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Abstract—1In this paper we consider joint perception and
control of a pick-place system. It is important to consider
perception and control jointly as some actions are more likely to
succeed than others given non-uniform, perceptual uncertainty.
Our approach is to combine 3D object instance segmentation
and shape completion with classical regrasp planning. We use
the perceptual modules to estimate their own uncertainty and
then incorporate this uncertainty as a regrasp planning cost.
We compare 7 different regrasp planning cost functions, 4 of
which explicitly model probability of plan execution success.
Results show uncertainty-aware costs improve performance for
complex tasks, e.g., for a bin packing task, object placement
success is 6.2% higher in simulation and 4.1% higher in the
real world with an uncertainty-aware cost versus the commonly
used minimum-number-of-grasps cost.

I. INTRODUCTION

Pick-place is prehensile manipulation where grasped ob-
jects are fixed in the hand as the arm moves and rest stably
after being placed [1]. Owing to the simplifying, static nature
of this problem, an interesting computational aspect has
emerged: search can be separated into a discrete phase over
grasp-place combinations and a continuous phase over arm
motions, naturally enabling hierarchical planning [2], [3]. It
has been more or less assumed that, a planner exploiting
this property can be combined with a perception module to
create a working system. However, perception of the object’s
geometry is a difficult and error-prone process in itself.
Furthermore, separately designing perception and planning
modules in this way is not necessarily optimal, e.g., these
methods treat grasping a completely unobserved part of an
object the same as grasping a part that is fully observed,
which could clearly lead to avoidable failures.

One approach to this problem is to dispense with the
idea of separate perception and planning modules and use
reinforcement learning (RL) to learn a single module that
does both. While some success has been achieved with this
idea (e.g., [4], [5], [6]), training is time-consuming, the
system is not robust to changes in either task or environment,
and performance is often suboptimal, even for simple tasks
(cf. placing mugs in [4] vs. a pipelined approach [7]).

Another approach is to plan in belief space, i.e., in
probability distributions over the current state [8]. While
this is the most principled approach, there are still a couple
of important drawbacks. First, these methods almost always
require a detailed description of the observation and state
transition models of the system, which can be very difficult
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to obtain (e.g., [9], [10]). Second, planning takes place in
the space of probability distributions over states, which is
continuous and, for practical problems, high dimensional. For
these reasons, this approach has been confined to problems
with few dimensions or other simplifying structure.

In this work, we take a different approach, which is
to (a) use perception to predict the complete geometry of
the objects and (b) incorporate instance segmentation and
shape completion uncertainty as a planning cost at the
level of discrete search. With only small modifications to
existing components, we efficiently account for perceptual
uncertainty. Our results for a bin packing task show that
perception is indeed a significant source of error and that
some of this error can be compensated for by penalizing
uncertain grasps/places. We compare four different ways
of modeling probability of pick-place execution success,
including grasp quality (GQ), Monte-Carlo (MC) sampling,
uncertainty at contact points (CU), and success prediction
(SP) to two baselines. We find either SP or a combination
of GQ and MC performs best, depending on the scenario.
We test the applicability of the approach with real robot
experiments on three benchmark tasks: block arrangement,
bottle arrangement, and bin packing.

II. RELATED WORK

A. Pick-place in deterministic, fully observed environments

Pick-place was often studied independently from percep-
tion. The structure of the problem for one movable object
(called regrasping) was first explained by Tournassoud et al.
[2]. There is a discrete search component, for sequencing
grasp-place combinations, and a continuous search compo-
nent, for connecting grasp-place combinations with a motion
plan. Alami et al. generalized regrasping to multiple, mov-
able objects, pointed out the problem is NP-hard, and coined
the term manipulation planning [3]. Later they considered
different cost functions for the discrete search, including
path length and number of grasp changes [11]. Nielsen and
Kavraki gave a 2-level, probabilistically complete planner
for manipulation planning [12]. Manipulation planning is
related to the more general concept of multi-modal planning,
which deals with discontinuities in the configuration space
[13]. Wan et al. employ a 3-level planner, where the high-
level planner provides a set of goal poses for the objects,
the middle-level planner is a regrasp planner, and the low-
level planner is a motion planner [14]. For non-monotonic
rearrangement problems (i.e., objects need moved more than
once), a middle-level planner that displaced multiple objects



was more efficient [15]. Our approach is to start with a well-
established regrasp (i.e., middle-level) planner and build an
uncertainty capability upon it.

B. Pick-place of novel objects

A few projects have considered novel-object pick-place,
where the complete shapes of the objects are no longer given.
The first to address this was Jiang et al. [16] who used
random sampling with classification to identify placements
that are likely to be stable and satisfy human preference.
After this, we approached the problem with deep RL by
learning a grasp/place value function [4], [5], [6]. Next,
Manuelli et al. proposed a 4-component pipeline: (a) instance
segmentation, (b) key point detection, (c) optimization-based
planning for task-specific object displacements, and (d) grasp
detection [7]. Objects were minimally represented by key
points, which are 3D points indicating task-relevant object
parts, e.g., the top, bottom, and handle of a mug. Later,
Gao and Tedrake augmented this with shape completion,
which was useful for avoiding collisions when planning
arm motions with the held object [17]. Finally, Mitash et
al. addressed the problem by fusing multiple sensor views
and allowing a single regrasp as necessary, conservatively
assuming the object is as large as its unobserved region
[18]. None of these considered multiple regrasps or compared
different ways of explicitly accounting for segmentation and
completion uncertainty, as we do here.

