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Key Learning Goals
• What is the purpose of Spark SQL, Spark 

Streaming, Spark MLlib, and Spark GraphX?
• Why do map and flatMap remove the Partitioner 

of a pair RDD? Why do mapValues and 
flatMapValues preserve the Partitioner of a pair 
RDD?

• When can the hash+shuffle join on pair RDDs 
avoid shuffling?

• Given a Spark program, determine how many 
jobs are going to be executed.

• Given a Spark program, determine which 
operations are executed by the master and which 
by the worker tasks.
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Introduction

• This module surveys important components 
and aspects of Spark that have not been 
covered in detail yet:

– Spark SQL

– Spark Streaming

– Spark MLlib

– Spark GraphX

– Partitioning and shuffling in Spark

– The interplay between lineage, jobs and lazy 
execution.
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Let us start with SQL operations in Spark.



SQL Basics
• SQL is based on the relational calculus. A calculus

expression describes what we are looking for, not how to 
compute it.

• The computation steps and their order of execution are 
expressed in relational algebra. For a given SQL query, the 
logical query plan corresponds to an expression in 
relational algebra.

• Relational algebra has only 5 primitive operators, which can 
be combined to compose complex queries: selection, 
projection, Cartesian product (a.k.a. cross product or cross 
join), set union, and set difference.
– The renaming operator is needed for formal reasons but does 

not manipulate data.

• In addition, grouping and aggregation operators were 
introduced as well. We already encountered most of these 
operators before.
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Reminder: Selection and Projection
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DBMS (SQL): Assume the input relation R has schema (A1, A2, A3); P is a 
predicate returning true/false; F is a function

Selection: SELECT * FROM R WHERE F(A1, A2, A3)
Projection (on A1): SELECT A1 FROM R
Extended projection: SELECT F(A1, A2, A3) FROM R

Spark:

myRDD.filter( P(x) ) // selection
myRDD.map( x => F(x) ) // extended projection

myDS.filter( P(x) ) // selection
myDS.select( “A1” ) // projection
myDS.map( x => F(x) ) // extended projection



Reminder: Grouping and Aggregation
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DBMS (SQL): Assume the input relation R has schema (Key, Val)

SELECT Key, myAGG( Val ) FROM R GROUP BY Key

Spark:

myPairRDD.aggregateByKey( aggFunction )

myDS.groupBy(“Key”).agg( aggFunction )



Cartesian Product
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DBMS (SQL): Cartesian product of relations R and S

SELECT * FROM R, S

Spark:

myRDD.cartesian( otherRDD )

myDF.crossJoin( otherDF )

// The joinWith method of DataSet also supports a version where 
join types, including cross, can be selected.



Set Difference
• Set functions generally require both inputs to be of the 

same type.
• rdd1.subtract(rdd2) transformation: returns all 

elements from rdd1 that are not in rdd2. This is for 
ordinary RDDs and hence compares the entire 
element.

• rdd1.subtractByKey(rdd2) transformation: This is for 
pair RDDs, returning all elements from rdd1 whose 
keys do not appear as key in rdd2.

• For DataSet, the corresponding transformation is 
except.
– Equality checking is performed directly on the encoded 

representation of the data and thus is not affected by a 
custom equals function defined on the element type.
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Union and Intersection in Spark

• rdd1.union(rdd2) transformation: returns all 
elements that occur in either input, but does not 
remove duplicates.

– For DataSet, the corresponding functions are union
and unionByName.

• rdd1.intersection(rdd2) transformation: returns 
all elements that occur in both.

– For DataSet, the corresponding function is intersect.

• Intersection does not add new functionality—it 
can be expressed with union and set difference.
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Reminder: Joins

• The join can be expressed as a selection 
applied to the Cartesian product. Then why 
was it introduced as a separate operator?

– Joins are very common in practice, and they tend 
to be expensive to compute. Since most joins in 
databases are equi-joins, specialized techniques 
were proposed to reduce their computation cost.

• Refer to the module on joins for Spark join 
operations.
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Zip—A Special Join
• rdd1.zip(rdd2) transformation: for rdd1 of type T and rdd2 of type 

U, it returns pairs of type (T, U), where the i-th pair consists of the i-
th records from rdd1 and from rdd2.
– Both RDDs must have the same number of partitions and elements in 

them.
– The zipPartitions transformation is similar, but more flexible in zipping 

even partitions with different numbers of elements.

