
1

Transaction Management Overview

Chapter 16

2

Why Is This Important?

 How can we perform multiple DB operations as one
atomic unit?

 Example: insert new dorm building
• First insert building into DormBuilding: rejected, because no

rooms registered for it in RoomContain

• First insert rooms into RoomContain: rejected, because building
does not exist yet in DormBuilding

 How does the DBMS enforce correct query execution
when multiple queries and updates run in parallel?

 How can we improve performance by weakening
consistency guarantees?

3

Transactions

 Concurrent execution of user programs is essential
for good DBMS performance.

 While some request is waiting for I/O, CPU can work on
another one.

 A user’s program may carry out many operations on
the data retrieved from the database, but the DBMS
is only concerned about what data is read/written
from/to the database.

 A transaction is the DBMS’s abstract view of a user
program: a sequence of reads and writes.

4

Concurrency in a DBMS

 Users submit transactions, and can think of each
transaction as executing by itself.
 Concurrency is achieved by the DBMS, which interleaves

actions (reads/writes of DB objects) of various
transactions.

 Each transaction must leave the database in a consistent
state if the DB is consistent when the transaction begins.

• DBMS will enforce all specified constraints.

• Beyond this, the DBMS does not really understand the semantics
of the data. (E.g., it does not understand how the interest on a
bank account is computed.)

 Issues: Effect of interleaving transactions and
crashes.

5

The ACID Properties

 Atomicity: Either all or none of the transaction’s
actions are executed

 Even when a crash occurs mid-way

 Consistency: Transaction run by itself must preserve
consistency of the database

 User’s responsibility

 Isolation: Transaction semantics do not depend on
other concurrently executed transactions

 Durability: Effects of successfully committed
transactions should persist, even when crashes occur

6

Example

 T1 transfers $100 from B’s account to A’s account.

 T2 credits both accounts with a 6% interest payment.

 There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together.

 However, the net effect must be equivalent to these
two transactions running serially in some order.

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

7

Example (Contd.)

 Consider a possible interleaving (schedule):

 This is OK. But what about:

 The DBMS’s view of the second schedule:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

8

Scheduling Transactions

 Serial schedule: Schedule that does not interleave the actions
of different transactions.
 Easy for programmer, easy to achieve consistency

 Bad for performance

 Equivalent schedules: For any database state, the effect (on
the objects in the database) of executing the first schedule is
identical to the effect of executing the second schedule.

 Serializable schedule: A schedule that is equivalent to some
serial execution of the transactions.
 Retains advantages of serial schedule, but addresses performance

issue

 Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.

9

Anomalies with Interleaved Execution

 Reading Uncommitted Data (WR Conflicts, “dirty
reads”)

 Example: T1(A=A-100), T2(A=1.06A), T2(B=1.06B),
C(T2), T1(B=B+100)

 T2 reads value A written by T1 before T1 completed
its changes

 Notice: If T1 later aborts, T2 worked with invalid data

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

10

More Anomalies

 Unrepeatable Reads (RW Conflicts)

 T1 sees two different values of A, even though it did
not change A between the reads

 Example: online bookstore

 Only one copy of a book left

 Both T1 and T2 see that 1 copy is left, then try to order

 T1 gets an error message when trying to order

 Could not have happened with serial execution

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

11

Even More Anomalies

 Overwriting Uncommitted Data (WW Conflicts)

 T1’s B and T2’s A persist, which would not happen
with any serial execution

 Example: 2 people with same salary

 T1 sets both salaries to 2000, T2 sets both to 1000

 Above schedule results in A=1000, B=2000, which is
inconsistent

T1: W(A), W(B), C
T2: W(A), W(B), C

12

Aborted Transactions

 All actions of aborted transactions have to be
undone

 Dirty read can result in unrecoverable schedule
 T1 writes A, then T2 reads A and makes modifications

based on A’s value

 T2 commits, and later T1 is aborted

 T2 worked with invalid data and hence has to be aborted
as well; but T2 already committed…

 Recoverable schedule: cannot allow T2 to commit
until T1 has committed
 Can still lead to cascading aborts

13

Preventing Anomalies through Locking

 DBMS can support concurrent transactions while
preventing anomalies by using a locking protocol

 If a transaction wants to read an object, it first
requests a shared lock (S-lock) on the object

 If a transaction wants to modify an object, it first
requests an exclusive lock (X-lock) on the object

 Multiple transactions can hold a shared lock on an
object

 At most one transaction can hold an exclusive lock
on an object

14

Lock-Based Concurrency Control

 Strict Two-phase Locking (Strict 2PL) Protocol:

 Each Xact must obtain the appropriate lock before
accessing an object.