C. Pick-place under uncertainty

A general approach to pick-place under arbitrary types of
uncertainty is to solve a partially observable Markov decision
process (POMDP). Kaelbling and Lozano-Pérez focus on
symbolic planning in belief space with black-box geometric
planners and state estimators [9]. Xiao et al. use POMCP
[19] to update their belief about the arrangement of a small
set of known objects [10]. Although the POMDP approach
is very general, it requires significant computation and an
accurate model of transition and sensor dynamics.

D. Grasping under uncertainty

Our approach is to extend ideas from grasping under object
shape uncertainty to pick-place planning. The two most
common approaches to grasping under shape uncertainty
are (a) evaluate force closure over an MC sampling of
object shapes and (b) evaluate a probabilistic model of grasp
success. Kehoe et al. took the MC approach and represented
uncertainty as normally distributed polygonal vertices and
center of mass with given means and variances [20]. Hsiao
et al. provide a probabilistic model for grasp success given
multiple object detections and grasp quality evaluations [21].
Soon afterward, Gaussian process implicit surfaces (GPISs)
were proposed as a representation of object shape uncertainty
for grasping [22], [23], [24], [25]. GPISs combine multiple
observations of the object’s signed distance function (SDF)
into a Gaussian process — a normal distribution over SDFs
[22]. Mahler et al. compare a probabilistic model (based on
the variance of the GPIS at contact points) versus an MC

approach [23]. The MC approach does better but has higher
computational cost. Laskey et al. improved the efficiency
of MC sampling from the GPIS by employing multi-armed
bandit techniques to reduce the number of evaluations for
grasps that are unlikely to succeed [24]. Li et al. conducted
real-world experiments filtering grasps with different thresh-
olds on variance of the GPIS at contact points [25]. Finally,
Lundell et al. represented objects as voxels, used a deep
network to complete objects, and performed MC sampling
using dropout [26].

III. PROBLEM STATEMENT

Definition 1: Move-binary-effect system. A move-binary-
effect system (cf. move-effect system [6]) is a discrete-time
system consisting of a robotic manipulator, one or more
depth sensors, and one or more objects, each situated 3D
Euclidean space. The manipulator has configuration ¢ € R?
and is equipped with an effector with status empty or holding.
The action of the robot is to move along a trajectory, f :
[0,1] — g, followed by an effector operation, either open
or close. At each step, the depth sensors acquire a point
cloud C € R™ 3, sampling points on the object surfaces.
The objects are rigid polyhedrons and can be either fixed
or movable. At each step the robot observes g, its effector
status, and a point cloud and takes an action.

Definition 2: Rearrangement of unknown objects. Within
a move-binary-effect system, given a set of goal arrange-
ments (where an arrangement is a pose for each movable
object w.rt. a fixed frame, {7; € SE(3)};>), find a mini-
mum number of actions that is guaranteed to achieve a goal
arrangement.

Since objects are unknown, the set of goal arrangements
cannot be specified explicitly as a list of poses. Instead, it
is specified with a boolean property, e.g., using first-order
logic (e.g., all bottles are upright on coasters). Reasonable
variations of this problem are also possible, such find a
minimum number of actions that, with given probability,
achieves a goal arrangement [9].

As this problem is PSPACE-hard [27], approximate solu-
tions are needed. Our approach is to break the problem into
two subproblems: (a) find (possibly multiple) sequences of
explicit, single-object displacements (independent of how it
is moved by the robot) that are likely to be executable and to
achieve a goal arrangement and (b) find a regrasp plan that
is most likely to achieve a single-object, goal displacement.
For this paper, we focus on subproblem (b); subproblem (a)
is implemented task-by-task.

IV. SYSTEM OVERVIEW

The proposed system for rearranging unknown objects
is summarized in Fig. 1. For each perception-action cycle,
the environment produces a point cloud, the geometry of
the scene is estimated, a partial plan for achieving a goal
arrangement is found, and the first pick-place of the plan is
executed. Automatic resensing and replanning accounts for
failures, similar to MPC [28]. In this section, each compo-
nent is briefly described; regrasping under segmentation and



completion uncertainty — the main contribution — is described
next (Section V).

Y ¥ :
Instance Shape Arrangement Regrasp Motion
Segmentation Completion Planner Planner Planner

Environment

Fig. 1. Diagram of the proposed system architecture. Green represents the
environment, blue the perceptual modules, and red the planning modules.
Dashed arrows are followed up to a number of times if no plan is found.

A. Perception

The purpose of the perceptual modules is to reconstruct
the geometry of the scene so we can apply geometric plan-
ning algorithms. Additionally, they must quantify their own
uncertainty so that plans unlikely to succeed can be avoided.
For both instance segmentation and shape completion, we
have chosen point clouds as the input/output representation
of objects. A point representation consumes less memory
than uncompressed voxel grids, enables efficient planning,
and, from our previous experience [4], [5], [6], exhibits good
simulation-to-real domain transfer.

1) Object instance segmentation: The input to the seg-
mentation module is a point cloud C' € R™*3, and the output
is a point cloud for each object, {C; € R™ >3} with
S n; < n, and uncertainties {U; € R™}.". Although
any object instance segmentation method with this interface
can be used in the proposed architecture, our implementation
uses BoNet [29]. BoNet produces an n x K matrix, where
K is a predefined maximum number of objects, and each
row is a distribution for each point over object ID. The
column-wise maximum value of this matrix is used for U,
which is interpreted as the estimated probability each point is
correctly segmented. (And, optionally, points with U; below
a threshold can be omitted.)