• When is this useful? Consider computation of PageRank. 
Conceptually we are dealing with two data sets: the graph and the 
PageRank values. The former is read repeatedly, while the latter 
changes in each iteration. Hence we want to store the graph as a 
pair RDD (pageID, adjacencyList) and the PageRank values as 
(pageID, PRvalue). To compute outgoing contributions for a page N, 
both N’s adjacency list and current PR value are needed. Using zip 
to combine the values is more efficient (and elegant) than using a 
join or trying a workaround with intersection. We just have to make 
sure that there really is a one-to-one correspondence between 
records in both data sets.
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Spark SQL
• Spark SQL works with DataFrames.

– Reminder: A DataFrame is like a database table. It consists 
of rows, each adhering to a fixed schema that defines the 
name and type of all columns. You can think of a 
DataFrame as an RDD with additional structure. In recent 
Spark versions, it is an alias for DataSet[Row].

• DataFrames can be processed using SQL and SQL-
inspired functions. Think of Spark SQL as a distributed 
Spark-powered SQL query processor. It can even be 
accessed like a database server using JDBC.

• Operations on DataFrames are translated into 
optimized low-level RDD operations. Like in a DBMS, 
the structure enables optimizations not possible for 
general RDDs.
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Implementation Notes

• Spark’s default file format for structured data 
is Parquet.

• DataFrame metadata is managed in a table 
catalog. Spark applications can then access a 
DataFrame by name.

– This information disappears when the Spark 
context is restarted. To make the catalog 
persistent, Spark needs to be built with Hive 
support.
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Creating and Storing DataFrames
• DataFrames can be created as follows:

– Convert an RDD.
– Run an SQL query.
– Load external data.

• Spark can easily load and import data from JDBC 
sources, Hive, and files in JSON, ORC, and Parquet 
format.

• Parquet organizes the DataFrame column-wise, using 
compression. By saving the min and max value for each 
column chunk, some queries can skip chunks.
– For example, consider a query computing average income 

for people of age 30 to 40. A chunk with min age 55 and 
max age 69 is completely irrelevant, but a chunk covering 
range 37 to 62 would have to be accessed.
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Working with DataFrames

• show(n) returns the first n rows as formatted 
text.

• printSchema returns the schema of the 
DataFrame.

• columns returns a list of the column names.

• dtypes returns a list of the column names and 
their types.
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SQL-Style Functions
• select: relational projection operator, choosing which columns to 

keep in the resulting DataFrame.
• drop: relational projection operator, choosing which columns to 

drop.
• where, filter: relational selection operator, choosing which rows to 

keep.
• withColumnRenamed: renames a column.
• withColumn: adds a new column.
• orderBy, sort: sort by specified column(s). When sorting on multiple 

columns, this sorts in “row-major” order, i.e., compares based on 
one column, then in case of equality compares the next, etc.

• And there is a variety of aggregate, analytic, ranking, and window 
functions.

• Spark SQL also allows user-defined functions (UDF) in expressions, 
e.g., to extract information from a string column.
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SQL-Style Functions
• groupBy groups by a list of columns, returning a 

GroupedData object.
– When calling an aggregate function such as count on a 

GroupedData object, the result is a DataFrame with an 
additional column holding the corresponding aggregate 
values for the groups.

• rollup and cube group by multiple sub-sets of the given 
list of grouping columns. In fact, cube groups by all 2d

subsets of a set of d columns.
• join performs an equi-join on the specified columns, 

offering the “outer” option.
– Join performance may vary significantly, depending on the 

value of Spark parameter spark.sql.shuffle.partitions, 
which specifies the DataFrame’s number of partitions after 
shuffling.
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Using SQL Directly
• sql(SQLstring): is a function of SparkSession that 

executes an SQL query using Spark on a 
DataFrame, returning a DataFrame.
– The SQL dialect can be configured with 

spark.sql.dialect.

• For interactive query mode, Spark also offers an 
SQL shell.

• Other (non-Spark) applications can also connect 
using the JDBC or ODBC standard. To those JDBC 
and ODBC clients, Spark SQL will look just like a 
(parallel) database server.

