have chain SRW, hence cannot record the fact that employee S has

rating R without knowing the hourly wage for that rating

14

Third Normal Form (3NF)

 Reln R with FDs F is in 3NF if, for all XA in F+

 AX (called a trivial FD), or

 X is a superkey for R, or

 A is part of some key for R.

 Minimality of a key is crucial in third condition above.

 If R is in BCNF, is it automatically in 3NF? What about the
other direction?

 If R is in 3NF, some redundancy is possible.
 3NF is a compromise, used when BCNF is not achievable (e.g.,

no ``good’’ decomposition, or performance considerations).

 Lossless-join, dependency-preserving decomposition of R into a
collection of 3NF relations is always possible. (covered soon)

15

What Does 3NF Achieve?

 Prevents same problems as BCNF, except for FDs where
A is part of some key
 Consider FD XA where X is no superkey, but A is part of some

key
 E.g., Reserves(S, B, D, C) with only key SBD and FDs SC and

CS is in 3NF
• Notice: same example as before, but adding CS made it 3NF

• Why? Since CS and SBD is a key, CBD is also a key. Hence for SC, C is
part of a key

• Redundancy problem: for each reservation of sailor S, same (S, C) pair
is stored.

 BCNF did not suffer from this redundancy problem.
 So, why do we need 3NF? Let’s look at decompositions

first.

16

Footnote About Other Normal Forms

 1NF: every field contains only atomic values, i.e., no
lists or sets

 2NF: 1NF, and all attributes that are not part of any
candidate key are functionally dependent on the
whole of every candidate key
 3NF implies 2NF

 4NF: prevents redundancy from multi-valued
dependencies (see book)

 5NF: addresses redundancy based on join
dependencies, which generalize multi-valued
dependencies (see book)

17

Decomposition of a Relation Schema

 Suppose relation R contains attributes A1,..., An. A
decomposition of R replaces R by two or more
relations such that:

 Each new relation schema contains a subset of the
attributes of R (and no attributes that do not appear in R),
and

 Every attribute of R appears as an attribute of at least one
of the new relations.

 Intuition: decomposing R means we will store
instances of the relation schemes produced by the
decomposition, instead of instances of R.

18

Example Decomposition

 Decompositions should be used only when needed.
 Let SNLRWH have FDs SSNLRWH and RW

 Second FD causes violation of 3NF
• W values repeatedly associated with R values.

 Easiest fix: create a relation RW to store these associations
and remove W from the main schema:

• I.e., we decompose SNLRWH into SNLRH and RW

 Each SNLRWH tuple will now be projected into two
tuples, SNLRH and RW, each stored in the
corresponding relation
 Are there any potential problems with this approach?

19

Problems with Decompositions

 Three potential problems to consider:

 Some queries become more expensive.

• E.g., how much did sailor Joe earn? (salary = W*H)

 Given instances of the decomposed relations, we may not
be able to reconstruct the corresponding instance of the
original relation.

• Fortunately, not the case in the SNLRWH example.

 Checking some dependencies may require joining the
instances of the decomposed relations.

• Fortunately, not the case in the SNLRWH example.

 Tradeoff: Must consider these issues vs. redundancy.

20

Reconstructing A Relation

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8Original table

Decomposition

Joined back together

What went wrong?

21

Lossless Join Decompositions

 Decomposition of R into X and Y is lossless-join w.r.t.
a set of FDs F if, for every instance r that satisfies F:

 X(R) ⋈ Y(R) = R

 It is always true that R X(R) ⋈ Y(R)

 In general, the other direction does not hold.

 If it does, the decomposition is lossless-join.

 Definition extended to decomposition into three or
more relations in a straightforward way.

 It is essential that all decompositions used to deal
with redundancy be lossless. Why?

22

More on Lossless Join

 The decomposition of R
into X and Y is lossless-join
w.r.t. F if and only if the
closure of F contains:

 X Y X, or

 X Y Y

 Special case:

 For FD U V, the
decomposition of R into UV
and R V is lossless-join.

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

23

Dependency-Preserving Decomposition

 Consider CSJDPQV, C is key, JPC and SDP.
 BCNF decomposition: CSJDQV and SDP

 Problem: Checking JPC now requires a join.

 Dependency-preserving decomposition (intuition):
 Can enforce all FDs by examining a single relation instance on

each insertion or modification of a tuple (do not need to join
multiple relation instances)

 Formal definition requires notion of a projection of a set
of FDs F over R:
 If R is decomposed into X and Y, the projection of F onto X

(denoted FX) is the set of all FDs UV in F+ (closure of F) such
that U and V both are in X.

24

Dependency Preserving Decompositions
(Contd.)

 Decomposition of R into X and Y is dependency-
preserving if (FX FY)+ = F+

 I.e., if we consider only dependencies in the closure F+ that
can be checked in X without considering Y, and in Y
without considering X, these imply all dependencies in F+.

 Important to consider F+, not F, in this definition:
 ABC, AB, BC, CA, decomposed into AB and BC.

 Is this dependency preserving? Is CA preserved?

 Dependency preserving does not imply lossless join:
 ABC, AB, decomposed into AB and BC.

 And vice-versa. (Example?)

25

Decomposition into BCNF

 Consider relation R with FDs F. If XY violates BCNF,
decompose R into RY and XY.
 Repeated application of this idea will give us a collection of

relations that are in BCNF
• Lossless join decomposition and guaranteed to terminate.