2) Shape completion: The input to the shape completion
module is a point cloud C € R"*3, and the output is a
point cloud C' € R™*? that is a dense sampling of points
on all object faces, including faces not visible to the sensor.
For robust regrasp planning, we also require an uncertainty
estimate for each completed point, U € R™. Although any
shape completion method with this interface can be used in
the proposed architecture, our implementation uses a modi-
fied version of PCN [30]. PCN consists of an encoder (two
PointNet layers [31]) and a decoder (three fully connected,
inner product layers'). We augmented the original version
of PCN with a second decoder for uncertainty estimates. In
particular, the uncertainty decoder is trained using a binary,
cross-entropy loss to predict the probability each point is
within Euclidean distance § € Ry of the nearest ground
truth point. So the uncertainty values should be interpreted as
the estimated probability each completed point is accurate.
Example completions are shown in Fig. 2.

IThe “detailed output” layers were omitted in our implementation, and
the CD loss was used for the shape completion branch. (See [30].)

Fig. 2. Shape completions with PCN. Columns are (left) observed cloud,
(center) completed cloud, and (right) ground truth. Yellow represents high
U values (near 1) and blue represents low U values (near 0.5).

B. Planning

We use a 3-level planner, similar to Wan et al. [14].

1) Arrangement planner: The input to the arrangement
planner is a list of completed clouds, C’l, .. .,C’,I,Obj, and
the output is a set of triples {(7, c,i)j};i’al', where T is a
target pose for object 7 and c is an associated goal cost. The
reason the arrangement planner produces multiple goals for
multiple objects is to increase the chances one of them is
feasible. Besides, not all goals are equal: some may be more
preferable to the task. For example, in bin packing, some
placements will result in tighter packings than others. This
is captured by the goal cost, c. For this paper, we implement
a different arrangement planner for each task.

2) Regrasp planner: The regrasp planner takes in the
triples from the arrangement planner and produces a se-
quence of pick-places, i.e., effector poses, that displaces one
object. If a regrasp plan is not found, more goals can be
requested from the arrangement planner (as indicated by
dashed lines in Fig. 1).

3) Motion planner: The motion planner finds a contin-
uous motion between picks and places. Any off-the-shelf
motion planner will do: we use a 3-level planner that first
attempts a linear motion, then trajopt [32], and then RRT*
with timeout [33]. If no motion plan is found, the regrasp
planner can be resumed from where it left off, but marking
the infeasible section so the same solution is not found again.

V. REGRASP PLANNING UNDER UNCERTAINTY

Regrasps are needed due to kinematic constraints: the
grasps at the object’s current pose may all be in collision
or out of reach at the object’s goal poses. In this case,
a number of temporary places (i.e., non-goal places) are
needed. Our regrasp planner (Alg. 1) extends that of [2] to
handle multiple goals for multiple objects, arbitrary additive
costs, and discrete grasp/place sampling. Related planners
(e.g, [3], [11], [12], [13], [15]) could also have been adapted
to the purpose: the main point is to incorporate segmentation
and shape completion uncertainty into the cost.

Alg. 1 is run in parallel for each object that has at least
one goal pose. For NV steps (or until a timeout is reached),
additional grasps (with costs gc) and temporary placements
(with costs pc) are sampled, the regrasp graph is updated with
the new samples, and A* with a consistent heuristic finds



Input: Completed cloud C, per-point uncertainties U,
goal poses and costs {(7, ¢); }?ill, and
costLowerBound.

1 RG + ||
2 fori+—1,...,N do
3 | G,gc + SampleGrasps(C,U)
P, pc + SampleTemporaryPlaces(C, U)
RG + UpdateRegraspGraph(RG,
{(T’ 0)7}?5311’ G, gc, P, pC)
6 plan, cost < A*(RG)
7 if cost < costLowerBound then break
8 end

9 return plan
Algorithm 1: Regrasp planner: run for each object. If using

MC, replace U with samples of the object’s shape.

4
5

an optimal pick-place sequence, given the current samples.
Grasps that are force-closure and temporary places that are
stable, w.r.t. the completed cloud, are randomly sampled.
The regrasp graph is represented by a matrix where rows
refer to grasps and columns refer to places. When the object
has been grasped, column changes are allowed to switch the
object’s placement, and when the object has been placed,
row changes are allowed to switch grasps. Matrix values are
the sum of the corresponding grasp and place costs if the
grasp/place combination is feasible (i.e., there is a collision-
free IK solution) and infinity otherwise.

It is desirable to choose grasps that fix the actual object
in the effector as the arm moves and temporary places that,
when the effector releases the object, the object rests stably.
This way, the pick-place plan will execute predictably. For
the case of a parallel-jaw gripper, an antipodal grasp® will
fix the object (i.e., it is force-closure [34] p. 233). For the
case of a fixed, horizontal support surface, conditions for
a stable placement are given in [2]. While it is possible a
goal placement can be achieved without antipodal grasps and
stable placements, the outcome is more difficult to model and
predict, so we conservatively try to avoid this situation.

A. Maximize probability of regrasp plan execution success

The aim is to choose a regrasp plan that maximizes the
joint probability each grasp is antipodal and each temporary
place is stable, i.e., maximize Eq. 1, where G; is the event
the ith grasp is antipodal, P; is the event the ith place is
stable, and m is total number of picks and places. Assuming
each grasp/place is independent of previous steps in the plan,
we arrive at Eq. 23, Taking the log and abbreviating Pr(G})
as g; and Pr(P;) as p; yields Eq. 3.

2 A parallel-jaw gripper forms an antipodal grasp on an object iff the line
connecting the contact points lies inside both friction cones ([34] p. 233).

3 Assuming knowledge that a previous grasp/place was successful does
not decrease the joint probability of success, Eq. 2 is a lower bound.