19



Query Optimization
• Like in a DBMS, Spark’s Catalyst optimizer translates a 

query into Spark jobs. It goes through several steps:
– The query is parsed and relation references are checked to 

produce the  logical plan.
– This plan is optimized, mostly by re-arranging (e.g., projection 

and filter before join) and combining (e.g., apply multiple filters 
on same relation together) operations. It currently is based on 
“safe” heuristics but could be extended to include cost 
estimation.

– From the optimized logical plan, a physical plan is generated, 
which includes operator implementation choices. Here cost 
models should be used to decide between different join 
implementations.

– Finally, the physical plan is translated into Spark jobs.

• To see the logical and physical plans, use DataFrame’s
explain method. They can also be seen through the Web UI.
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We next take a quick look at Spark 
Streaming.



Spark Streaming
• In an ideal data stream processing scenario, data is continually arriving, 

while queries are monitoring the stream in order to produce immediate 
results in real-time, e.g., notifications.
– An example with mostly simple filter queries are pub/sub systems on the 

Internet, e.g., to notify users when an article on a topic of interest is 
published. Other examples include monitoring of traffic, industrial processes, 
and stock ticker events.

• To support real-time stream processing, a system needs to maintain query 
state, updating it whenever new records arrive. Spark can maintain state 
in RDDs much more efficiently than MapReduce with its file-system based 
storage approach. However, stream processing is still not a perfect fit, 
because Spark is optimized for batch processing of big data, not small in-
place updates to data structures capturing query state.

• Spark Streaming solves this dilemma by turning stream data into a 
sequence of discrete mini-batches. While not perfect, this can 
approximate stream processing sufficiently well for many applications.

22Source: spark.apache.org documentation v 2.2.0



Reading Streaming Data
• Using the appropriate receiver, Spark Streaming 

can read data from file systems such as HDFS and 
S3, from TCP/IP sockets, and from distributed 
systems such as Twitter, Flume, and Kafka.

• Each incoming mini-batch is represented by an 
RDD. Hence the full power of Spark can be 
applied to combine existing RDDs in memory with 
the new mini-batch RDD.
– When reading from a file system, a mini-batch consists 

of all the newly created files, since the last batch, in 
the input folder. Data added to existing files will not 
be included!
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Working with Streams
• There are several features in addition to the usual Spark 

operations.
• The DStream class represents the discretized stream, 

supporting basic operations such as map, filter, and 
window.

• For DStreams of key-value pairs, additional functions such 
as groupByKeyAndWindow and join exist.
– updateStateByKey updates the state of each key, by applying a 

supplied function to the old state and newly arriving values for 
the key.

– mapWithState generalizes updateStateByKey and can maintain 
state of some type, while returning data of another. It also 
apparently can manage larger state (more keys) and is 
significantly faster than updateStateByKey.

• DStream operations are executed automatically by the 
streaming context once per new mini-batch.
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Mini-Batch Management

25Source: spark.apache.org documentation v 2.2.0



Window-Based Processing
• Conceptually, a data stream is infinite. Hence some operations 

cannot be applied to it, e.g., sorting.
– We can never output any result, because in the next moment a 

smaller value might arrive.

• For other operations, state would grow without bounds, e.g., join. 
By defining windows of bounded length, these problems go away.

• Windows are also useful as a query feature in their own right, e.g., 
to determine the most active customer in each month or the most 
active user in the last hour.

• In Spark, windows are defined based on duration and slide, which 
must be multiples of the DStream’s batch interval. (This way each 
window corresponds to an integer number of mini-batches.)
– Consider a batch interval of 5 sec, duration of 20 sec and slide of 10 

sec. The first window then consists of mini-batches (0, 1, 2, 3), the 
next of (2, 3, 4, 5), then (4, 5, 6, 7), and so on. Note how the slide 
parameter results in “jumping” for the first mini-batch in the window.
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Performance Considerations
• A smaller batch interval (i.e., mini-batch duration) is better for more 

timely response to incoming data. However, it must be large 
enough, so that all processing of a mini-batch completes within the 
interval. Note that larger batches tend to reduce per-record 
processing cost.
– More formally, a smaller interval is better for low latency, while a 

larger interval is better for high throughput.

