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Abstract— We propose a novel formulation of robotic pick
and place as a deep reinforcement learning (RL) problem.
Whereas most deep RL approaches to robotic manipulation
frame the problem in terms of low level states and actions,
we propose a more abstract formulation. In this formulation,
actions are target reach poses for the hand and states are a
history of such reaches. We show this approach can solve a
challenging class of pick-place and regrasping problems where
the exact geometry of the objects to be handled is unknown.
The only information our method requires is: 1) the sensor
perception available to the robot at test time; 2) prior knowledge
of the general class of objects for which the system was trained.
We evaluate our method using objects belonging to two different
categories, mugs and bottles, both in simulation and on real
hardware. Results show a major improvement relative to a
shape primitives baseline.

I. INTRODUCTION

Traditional approaches to pick-place and regrasping re-

quire precise estimates of the shape and pose of all relevant

objects [1], [2]. For example, consider the task of placing

a mug on a saucer. To solve this problem using traditional

techniques, it is necessary to plan a path in the combined

space of the mug pose, the saucer pose, and the manipulator

configuration. This requires the pose and shape of the mug

to be fully observable. Unfortunately, even when the exact

shape of the mug is known in advance, it can be hard to

estimate the mug’s pose precisely and track it during task

execution. The problem is more difficult in the more realistic

scenario where the exact shape of the mug is unknown.

Approaches based on deep RL are an alternative to the

model based approach described above [3]. Recent work

has shown that deep RL has the potential to alleviate some

of the perceptual challenges in manipulation. For example,

Levine et al. showed deep learning in conjunction with policy

gradient RL can learn a control policy expressed directly

in terms of sensed RGB images [4]. Not only does this

eliminate the need to develop a separate perceptual process

for estimating state, but it also simplifies the perceptual prob-

lem by enabling the system to focus on only the perceptual

information relevant to the specific manipulation task to be

solved. This, along with encoding actions using low level

robot commands (such as motor torque or Cartesian motion

commands [5], [4]), means the approach is quite flexible: a

variety of different manipulation behaviors can be learned

by varying only the reward function.

Unfortunately, deep RL approaches to robotics have an

important weakness. While the convolutional layers of a deep
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Fig. 1. Pick-place problem considered in this paper. The robot must grasp
and place an object in a desired pose without prior knowledge of its shape.

network facilitate generalization over horizontal and vertical

position in an image, they do not facilitate generalization

over depth or in/out of plane orientation, i.e., the full 6-

DOF pose space in which robots operate. This is a significant

problem for robotics because deep RL methods must learn

policies for many different relative poses between the robot

and the objects in the world. Not only is this inefficient,

but it detracts from the ability of the deep network to learn

other things like policies that generalize well to novel object

geometries.

We propose a new method of structuring robotic pick-place

and regrasping tasks as a deep RL problem, i.e., as a Markov

decision process (MDP). Our key idea is to formulate the

problem using reach actions where the set of target poses that

can be reached using these actions is sampled on each time

step. Each reach action is represented by a descriptor that

encodes the volumetric appearance of the scene in the local

vicinity of the sampled reach target. In order to formulate the

MDP, we note our problem is actually a partially observable

MDP (POMDP) where object shape and pose are hidden state

and the images or point clouds produced by the sensors are

the observations. In order to solve this problem as an MDP,

we encode belief state as a short history of recently taken

reach actions expressed using the volumetric descriptors used

to encode the reach action.

As a result of these innovations, our method is able to

learn policies that work for novel objects. For example, we

show that our system can learn to grasp novel mugs (for

which prior geometric models are not available) from a pile

of clutter and place them upright on a shelf as in Figure 1.

The same system can be trained to perform a similar task for

other classes of objects, such as bottles, simply by retraining.

Our system can also learn policies for performing complex

regrasping operations in order to achieve a desired object

pose. As far as we know, this is the first system described in

the literature that has been demonstrated to accomplish the

above without constructing or matching against geometric

models of the specific objects involved.



II. RELATED WORK

One early approach to manipulation of unknown objects

is based on shape primitives. Miller et al. explored this in

the context of grasp synthesis [6]. Others have extended

these ideas to segmentation and manipulation problems [7],

[8], [9]. These methods have difficulty when the objects

are not approximately cylindrical or cuboid and when the

objects cannot be easily segmented. Our method performs

much better than a cylinder-based shape primitives method,

even when the objects involved (bottles and mugs) are nearly

cylindrical.

Another approach to manipulating unknown objects is to

estimate the object shape from a recent history of sensor

feedback. For example, Dragiev and Toussaint explore an

approach that models the implicit shape of an object as a

Gaussian process [10]. Mahler et al. do something similar

for the purposes of grasping while incorporating tactile

feedback [11]. These methods can run into trouble when

there is not enough data to fit the implicit shape with high

confidence. Both of the above approaches can be viewed as

ways of estimating object shape and pose in order to facilitate

traditional configuration space planning. The problem of

object pose and shape estimation given various amounts of

prior data remains an active area of research [12], [13], [14].

Recently, there has been much advancement in grasping

novel objects. Bohg et al. provide a survey [15]. Most of

these methods are trained in a supervised fashion to predict

whether a grasp is stable or not. The present paper can be

viewed as extending our prior work in grasp detection [16],

[17] to pick-and-place and regrasping.

The approach nearest to ours is by Jiang et al. who propose

a method for placing new objects in new place areas without

explicitly estimating the object’s pose [18]. Their placements

are sampled instead of, as in our case, fixed. However, they

do not jointly reason about the grasp and the place – the grasp

is predefined. This is an important drawback because the

type of placement that is desired often has implications on

how the grasp should be performed. Their learning method

also relies on segmenting the object, segmenting the place

area, hand-picked features, and human annotation for place

appropriateness.