Pr(Gl,Pl,...7Gm/2) (1)
=Pr(Gz|G1, Pr,...,Pp_1)- Pr(P1|G1)Pr(G1)
~ Pr(G,/2) - - - Pr(Pp)Pr(G1) 2)

m/2 m/2—1

log [Pr(G1, ..., Gypa)] = Y log(gi) + > log(pi) (3)
i=1 i=1

1) Multi-criterion cost: Negating Eq. 3 results in a non-
negative cost. We account for additional factors in the regrasp
planning problem, such as plan length and task cost, by
adding these as objectives to a multi-criterion optimization
problem ([35] pp. 181-184). Scalarization results in the cost
(4), where wy,...,ws € Ry are trade-off parameters and
¢ € R is the task cost associated with the goal placement
(from the arrangement planner). This is the cost used by our
regrasp planner. To complete the description, we next look
at different ways of estimating g; and p;.

m/2 m/2—1
wWym — woy Z log(g;) — w3 Z log(p;) + wae  (4)
i=1 i=1

B. Probability grasps are antipodal and places are stable

1) Grasp quality (GQ): One way to estimate g; is via a
measure of “grasp quality” evaluated on the nominal shape
completion. For example, consider a distance measuring how
far the line connecting the contact points is from the centers
of both friction cones (cf. [34] pp. 233). Intuitively, if the
line between contacts is near the edge of either friction cone,
small errors in shape completion are likely to result in an
incorrect antipodal assessment (see footnote 2).

To place this idea into our probabilistic framework, sup-
pose for each grasp contact j = 1,2, the angle 0; € [0, 7]
between the surface normal (i.e., the center of the friction
cone) n; and the normalized, outward-pointing vector b;
connecting the contacts is distributed according to a truncated
normal distribution with mode p; and scale o, where p;
(Eq. 5) is derived from the nominal object shape and o
is given. The probability b; lies in the friction cone is
then Pr(f; < 6ma) = F(Omaxipj,0,0,7), where F is
the cumulative density function of the truncated normal
distribution and 6y,,x is half the angle of the friction cone.
We make the simplifying assumption that this probability is
independent between contacts, giving Eq. 6.

w; = arccos(b; - n;) )
2
9i = | [ F(Omax; 115, 0,0,7) 6)
j=1

The effect of the GQ estimator is simply to choose grasps
that are as centered as possible in both friction cones, given
the estimated object shape. The scale parameter o makes
the trade-off between regrasp plan length and centering of
grasps: small o prefers centered grasps over short plans and
large o prefers short plans over centered grasps.



2) Monte Carlo (MC): Another approach is to estimate
g; and p; via segmentation and completion samples. Sup-
pose we are given a mechanism for sampling from the
distribution Pr(C;|C), for i = 1,...,ngyj, Where C; is a
random variable over object shapes and C' is the input
point cloud. Such a mechanism could be implemented as
an ensemble of segmentation and completion networks, e.g.,
multiple networks trained with different weight initializations
or datasets. Or, this could be implemented as a pair of
networks with randomized components, e.g., dropout (as in
[26] for grasping under uncertainty) or VAEs. Or, the option
used here for sake of comparison to the CU method, one
could use the point-wise uncertainty outputs of the networks
(U in Section IV-A), as follows.

For segmentation, the object ID for each point is inde-
pendently sampled from the distributions given by the seg-
mentation matrix. (To reduce noise, we only sample points
whose U-value is below a threshold.) For shape completion,
assuming the ith point’s offset from the nominal point is i.i.d.
~ N(0, of), o; is given by Eq. 7, since Uj; is the (estimated)
probability the point is offset no more than 5. To summarize,
to sample a shape: (a) sample a segmentation point-wise
using the segmentation mask and (b) compute the shape
completion given this segmentation, and then, for each point,
(c) sample a direction uniformly at random and (d) sample
an offset along this direction from a normal distribution with
0 mean and standard deviation given by Eq. 7.

p
i = =1~ 7)
V2erf (1) (
Regardless of implementation, ¢; is estimated as

#antipodal /N and p; is estimated as #stable/N where N is
the number of shape samples and #antipodal is the number
shapes for which the ¢th grasp is antipodal and #stable is the
number of shapes for which the ith place is stable.

3) Contact Uncertainty (CU): Computing g; and p; using
an MC method is expensive if N is large. This motivates
using the network uncertainties directly. The basic idea is
to penalize grasp/place contact points with low U-values.
Formally, suppose for the 7th point, the segmentation network
estimates Pr(S;), where S; is the event the ith point is
segmented correctly. Suppose the shape completion network
estimates Pr({/;|.S;) where U; is the event the 4th point is
within Euclidean distance [ of a ground truth point. Assum-
ing whether a grasp (place) is antipodal (stable) depends only
on whether each contact point is correctly segmented and is
within Euclidean distance (3 of the nearest ground truth point,
and assuming independence between contacts, g; and p; are
estimated via Eq. 8 and 9, where contacts are explained in
Fig. 3.

gi ~ Pr(Uy|S))Pr(S))Pr(Us |S, )Pr(S,) )

.

=1

AN

Fig. 3. Left. For an antipodal grasp (shown in red), there are at least 2
contact points, [ and r. Right. For a stable placement on a flat surface, there
are at least 3 contact points, 1, t2, and ¢3. Colors represent estimates of
Pr(U;|S;)Pr(S;), where brighter colors represent higher probabilities.

The uncertainty values from PCN (Section IV-A) are used
to estimate Pr(14;|S;). Estimating Pr(.S;) from the uncertainty
values from BoNet (Section IV-A) is less straight-forward
since, for each completed point we must associate a cor-
responding segmentation uncertainty. A heuristic we found
that works well for this is, for each point in the completed
cloud, take the nearest neighbor in the segmented cloud.