• We can use the Web UI to see if the system can keep up with the 
arriving mini-batches.

• Since application state depends on a conceptually infinite stream, it 
is infeasible to recompute it when a failure happens.
– Executor failure: Data replication enables recovery of failed executors 

on a different machine.
– Driver failure: Checkpointing of the entire streaming application 

enables quick recovery by restarting the driver and reading the 
checkpointed data.
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Developments Since Spark 2.0

• A structured streaming API supports 
streaming operations directly on DataFrames, 
making it more similar to the batch API. 
Essentially there are ordinary and streaming 
DataFrames, no special stream objects like 
DStream.
– A streaming DataFrame is implemented as an 

append-only table. A query returns a DataFrame, 
like for batch processing.

• With this new approach, it is straightforward 
to join a stream with a (static) table.

28



29

We introduced some functionality of 
Spark MLlib in earlier modules. Here we 
briefly survey additional functionality.



Spark Machine Learning API
• ML functionality was initially supported by the 

RDD-based org.apache.spark.mllib package, 
called MLlib for short. Then org.apache.spark.ml 
introduced a DataFrame-based version, often 
called Spark ML. As of Spark 2.0, MLlib is in 
maintenance mode (no further development) 
and ML will at some point replace it.
– To make things more confusing, MLlib is now used to 

refer to the DataFrame-based spark.ml package as 
well.

• In short, if you want to use ML features in Spark, 
work with spark.ml. Following the current 
convention, when we say MLlib, we refer to 
spark.ml.
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Using MLlib
• In principle, it is very easy to build distributed ML pipelines

in Spark, once the data is stored in a DataFrame. 
Functionality for linear algebra, classification, regression, 
and clustering is readily available and does not require 
much more than instantiating the right objects for the given 
data.

• However, to use MLlib well, one must understand (1) the 
underlying ML techniques and (2) enough about their 
implementation in Spark to specify parameters controlling 
tradeoffs affecting model quality and computation time.
– For part (1), take a data mining or ML course, or read a textbook 

on the topic.
– For part (2), it is often difficult to find detailed information. And 

as implementation changes, information available might be 
outdated (e.g., applies to spark.mllib, not spark.ml). Consider 
looking at the corresponding source code.
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Important Functionality
• ml.clustering offers a variety of clustering techniques, 

including K-means, Latent Dirchlet Allocation (LDA), 
and Gaussian Mixture Model (GMM).

• ml.classification offers a variety of models for 
predicting nominal outcomes (e.g., if a credit card 
transaction is fraudulent or not) that can be trained on 
labeled data. This includes RandomForest, gradient-
boosted tree, decision tree, logistic regression, artificial 
neural network (multilayer perceptron), and Naïve 
Bayes.

• ml.regression offers models for predicting numerical 
outcomes (e.g., income) from labeled data. This 
includes RandomForest, gradient-boosted tree, 
decision tree, and (generalized) linear regression.
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Important Functionality
• Model evaluation methods are in ml.evaluation.

• ml.linalg supports both dense and sparse linear algebra 
operations, including matrix product and transpose.

• ml.attribute supports functionality to represent the 
given data.

• ml.feature offers a variety of pre-processing and data 
manipulation techniques, commonly used for ML tasks. 
This includes feature scaling, normalization, PCA, 
inverse document frequency (IDF), string indexing, and 
Word2Vec.

• For classification and regression, cross-validation and 
training/test splitting functionality can be found in 
ml.tuning.
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Random Forest Implementation Notes
• How is training for Random Forest implemented in Spark? One 

could partition work at the granularity of trees; or one could even 
parallelize training of a tree itself.

• To support cases with many machines and few trees, Spark 
implemented the more fine-grained version based on Google 
research paper [Biswanath Panda and Joshua S. Herbach and 
Sugato Basu and Roberto J. Bayardo. PLANET: Massively Parallel 
Learning of Tree Ensembles with MapReduce. Proc. Int. Conf. on 
Very Large Data Bases (VLDB), 2009].
– As an artifact of this training approach, the maxBins parameter 

controls training cost versus split quality based on the number of split 
candidates considered for continuous features.