 E.g., CSJDPQV, key C, JPC, SDP, JS

 To deal with SDP, decompose into SDP and CSJDQV.

 To deal with JS, decompose CSJDQV into JS and CJDQV.

 In general, several dependencies may cause violation
of BCNF. The order in which we ``deal with’’ them
could lead to very different sets of relations.

26

BCNF and Dependency Preservation

 In general, there may not be a dependency-preserving
decomposition into BCNF.

 E.g., CSZ with CSZ and ZC

 Not in BCNF, but cannot decompose while preserving CSZ.

 Similarly, decomposition of CSJDQV into SDP, JS and
CJDQV is not dependency preserving (w.r.t. the FDs
JPC, SDP and JS). Why?
 Note: adding relation JPC gives us a dependency-preserving

decomposition into BCNF.

• Problem: redundancy across relations. Each relation by itself is in
BCNF (i.e., no redundancy within relation), but JPC’s tuples can be
obtained by joining CSJDQV and SDP.

27

Decomposition into 3NF

 Algorithm for lossless-join decomposition into BCNF
can be used to obtain a lossless-join decomposition
into 3NF (typically, can stop earlier).

 To ensure dependency preservation, one idea:

 If XY is not preserved, add relation XY.

 Problem is that XY may violate 3NF.

 What can we do then?

 Refinement: Instead of the given set of FDs F, work
with the minimal cover for F.

28

Minimal Cover for a Set of FDs

 Minimal cover G for a set of FDs F:

 Closure of F = closure of G.

 Right hand side of each FD in G is a single attribute.

 If we modify G by deleting an FD or by deleting attributes
from an FD in G, the closure changes.

 Intuitively, every FD in G is needed, and ``as small as
possible’’ in order to get the same closure as F.

 E.g., AB, ABCDE, EFGH, ACDFEG has the
following minimal cover:

 AB, ACDE, EFG and EFH

29

Finding The Minimal Cover

 F = {AB, ABCDE, EFGH, ACDFEG}

 Decomposition to have single attribute on right side

 AB, ABCDE, EFG, EFH, ACDFE, ACDFG

 Check if any attribute on left side can be deleted
without changing closure

 AB, ABCDE, EFG, EFH, ACDFE, ACDFG

 Delete FDs that are implied by others

 AB, ACDE, EFG, EFH, ACDE, ACDFG
• ACDFG from ACDE, EFG

30

Dependency-Preserving Decomposition
into 3NF

 Using minimal cover F of given FD set, we can now achieve a lossless-join,
dependency-preserving decomposition into 3NF.

1. Lossless-join decomposition until all smaller relations are in 3NF
2. For each FD XA in F that is not preserved, add relation XA
 Result is lossless-join (X is superkey of XA) and dependency-preserving

(obviously), but is it still in 3NF?
 All relations after step 1 are in 3NF, but what about XA?
 XA is not a problem for 3NF because X is a superkey of XA
 What if another FD on XA is a problem for 3NF?

• Any FD on XA can only contain attributes from X{A}
• If right-hand side of FD in FXA contains A, left must be X (otherwise XA would not have

been in minimal cover)
• If right-hand side does not contain A, it must be a subset of X, i.e., is a subset of a key

• Why is X a key? It is a superkey, but is it minimal?
• Yes: if X’X was a key, then XA would not have been in the minimal cover and X’A

would have been there

 Why not use the same algorithm for lossless-join, dependency –
preserving decomposition into BCNF?

31

Update on DB Design Process

 Create ER diagram

 Translate ER diagram into set of relations

 Check relations for redundancy problems (not in
3NF, BCNF)

 Perform decomposition to fix problems

 Update ER diagram

32

Refining Entity Sets

 Consider Hourly_Emps(ssn, name, lot, rating,
hourly_wages, hours_worked)
 FDs: SSNLRWH and RW

 Assume designer created entity set Hourly_Emps as
above
 Redundancy problem with RW
 Could not discover it in ER diagram (only shows primary key

constraints)

 To fix redundancy problem, create new entity set
Wage_Table(rating, hourly_wages)
 Add relationship to connect Hourly_Emps2(S, N, L, H) and

Wage_Table(R, W)

 Similar for refining of relationship sets (see book)

33

Identifying Entity Attributes

 1st diagram translated
 Workers(S,N,L,D,S)
 Departments(D,M,B)
 Lots associated with

workers.

 Suppose all workers in a
dept are assigned the
same lot: didlot
 Redundancy!

 Fixed by:
 Workers2(S,N,D,S)
 Dept_Lots(D,L)
 Departments(D,M,B)

 Can fine-tune this:
 Workers2(S,N,D,S)
 Departments(D,M,B,L)

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

lot

dname

budget

did

since
name

Works_In DepartmentsEmployees

ssn

Before:

After:

34

Summary of Schema Refinement

 If a relation is in BCNF, it is free of redundancies that
can be detected using FDs. Thus, trying to ensure
that all relations are in BCNF is a good heuristic.

 If a relation is not in BCNF, we can try to decompose
it into a collection of BCNF relations.

 Must consider whether all FDs are preserved. If a lossless-
join, dependency preserving decomposition into BCNF is
not possible (or unsuitable, given typical queries), consider
decomposition into 3NF.

 Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.