4) Success Prediction (SP): g; and p; can also be esti-
mated with a neural network. The encoding of grasp/place
as input to the neural network is an important design choice
that affects performance [36]. Here, we encode grasps as the
points from the shape completion, C, inside the gripper’s
closing region w.r.t. the gripper’s reference frame (cf. [37]).
For places, the completed cloud, C, is transformed to the
place pose and translated with the bottom-center of the cloud
at the origin. For network architecture, we use PCN with a
single output with sigmoid activation, trained with the binary,
cross-entropy loss. Training data is generated in simulation,
so labeling ground truth antipodal/stable is straight-forward.

VI. EXPERIMENTS
A. Setup

We evaluated the proposed system in the environment
shown in Fig. 4, left, consisting of a UR5 arm, Robotiq 85
gripper, and Structure depth sensor on the following tasks:

1) Block arrangement. Arrange 5 rectangular blocks
from tallest to shortest according to the longest edge
(reminiscent of “blocks world” [38]).

2) Bottle arrangement. Place 2 bottles upright onto 2
coasters (from our prior work [5], [6]).

3) Bin packing. Place 6 objects into a box minimizing
packing height. This is known as the 3D irregular-
shaped open dimension problem [39]. This is easer to
evaluate than smallest bin size [40] in the real world.

In each case, same-category novel objects were tested.
Novel-category objects were also tested for bin packing.
Arrangement planners were designed separately for each
task, without considering uncertainty. For brevity, we pri-
marily discuss results for the most difficult task — bin
packing. Similar trends are observed in the other tasks, but
perception is more accurate, reducing the urgency to account
for uncertainty.



Fig. 4. Left. Experimental setup. Right. 34 same-category novel objects
for real-world packing experiments.

B. Simulation results

The environment was simulated by OpenRAVE [41] using
3DNet objects [42]. Train/Test-1 categories included boat,
bottle, box, car, dinosaur, mug, and wine glass. Test-2 (novel)
categories included airplane, bowl, and stapler. Scenes were
initialized without objects touching, as segmentation oth-
erwise performs poorly. Grasps succeeded if (a) exactly 1
object intersected the hand closing region, (b) the antipodal
condition with 24° friction cone was met, and (b) the robot
was collision-free. These conditions are conservative relative
to reality, e.g., as the hand closes or the arm moves, an object
in a non-antipodal grasp may rotate but still remain in the
gripper and arrive near the goal. Unstable temporary places
were recored, but otherwise ignored, because, in reality
they never resulted in arrangement failures but required
replanning. In Tables I and II, “Place Execution Success”
refers to the proportion of successfully executed regrasp
plans and “Packing Height of 5” refers to the end-of-episode
packing height when 5/6 objects were placed.

1) Perception ablation study: The purpose of this study is
to evaluate the perceptual modules in terms of pick-place per-
formance and to quantify the potential benefit of accounting
for uncertainty. We evaluate performance with ground truth
perception (GT Seg. & Comp.), imperfect completion (GT
Seg.), imperfect segmentation and completion (Percep.), and
without shape completion (GT Seg. & No Comp.) Step and
task costs were used, i.e., w1 = wys = 1 and wy = w3 = 0 in
(4), where the task cost, ¢, was the estimated final packing
height in centimeters.

The results (shown in Table I) are mostly as expected. A
clear drop in performance is observed as perception becomes
imperfect (down 18% for imperfect completion and another
4% for imperfect segmentation). A slight drop is noticeable
from train to test objects. Without shape completion, plan-
ning is crippled (not shown in table, regrasp plan found rate
drops from 94.1% for Percep. Test-1 to just 10.0%). A similar
but more extreme trend is seen with Test-2.

2) Regrasp cost comparison: We compare four different
ways of evaluating probability grasps (places) are antipodal
(stable) (Section V-B) to two baselines — “No Cost”, which
takes the first regrasp plan found, and “Step Cost”, which
includes the step cost term only (w1 = 1 in (4)). The step cost
appears almost exclusively in the regrasping literature (e.g.,

[2], [3], [11], [14]). For simplicity, task cost is not included
in this evaluation, but the 1st step of 16 packing solutions
(top-2 solutions on each of 8 threads after 1 minute) are used
as goal poses. “GQ + MC” refers to the case where GQ and
MC costs are summed together.

Results for bin packing are shown in Table II. For Test-
1, GQ+MC has the best grasp performance while SP has
the best temporary place stability rate. GQ+MC significantly
outperforms GQ (for 1-sided, same-variance, unpaired ¢-test,
p = 0.0092 for execution success and p = 0.0073 for grasp
antipodal), suggesting the network’s uncertainty estimates
are useful for planning. For Test-2, SP has the best grasp
performance (vs. step cost, p = 0.023 for execution success
and p = 0.0023 for grasp antipodal), and GQ+MC has
the best temporary place stability rate. It was disappointing
that CU did not significantly outperform the baselines for
either dataset: it is apparently not sufficient to account for
uncertainty only at the contact points. Also, while GQ has
a significantly higher antipodal rate than the baselines for
Test-1, the same is not true for Test-2, suggesting the GQ
method can tolerate only small errors in shape completion.

For bin packing, we did not see a significant improvement
for place stability over the step cost, but this is because
regrasps were rare with the step cost, obscuring the sig-
nificance of the results. To better test place stability, we
designed a scenario with the same Test-1 objects used in
bin packing, but where there is no bin and, for each episode,
1 of 5 objects, each with exactly 1 goal pose, has to be
placed. The result is shown in Table III. In this case, MC,
CU, and SP methods have significantly higher temporary
place stability rates than no cost (which happened to do
better than step cost) (p = 0.010, 0.005, and 2.9 x 1019,
respectively). Interestingly, unlike with packing, CU has a
significantly higher place success rate compared to step cost
(p = 1.3 x 107?), so all methods significantly outperformed
the baselines in terms of place success rate for the canonical
task (for SP vs. step cost, p = 2.4 x 10733).