• The trained model is returned to the driver and stored there in 
memory. For large data with many trees in the ensemble, this may 
create a memory bottleneck.
– A possible workaround would be to implement the ensemble as a set 

of decision trees, e.g., to explicitly manage the set of trees in an RDD 
in user code.
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Random Forest Parameters
• Random Forest and Bagged tree ensembles require little parameter tuning 

and tend to produce excellent predictions. We recommend the following 
default parameter settings:
– Set numTrees high, e.g., to 100. Or start with few trees and then increase the 

number until model quality reaches a ceiling.
– Do not limit maxDepth, which limits tree height. In practice, splits tend to 

distribute data unevenly between branches. Hence the number of records in 
different nodes at the same level can vary by orders of magnitude.

– Set minInstancesPerNode = 50 for binary classification and regression; larger 
for  multi-class problems. This ensures each leaf has enough data to capture 
the fraction of the majority class (classification) or the output average 
(regression) “reasonably” well. And it lets branches with more data grow 
deeper. Unfortunately, it might generate overly small trees in the presence of 
multi-way splits (on categorical attributes).
• Consider a tree node with 10M records, where the best split is on a categorical attribute 

resulting in a partitioning of size (4M, 3M, 3M-1, 1). Typically, it is beneficial to split such 
a node, but unless minInstancesPerNode = 1, this split would be prevented because of 
the branch receiving one record.

– A better solution would be a parameter that stops splitting not based on child
branches but based on the number of records in the node to be split.

– As a workaround, one could convert a categorical attribute with n possible 
values to n different binary attributes (aka one-hot encoding).
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Next we take a quick look at the GraphX
library for graph analysis.



GraphX
• The GraphX package supports graph representation as 

RDDs and a variety of important graph algorithms, 
including (strongly) connected components, label 
propagation for community detection, PageRank, shortest 
path, and triangle count.

• Furthermore, efforts are being undertaken to support the 
behavior of other popular graph analysis frameworks on 
top of GraphX. For example, the Pregel object in 
spark.graphx supports an interface similar to Google’s 
Pregel, with GraphX providing a highly efficient 
implementation.

• As with MLlib, using existing GraphX algorithms, e.g., 
PageRank, is easy, but one has to trust that the provided 
implementation is efficient. Finding implementation details 
is difficult. For instance, can you find out how the provided 
PageRank algorithm handles dangling nodes?
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Implementing A Graph Algorithm
• When implementing your own graph algorithm in GraphX, 

intelligent caching is particularly important.
• Many graph algorithms proceed in rounds, reading graph structure 

such as a node’s adjacency list, in each round. It therefore often 
pays off to have the graph cached, using the cache() or persist()
method.

• Other graph information changes in each round, e.g., PageRank 
values or shortest distance found so far. These changing data sets 
should not be cached.
– Caching them does not cause memory errors. If too many data sets are 

to be cached, you leave the decision about which one to evict to the 
Spark cache manager. Such general-purpose software will probably 
not make as good a decision for your program as the person who 
designed it and understands its access pattern.

• Use the checkpoint() command to avoid an overly large RDD DAG 
for iterative graph computations with many rounds.
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Next, we take a closer look at partitioning 
of RDDs and DataSets in Spark.



Partitioners in Spark
• In MapReduce, the Partitioner often plays an important 

role, and it is relatively easy to understand.
• In Spark, the situation is potentially confusing:

– Pair RDDs support custom Partitioner objects that behave like 
MapReduce Partitioners, mapping objects based on the key. The 
Partitioner object is associated with the pair RDD and can be 
exploited to eliminate the need for shuffling for equi-joins 
between pair RDDs that have the same Partitioner.

– Plain RDDs do not support custom Partitioners. Transformations
repartition and coalesce can achieve hash partitioning, but do 
not assign a known Partitioner to the RDD.

– DataSet also does not support Partitioners, but we can use the 
repartition transformation. In general, the idea is to leave 
partitioning decisions to the optimizer instead of the user.
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Controlling Pair RDD Partitions
• The Partitioner object performs RDD partitioning. The 

default is HashPartitioner. It assigns an element e to 
partition hash(e) % numberOfPartitions.
– hash(e) is the key’s hash code for pair RDDs, otherwise the 

Java hash code of the entire element.

– The default number of partitions is determined by Spark 
configuration parameter spark.default.parallelism.