 All locks held by a transaction are released when the
transaction is completed.

 All this happens automatically inside the DBMS

 Strict 2PL allows only serializable schedules.

 Prevents all the anomalies shown earlier

15

The Phantom Problem

 Assume initially the youngest sailor is 20 years old
 T1 contains this query twice

 SELECT rating, MIN(age) FROM Sailors

 T2 inserts a new sailor with age 18
 Consider the following schedule:

 T1 runs query, T2 inserts new sailor, T1 runs query again
 T1 sees two different results! Unrepeatable read.

 Would Strict 2PL prevent this?
 Assume T1 acquires Shared lock on each existing sailor tuple
 T2 inserts a new tuple, which is not locked by T1
 T2 releases its Exclusive lock on the new sailor before T1 reads

Sailors again

 What went wrong?
16

What Should We Lock?

 T1 cannot lock a tuple that T2 will insert

 …but T1 could lock the entire Sailors table
 Now T2 cannot insert anything until T1 completed

 What if T1 computed a slightly different query:
 SELECT MIN(age) FROM Sailors WHERE rating = 8

 Now locking the entire Sailors table seems excessive,
because inserting a new sailor with rating <> 8 would
not create a problem
 T1 can lock the predicate [rating = 8] on Sailors

 General challenge: DBSM needs to choose
appropriate granularity for locking

17

Deadlocks

 Assume T1 and T2 both want to read and write objects A
and B
 T1 acquires X-lock on A; T2 acquires X-lock on B

 Now T1 wants to update B, but has to wait for T2 to release its
lock on B

 But T2 wants to read A and also waits for T1 to release its lock
on A

 Strict 2PL does not allow either to release its locks before the
transaction completed. Deadlock!

 DBMS can detect this
 Automatically breaks deadlock by aborting one of the involved

transactions

 Tricky to choose which one to abort: work performed is lost

20

Performance of Locking

 Locks force transactions to wait

 Abort and restart due to deadlock wastes the work done
by the aborted transaction
 In practice, deadlocks are rare, e.g., due to lock downgrades

approach

 Waiting for locks becomes bigger problem as more
transactions execute concurrently
 Allowing more concurrent transactions initially increases

throughput, but at some point leads to thrashing

 Need to limit max number of concurrent transactions to prevent
thrashing

 Minimize lock contention by reducing the time a Xact holds
locks and by avoiding hotspots (objects frequently accessed)

21

Controlling Locking Overhead

 Declaring Xact as “READ ONLY” increases
concurrency

 Isolation level: trade off concurrency against
exposure of Xact to other Xact’s uncommitted
changes

Isolation Level Dirty Read Unrepeatable Read Phantom

READ UNCOMMITTED Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE READ No No Maybe

SERIALIZABLE No No No

22

Locking vs. Isolation Levels

 SERIALIZABLE: obtains locks on (sets of) accessed
objects and holds them until the end

 REPEATABLE READ: same locks as for serializable
Xact, but does not lock sets of objects at higher level

 READ COMMITTED: obtains X-locks before writing
and holds them until the end; obtains S-locks before
reading, but releases them immediately after reading

 READ UNCOMMITTED: does not obtain S-locks for
reading; not allowed to perform any writes

 Does not request any locks ever

23

Summary

 Concurrency control is one of the most important
functions provided by a DBMS.

 Users need not worry about concurrency.
 System automatically inserts lock/unlock requests and can

schedule actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

 DBMS automatically undoes the actions of aborted
transactions.
 Consistent state: Only the effects of committed Xacts

seen.