C. Real robot results

The purpose of the real-world experiments is to (a) see
if the perceptual components, trained with simulated data,
work well with real sensor data and (b) verify the importance
of uncertainty seen in simulation results. To answer part
(a), no domain transfer was needed for bin packing. For
blocks and bottles, BoNet (but not PCN) severely overfit
to simulation data. This problem was mitigated by using
the network trained for bin packing for blocks and adding
simulated sensor noise for bottles. For part (b), results for
bin packing with step and MC cost are shown in Table IV.
Although the MC method appears to be doing better, the gap
is relatively small (4.1%). This may be because many non-
antipodal grasps still succeed in placing the object into the
bin, as we see the grasp success rates are higher in reality.
An example packing sequence and a regrasp with blocks are
shown in Fig. 5.

We also compare bottle arrangement performance to our
previous method, which uses RL to learn a pick-place policy



PERCEPTION ABLATION STUDY FOR PACKING. SHOWING AVERAGE + STANDARD ERROR OVER 200 EPISODES.

GT Seg. & Comp. | GT Seg. (Train) | GT Seg. (Test-1) | Percep. (Train) | Percep. (Test-1) | GT Seg. & No Comp.
Place Execution Success 0.929 + 0.008 0.767 £ 0.013 0.747 £ 0.013 0.718 £ 0.014 0.710 £ 0.014 0.508 + 0.046
Grasp Antipodal 0.931 £ 0.007 0.779 £ 0.013 0.761 £ 0.013 0.755 £ 0.013 0.736 £+ 0.013 0.563 £ 0.047
Temporary Place Stable 1.000 £ 0.000 0.769 £ 0.122 1.000 £ 0.000 0.828 + 0.071 0.826 + 0.081 0.500 £ 0.500
Packing height of 5 (cm) 12.27 £ 0.315 12.36 + 0.331 12.18 £ 0.306 12.37 + 0.447 12.44 £ 0.307 -
Regrasp planning time (s) 35.62 £+ 1.103 38.46 + 1.115 38.68 = 1.141 35.76 + 1.059 35.05 = 1.077 15.86 £+ 1.482
TABLE I

No Cost Step Cost GQ MC MC + GQ CU SP
Place Execution Success 0.651 4+ 0.013 | 0.725 + 0.012 | 0.748 + 0.012 | 0.756 + 0.012 | 0.787 £ 0.011 | 0.712 £ 0.013 | 0.779 &£ 0.012
Grasp Antipodal 0.737 &£ 0.011 | 0.751 4+ 0.012 | 0.794 + 0.011 | 0.811 + 0.011 | 0.830 + 0.010 | 0.743 £ 0.012 | 0.823 &£ 0.010
Temporary Place Stable 0.784 + 0.024 | 0.857 + 0.097 | 0.845 + 0.030 | 0.904 + 0.028 | 0.883 4+ 0.031 | 0.848 £ 0.054 | 0.959 £ 0.018
Plan Length 2.665 £ 0.031 | 2.038 £ 0.008 | 2.293 £+ 0.021 | 2.222 £ 0.019 | 2.201 £ 0.018 | 2.105 £ 0.013 | 2.233 £ 0.019
Regrasp planning time (s) | 4.904 + 0.230 | 7.201 + 0.393 | 84.56 + 0.827 | 90.10 £+ 0.892 | 126.5 £+ 1.029 | 72.00 + 0.835 | 86.61 £ 1.040
Place Execution Success 0412 + 0.017 | 0417 &£ 0.017 | 0.395 + 0.017 | 0.458 + 0.017 | 0.422 4+ 0.017 | 0.429 4+ 0.017 | 0.465 £ 0.017
Grasp Antipodal 0.484 + 0.017 | 0.449 + 0.017 | 0.450 & 0.017 | 0.504 &+ 0.017 | 0.472 + 0.017 | 0.457 &£ 0.017 | 0.518 & 0.017
Temporary Place Stable 0.704 + 0.051 | 0.714 + 0.125 | 0.533 4+ 0.075 | 0.750 4+ 0.083 | 0.800 &+ 0.082 | 0.778 4+ 0.101 | 0.686 % 0.080
Plan Length 2.514 £ 0.036 | 2.094 & 0.015 | 2.247 4 0.024 | 2.167 £ 0.020 | 2.150 £ 0.019 | 2.118 £ 0.017 | 2.193 £ 0.022
Regrasp planning time (s) | 6.030 = 0.237 | 8.484 + 0.408 | 51.61 £ 1.113 | 58.56 &+ 1.064 | 71.38 £ 1.333 | 50.92 + 1.177 | 53.35 £ 1.159
TABLE 11

COST COMPARISON FOR BIN PACKING FOR (TOP) TEST-1 AND (BOTTOM) TEST-2. SHOWING AVERAGE = STANDARD ERROR OVER 230 EPISODES

FOR TEST-1 AND 200 EPISODES FOR TEST-2.