• Alternatively, one can use RangePartitioner. It 
determines range boundaries by sampling from the 
RDD. (It should ideally use quantiles.)

• For pair RDDs, one can define a custom Partitioner.
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Controlling DataSet Partitions
• Function repartition(numPartitions: Int, 

partitionExprs: Column*) returns a new DataSet
that is hash partitioned based on the partition 
expression.
– The expression can select existing columns or a new 

column created from them. E.g., given myDS(A, B) one 
can hash on (A+B) or some other function of A and B.

• Function repartitionByRange similarly performs 
range partitioning.
– When no explicit sort order is given, Spark uses a 

default ordering.
– The data in a range is not sorted on the partitioning 

columns!
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Data Shuffling
• Some pair-RDD transformations preserve partitioning, e.g., 

mapValues and flatMapValues.
• Changes to the Partitioner, including changing the number 

of partitions, require shuffling.
• map and flatMap remove the pair RDD’s Partitioner, but do 

not result in shuffling. But any transformation that adds a 
Partitioner, e.g., reduceByKey, results in shuffling. 
Transformations causing a shuffle after map and flatMap:
– Pair RDD transformations that change the RDD’s Partitioner: 

aggregateByKey, foldByKey, reduceByKey, groupByKey, join, 
leftOuterJoin, rightOuterJoin, fullOuterJoin, subtractByKey

– RDD transformations: subtract, intersection, groupWith.
– sortByKey (always causes shuffle)
– partitionBy and  coalesce with shuffle=true setting.
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Reminder: Joins
• For pair RDDs, there are join, leftOuterJoin, rightOuterJoin, and fullOuterJoin.

– These are all equi-joins. When called on an RDD of type (K, V), with an 
RDD of type (K, W) as input, they return an RDD of type (K, (V, W)), (K, 
(V, Option(W))), (K, (Option(V), W)), and (K, (Option(V), Option(W))), 
respectively. Here Option(T) represents any object of type T or None 
(i.e., NULL). This is needed, because outer joins emit results also for 
elements from one RDD that have no matches in the other.

• These operations have versions that take a Partitioner object or a 
number of partitions as parameter.
– If no Partitioner or number of partitions is specified, Spark takes the 

Partitioner of the first RDD. This way only the second RDD needs to be 
shuffled.

– If the input RDDs have no Partitioners, Spark uses the hash Partitioner
with either the default number of partitions set in 
spark.default.partitions, or, if the default is not defined, the largest 
number of partitions of the input RDDs.
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Changing Partitioning at Runtime
• partitionBy(partitionerObject) transformation for pair 

RDDs: If and only if the new Partitioner is different from the 
current one, a new RDD is created and data is shuffled.

• coalesce(numPartitions, shuffle?) transformation: splits or 
unions existing partitions—depending if numPartitions is 
greater than the current number of partitions. It tries to 
balance partitions across machines, but also to keep data 
transfer between machines low.
– repartiton is coalesce with shuffle? = true.

• repartitionAndSortWithinPartitions(partitionerObject) 
transformation for pair RDDs with sortable keys: always 
shuffles the data and sorts each partition. By folding the 
sorting into the shuffle process, it is more efficient then 
applying partitioning and sorting separately.
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Mapping at Partition Granularity
• mapPartitions(mapFunction) transformation: mapFunction has signature 

Iterator[T] => Iterator[U]. Contrast this to map, where mapFunction has 
signature T => U.

• Why is this useful? Assume, like in Mapper or Reducer class in 
MapReduce, you want to perform setup and cleanup operations before 
and after, respectively, processing the elements in the partition. Typical 
use cases are (1) setting up a connection, e.g., to a database server and (2) 
creating objects, e.g., parsers that are not serializable, that are too 
expensive to be created for each element. You can do this by writing a 
mapFunction like this:
– Perform setup operations, e.g., instantiate parser.
– Iterate through the elements in the partition, e.g., apply parser to element.
– Clean up.

• mapPartitionsWithIndex(idx, mapFunction) transformation: also accepts a 
partition index idx, which can be used in mapFunction.

• Both operations also have an optional parameter preservePartitioning, by 
default set to false. Setting false results in removal of the partitioner.
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Shuffle Implementation

• Sorting (default) or hashing.

• Parameter spark.shuffle.manager specifies 
which is used. Sort is the default, because it 
uses less memory and creates fewer files. 
However, sorting has higher asymptotic 
complexity than hashing.

• Several other parameters control options such 
as consolidation of intermediate files, shuffle 
memory size, and if spilled data are 
compressed.
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Next, we explore an important but 
somewhat more subtle issue: how does 
Spark pass data and functions to tasks 
(executors)?



What Is the Problem?
• Assume a function that is executed in a task (in an

executor) accesses an object that lives in the master. 
Then the object needs to be passed to the task.
– What if that object contains another object that may be 

accessed in the task? Then that object also needs to be 
passed to the task. And so on.

• What if the function itself is a member function of an 
object?
– Then the function may depend on the object (and it 

usually will—otherwise a good programmer would have 
created a static function) and hence the entire object 
needs to be passed to the task.

• What about other functions, e.g., anonymous functions 
like (x,y)=>(x+y)?
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Let’s Make This Concrete

• We explore the behavior of Spark with some 
example programs. These are from or inspired 
by the Spark Programming Guide.

• For the following, pay attention to where the 
data lives and how it is communicated 
between application master (driver) and tasks 
(executors).
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Object References
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• What happens if an RDD operation references an 
object that has not been broadcast?

• The tasks need to have access to the object so 
Spark will automatically send it to them.

// This object is created by the master
val obj = new Object( … )

// RDD map calls are executed on RDD partitions
// in a task. Spark recognizes that the map call
// references the object and hence automatically
// sends it to the task.
myRdd.map(x => x + obj.field)



Big Object Reference
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• If the object is big, this will create a lot of data 
traffic. What if we only need a small part of 
the object?

WordCount

Add a value to 
the counts



Data Movement
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Master

Task 1

obj

useful

countsRDD_1
obj

useful

Task 2

countsRDD_2
obj

useful

mapValues() mapValues()



The Program in Action

• Local run with 5 threads, 5 tasks:

54



Workaround

• How do we avoid copying the big object 
unnecessarily?

• We can simply reference a temporary variable 
that contains only the part of the object we need.

55



Data Movement
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Master

Task 1

obj

useful

countsRDD_1

Task 2

countsRDD_2

mapValues() mapValues()

temp

temp temp



The Workaround in Action

• Local run with 5 threads, 5 tasks:
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~10 times faster



Referencing an Object Method
• The same problem occurs when we reference a 

method of an object, even if it does not access 
the object’s internal data.
– To guarantee correct execution, the entire object must 

be passed to the task.
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Adds up 2 numbers



Solution: Static Methods

• If the function does not depend on data in the 
object, make it a static method.
– In Spark Scala, such static methods are defined 

using object instead of class. They do not appear 
inside the definition of a class like BigObject.

• A static function is sent to the tasks without 
including irrelevant object data.
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object MyFunctions {
def func1(s: String): String = { ... }

}

myRdd.map(MyFunctions.func1)



Anonymous Functions

• Recall examples such as
myRDD.reduce((x,y) => x+y) and
myRDD.map(line => line.split(“ “)). Here “=>” 
defines an anonymous function.

• Anonymous functions are automatically 
serialized and passed to each task that applies 
it to the corresponding partition of the RDD.

– They behave like simple static functions.
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General Concept: Closures

• The closure contains all those variables and 
methods each task needs to perform its 
computations on an RDD or DataSet partition. 
It is serialized and sent to each executor.

• When writing Spark programs, we must pay 
attention where the data lives and how it is 
communicated between application master 
(driver) and tasks (executors).
– As the examples demonstrated, understanding 

what is included in the closure is key to writing 
efficient Spark programs.
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Closure vs Global Variables

• The closure is not the same as a general global 
variable. It creates a “1-way street” to share 
data from master to tasks, but it does not 
provide a “back channel” to let tasks 
communicate updates to the master or to 
other tasks.

– It behaves like broadcast variables.

• Let us look at an example to understand this 
better.
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Incrementing a Counter

• Goal: count the number of rows in an RDD.

• What does the following program print?