No Cost Step Cost GQ MC GQ + MC CU SP
Place Success 0.725 £ 0.010 | 0.775 £ 0.009 | 0.854 £+ 0.008 | 0.849 4 0.008 | 0.860 = 0.008 | 0.828 £ 0.008 | 0.911 £ 0.006
Grasp Antipodal 0.833 £ 0.007 | 0.824 £ 0.009 | 0.906 & 0.006 | 0.902 &+ 0.006 | 0.908 + 0.006 | 0.857 £ 0.008 | 0.951 £ 0.005
Temporary Place Stable 0.785 £ 0.015 | 0.623 £ 0.067 | 0.700 & 0.031 | 0.852 4 0.022 | 0.784 £ 0.030 | 0.885 £ 0.029 | 0.967 £ 0.012
Plan Length 3.061 + 0.029 | 2.079 £ 0.009 | 2.273 £ 0.016 | 2.286 & 0.016 | 2.220 4+ 0.014 | 2.157 + 0.013 | 2.239 + 0.015
Regrasp planning time (s) | 2.462 £ 0.061 | 6.413 £ 0.353 | 62.19 £ 0.326 | 117.6 £ 0.724 | 121.1 £ 0.577 | 54.88 &+ 0.366 | 61.54 &+ 0.900
TABLE III
COST COMPARISON FOR CANONICAL TASK FOR TEST-1. SHOWING AVERAGE + STANDARD ERROR OVER 2, 000 EPISODES.
Step MC Shape Completion HSA [6]
Place Success Rate 0.867 £+ 0.031 | 0.908 £ 0.026 Number of Objects Placed 1.800 £ 0.074 1.667 £ 0.088
Grasp Success Rate 0.908 £ 0.025 | 0.940 £ 0.021 Task Success Rate 0.800 £+ 0.074 0.667 £ 0.088
Number of Grasp Attempts 131 134 Grasp Success Rate 0.948 + 0.029 0.983 £+ 0.017
Number of Regrasps 11 14 Place Success Rate 1.000 £ 0.000 0.900 £ 0.040
Packing height of 5 (cm) 74 £ 1.0 79 £ 1.2 TABLE V
TABLE IV

PACKING PERFORMANCE ON THE REAL ROBOT. SHOWING AVERAGE +
STANDARD ERROR OVER 20 EPISODES, EACH WITH 6 OBJECTS.

[6]. Many of the same bottles as before were included, but
4/15 of them were more challenging. Two of the bottles
were difficult to distinguish orientation (size of tops near size
of bottoms), and two were near the 8.5 cm gripper width.
Results are shown in Table V. With the proposed method, all
places were correct. Only the grasp success rate is lower than
before, but all 3 grasp failures were with the wider bottles.
Overall, we conclude the pipelined method performs much
better (80% vs. 67% task success rate).

VII. CONCLUSION

These results demonstrate that object instance segmenta-
tion and shape completion are accurate enough to enable
difficult pick-place tasks such as bin packing. However,
perceptual errors are still a major cause of failures. Some

BOTTLES PERFORMANCE FOR THE PROPOSED METHOD VERSUS [6].
SHOWING AVERAGE £ STANDARD ERROR OVER 30 EPISODES.

of these failures can be avoided by simply not grasping
or placing on object parts where uncertainty is high. We
formalize this idea with four different regrasp costs which
account for perceptual uncertainty, GQ, MC, CU, and SP.
We find SP or a combination of GQ and MC performs best
and is more robust than the classical step cost.

To guide future work, we note some important limitations
with the current system. First, the regrasp planner is much
slower when using a more sophisticated cost function than
the step cost. This is mainly due to having to sample plenty
of grasps and places, to improve the likelihood the plan
is executed successfully, without having a good stopping
criterion. Another issue is to identify under what conditions
the overall system (Fig. 1) is guaranteed to converge to a
goal arrangement if a feasible path to one exists. Finally,



Fig. 5. Top. Example packing sequence. Bottom. Example block arrangement sequence requiring regrasping.

integrating additional views to decrease uncertainty is an
important aspect that we do not examine here.

ACKNOWLEDGEMENTS

We thank Yuchen Xiao and Andreas ten Pas for reviewing
an early draft of this paper and Lawson Wong and Chris
Amato for discussions during early stages of this project.

REFERENCES

[1] M. Mason, “Toward robotic manipulation,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 1, pp. 1-28, 2018.

[2] P. Tournassoud, T. Lozano-Pérez, and E. Mazer, “Regrasping,” in [EEE
Int’l Conf. on Robotics and Automation, vol. 4, 1987, pp. 1924-1928.

[3] R. Alami, T. Siméon, and J.-P. Laumond, “A geometrical approach
to planning manipulation tasks. the case of discrete placements and
grasps,” in Int’l Symp. on Robotics Research. Cambridge, MA, USA:
MIT Press, 1991, pp. 453-463.

[4] M. Gualtieri, A. ten Pas, and R. Platt, “Pick and place without

geometric object models,” in IEEE Int’l Conf. on Robotics and
Automation, 2018.

[5] M. Gualtieri and R. Platt, “Learning 6-DoF grasping and pick-place
using attention focus,” in Proceedings of The 2nd Conference on Robot
Learning, ser. Proceedings of Machine Learning Research, vol. 87, Oct
2018, pp. 477-486.

[6] ——, “Learning manipulation skills via hierarchical spatial attention,”

IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1067-1078, 2020.

L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kPAM: Keypoint

affordances for category-level robotic manipulation,” in Int’l Symp. on

Robotics Research, 2019.

L. P. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting

in partially observable stochastic domains,” Artificial intelligence, vol.

101, no. 1-2, pp. 99-134, 1998.

L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion

planning in belief space,” The Int’l Journal of Robotics Research,

vol. 32, no. 9-10, pp. 1194-1227, 2013.

[10] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online planning
for target object search in clutter under partial observability,” in IEEE
Int’l Conf. on Robotics and Automation, 2019, pp. 8241-8247.

[11] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation planning
algorithms,” in Proceedings of the Workshop on Algorithmic Founda-
tions of Robotics. A. K. Peters, Ltd., 1995, pp. 109-125.

[12] C. Nielsen and L. Kavraki, “A two level fuzzy prm for manipulation
planning,” in IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems,
vol. 3, 2000, pp. 1716-1721.

[13] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The Int’l Journal
of Robotics Research, vol. 30, no. 6, pp. 678-698, 2011.

[14] W. Wan, H. Igawa, K. Harada, H. Onda, K. Nagata, and N. Yamanobe,
“A regrasp planning component for object reorientation,” Autonomous
Robots, vol. 43, no. 5, pp. 1101-1115, 2019.

[15] A. Krontiris and K. Bekris, “Dealing with difficult instances of object
rearrangement.” in Robotics: Science and Systems, 2015.

[7

—

[8

=

[9

—

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(291

(30]

[31]

[32]

Y. Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning to place new
objects,” in Int’l Conf. on Robotics and Automation, 2012, pp. 3088—
3095.

W. Gao and R. Tedrake, “kPAM-SC: Generalizable manipulation
planning using keypoint affordance and shape completion,” arXiv
preprint arXiv:1909.06980, 2019.

C. Mitash, R. Shome, B. Wen, A. Boularias, and K. Bekris, “Task-
driven perception and manipulation for constrained placement of
unknown objects,” IEEE Robotics and Automation Letters, vol. 5,
no. 4, pp. 5605-5612, 2020.

D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in Neural Information Processing Systems, 2010, pp. 2164—
2172.

B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasp-
ing with uncertainty in shape: Estimating lower bounds on achieving
force closure with zero-slip push grasps,” in Int’l Conf. on Robotics
and Automation. 1EEE, 2012, pp. 576-583.

K. Hsiao, M. Ciocarlie, and P. Brook, “Bayesian grasp planning,” in
ICRA Workshop on Mobile Manipulation, 2011.

S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in IEEE Int’l Conf. on
Robotics and Automation. 1EEE, 2011, pp. 2845-2850.

J. Mahler, S. Patil, B. Kehoe, J. van den Berg, M. Ciocarlie, P. Abbeel,
and K. Goldberg, “GP-GPIS-OPT: Grasp planning with shape uncer-
tainty using gaussian process implicit surfaces and sequential convex
programming,” in IEEE Int’l Conf. on Robotics and Automation.
IEEE, 2015, pp. 4919-4926.

M. Laskey, J. Mahler, Z. McCarthy, F. Pokorny, S. Patil, J. van den
Berg, D. Kragic, P. Abbeel, and K. Goldberg, “Multi-armed bandit
models for 2D grasp planning with uncertainty,” in /EEE Int’l Conf.
on Automation Science and Engineering. 1EEE, 2015, pp. 572-579.
M. Li, K. Hang, D. Kragic, and A. Billard, “Dexterous grasping under
shape uncertainty,” Robotics and Autonomous Systems, vol. 75, pp.
352-364, 2016.

J. Lundell, F. Verdoja, and V. Kyrki, “Robust grasp planning over
uncertain shape completions,” in IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems, 2019, pp. 1526-1532.

G. Wilfong, “Motion planning in the presence of movable obstacles,”
Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp.
131-150, 1991.

M. Morari and J. Lee, “Model predictive control: past, present and
future,” Computers & Chemical Engineering, vol. 23, no. 4-5, pp.
667-682, 1999.

B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and
N. Trigoni, “Learning object bounding boxes for 3D instance segmen-
tation on point clouds,” in Advances in Neural Information Processing
Systems, 2019, pp. 6737-6746.

W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “PCN: Point
completion network,” in Int’l Conf. on 3D Vision. 1EEE, 2018, pp.
728-737.

C. Qi, H. Su, K. Mo, and L. Guibas, “PointNet: Deep learning on point
sets for 3D classification and segmentation,” in Conf. on Computer
Vision and Pattern Recognition. 1EEE, 2017, pp. 652—660.

J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential



[33]

[34]
[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

convex optimization.” in Robotics: Science and Systems, vol. 9, no. 1,
2013, pp. 1-10.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The Int’l Journal of Robotics Research, vol. 30,
no. 7, pp. 846-894, 2011.

R. Murray, Z. Li, and S. Sastry, A mathematical introduction to robotic
manipulation. CRC press, 1994.

S. Boyd and L. Vandenberghe, Convex optimization. ~ Cambridge
university press, 2004.

M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in [EEE Int’l Conf. on Intelligent
Robots and Systems, 2016.

H. Liang, X. Ma, S. Li, M. Gorner, S. Tang, B. Fang, F. Sun, and
J. Zhang, “PointNetGPD: Detecting grasp configurations from point
sets,” in 2019 Int’l Conf. on Robotics and Automation. 1EEE, 2019,
pp. 3629-3635.

D. Chapman, “Penguins can make cake,” Al magazine, vol. 10, no. 4,
pp. 4545, 1989.

G. Wischer, H. Haufiner, and H. Schumann, “An improved typology
of cutting and packing problems,” European journal of operational
research, vol. 183, no. 3, pp. 1109-1130, 2007.

F. Wang and K. Hauser, “Stable bin packing of non-convex 3D objects
with a robot manipulator,” in Int’l Conf. on Robotics and Automation.
IEEE, 2019, pp. 8698-8704.

R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon Uni-
versity, 2010.

'W. Wohlkinger, A. Aldoma, R. Rusu, and M. Vincze, “3DNet: Large-
scale object class recognition from CAD models,” in /EEE Int’l Conf.
on Robotics and Automation, 2012, pp. 5384-5391.