– Assume countsRDD has two partitions with sizes 
501k and 499k records respectively.
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Incrementing a Counter
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Master

Task 1

countsRDD_1

Task 2

countsRDD_2

counter += 1

0

counter

counter counter

counter += 1

Stdout of driver:The counter is part of the 
closure of foreach(),
so it is copied to the tasks

501k 499k



Workaround

• Closures provide local copies to a task and 
hence cannot be used to update global state.

• To globally process updates from the tasks, 
use an Accumulator instead. It is designed to 
automatically pass its local updates back to 
the shared global copy in the master.

• Let us look at one more example.
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Where Is The RDD Printed?

• The first foreach is called in the tasks 
(executors). Hence the println writes to the 
executor’s stdout and the RDD content will 
not show up in the master’s stdout.

• The second foreach collects the RDD on the 
master, then prints it there.
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Where Is The RDD Printed?

• The first foreach is called in the tasks 
(executors). Hence the println writes to the 
executor’s stdout and the RDD content will 
not show up in the master’s stdout.

• The second foreach collects the RDD on the 
master, then prints it there.
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Lessons Learned

• Make local copies of object members needed 
by a function, especially when the object is
large and the relevant member is small.

• Use anonymous functions and static methods 
instead of methods in a class instance.

• Use Accumulators to implement global 
counters.

• An RDD must be collected if we want one 
machine to have access to all its data (be 
careful about memory constraints).
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Next, we explore a bit more the lazy 
execution of Spark.



PageRank Iterations

• Let us revisit the PageRank program.

• To solve the dangling-page issue, we needed a 
lookup() to find the rank of a dummy node.

• This is an action that triggers a job execution 
in Spark – one for each iteration.
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PageRank Lineage

• The lineage of our RDD keeps growing with all 
the transformations of each new iteration.
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Iteration 1

Iteration 2



PageRank Lineage Use

• Fault tolerance: if any RDD partition is lost, it 
can be recomputed using its lineage.

• Optimization: Ideally, the RDD of the previous 
iteration is stored so that the next iteration 
does not need to recompute it.

– This in general is not guaranteed and is up to the 
Spark optimizer.
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Use of cache()/persist()

• We can give a hint to Spark that certain RDDs 
should be kept in memory/disk.

• In this case, the log files explicitly tell us if the 
RDDs are reused.
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Logs

…



Detecting Lineage Recomputation
• What if we do not use cache() or persist()? Then the log 

files do not explicitly tell us if recomputation occurs. 
How can we tell if Spark reuses RDDs across iterations?

• One idea is to use a print statement inside the for-loop. 
The hope is that recomputation should print the same 
iteration number multiple times.
– However, this idea will not work because printing is not a 

transformation, thus not part of the lineage. 
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Will always be 
executed once 
per iteration.



Detecting Lineage Recomputation

• To detect if the lineage is recomputed, we can 
look for:
– a growing number of tasks per iteration

– increasing running time for jobs
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Example run for 1M nodes, no cache()

The running time of 
the jobs stays more 
or less the same, 
which indicates that 
Spark does reuse the 
RDDs.



Detecting Lineage Recomputation
• Will Spark always be smart enough to reuse the previous 

RDDs? For PageRank most probably yes.
• From the Spark Programming Guide:

“Shuffle also generates a large number of intermediate files 
on disk. As of Spark 1.3, these files are preserved until the 
corresponding RDDs are no longer used and are garbage 
collected. This is done so the shuffle files don’t need to be 
re-created if the lineage is re-computed … 
automatically persists some intermediate data in shuffle 
operations (e.g. reduceByKey), even without users 
calling persist. This is done to avoid recomputing the entire 
input if a node fails during the shuffle. ”

• Since our PageRank program performs shuffling in each 
iteration, the RDDs will be stored on disk even if there is 
not enough memory to cache them.
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Summary
• Spark provides powerful functionality and makes 

it easy to write programs for distributed data-
intensive computations in the cloud. In addition 
to core functionality, a variety of libraries have 
been added, e.g., for SQL, machine learning, 
graph and stream processing.

• Writing efficient Spark programs and identifying 
the root cause of poor performance or memory 
errors requires deeper understanding of Spark’s 
lineage, lazy evaluation, and closure.
– In addition, one must be aware where data lives and 

where functions are executed (master vs. 
tasks/executors).
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