RL has long been studied for use in robot control. Kober

et al. survey robotics applications that use RL [19]. Since

this survey, deep RL has become prominent in robotic

manipulation [4], [5], [20]. These methods operate on the

motor torque or Cartesian motion command level of the robot

controller whereas ours operates at a higher level.

III. PROBLEM STATEMENT

We consider the problem of grasping, regrasping, and

placing a novel object in a desired pose using a robotic arm

equipped with a simple gripper. We assume this is a first-

order kinematic system such that state is fully described by

the geometry of the environment. Also, we assume the agent

can act only by executing parameterized reach actions.

The problem can be expressed as an MDP as follows.

Let Γ ⊆ R
3 denote the portion of work space that is free

of obstacles. For simplicity of exposition, suppose that it

is known that the free space contains a finite set of N

rigid body objects, O. Let Λ denote a parameter space

that describes the space of all possible object shapes. Let

ξ(o) ∈ Λ × SE(3) denote the shape and pose of object

o ∈ O. Let H ∈ SE(3) denote the current pose of the

robot hand. The state of the system is fully described by the

pose of the hand and the shape and pose of all N objects:

s = (H, ξ(o1), . . . , ξ(oN )) ∈ S = SE(3)× {Λ× SE(3)}N .

We will assume the robot can act only by execut-

ing the following parameterized, pre-programmed actions:

REACH-GRASP(T ) where T ∈ SE(3) and REACH-PLACE(t)
where t ∈ PLACE ⊂ N belongs to a discrete set of pre-

programmed reach poses expressed relative to the robot

base frame. The total set of available actions is then A =
SE(3) ∪ PLACE.

Given a goal set G ⊂ S, we define a reward function

to be 1 when a goal state is reached and 0 otherwise. The

episode terminates either when a goal state is reached or

after a maximum number of actions. Finally, we assume

access to a simulator that models the effects of an action

a ∈ A taken from state s ∈ S. For stochastic systems, we

assume the simulator draws a sample from the distribution

of possible outcomes of an action. Given this formalization

of the manipulation problem, we might express it as an MDP

M = (S,A, T , r) with state-action space S × A, unknown

but stationary transition dynamics T , and reward function

r(s, a) = 1 if s ∈ G and r(s, a) = 0 otherwise.

A key assumption in this paper is object shape and

pose are not observed directly and therefore the MDP

defined above is not fully observed. Instead, it is only

possible to observe a volumetric occupancy grid, C(x) ∈
{OCCUPIED, FREE, UNKNOWN} where x ∈ Γ̄ ⊂ Γ is a

volumetric grid over Γ. We assume that C is populated based

on depth sensor data obtained during a single time step. (As

such, there may be a large number of UNKNOWN cells.)

Given the above assumptions, the manipulation problem can

be expressed as a POMDP P = (S,A, T , r, C,O), where

O : S×A×C → R is the observation probabilities, assumed

to be unknown. The goal of this paper is to find policies that

maximize the expected sum of discounted rewards over the

episode, i.e., reach the goal state in a minimum number of

actions.

IV. APPROACH

Solving the POMDP P using general purpose belief space

solvers (e.g. [21]) is infeasible because the underlying MDP

M is far too large to solve even if it were fully observed.

Instead we propose what we call the descriptor-based MDP

that encodes REACH-GRASP actions using a special type

of descriptor and encodes belief state implicitly as a short

history of states and actions.

A. The REACH-GRASP Descriptor

The REACH-GRASP descriptor is a key element of our

state and action representation, based on the grasp descriptor

developed in our prior work [16], [17]. It encodes the



Fig. 2. Examples of the grasp descriptor for the three grasps shown on
the left. The right column shows the cuboid associated with each grasp.
The middle column shows the descriptor – the visible and occluded points
contained within the cuboid.

relative pose between a robot hand and an object in terms

of the portion of the volumetric occupancy grid in the

vicinity of a prospective grasp. Let C = {x ∈ Γ̄|C(x) =
OCCUPIED} denote the voxelized point cloud correspond-

ing to the occupancy grid C. Then, the REACH-GRASP

descriptor at pose T ∈ SE(3) is D(C, T ) = truncγ(TC),
where TC is the point cloud in the grasp reference frame,

and where truncγ(X) denotes the elements of X that lie

within a cuboid centered at the origin with dimensions

γ = (γx, γy, γz). This is illustrated in Figure 2. The middle

column shows the REACH-GRASP descriptors corresponding

to the three grasps of the object shown on the left. A

REACH-GRASP descriptor is encoded to the deep network

as an image where the points are projected onto planes

orthogonal to three different viewing directions and compiled

into a single stacked image, I(D), as described in [16], [17].

B. The Descriptor-Based MDP

Our key idea is to find goal-reaching solutions to the

POMDP P by reformulating it as an MDP with descriptor-

based states and actions. Specifically, we: 1) reparameterize

the REACH-GRASP action using REACH-GRASP descriptors

rather than 6-DOF poses; 2) redefine state as a history of the

last two actions visited.

Action representation: Recall that the underlying MDP

defines two types of actions: REACH-GRASP(T ) where T

denotes the pose of the grasp and REACH-PLACE(t) where

t ∈ PLACE and PLACE denotes a finite set of place poses.

Since RL in a continuous action space can be challenging,

we approximate the parameter space of REACH-GRASP by

sampling. That is, we sample a set of m candidate poses for

REACH-GRASP: T1, . . . , Tm ∈ SE(3). In principle, we can

use any sampling method. However, since REACH-GRASP is

intended to reach toward grasp configurations, we use grasp

pose detection (GPD) [16], [17] to generate the samples.

Each of the candidate poses generated by GPD is predicted

to be a pose from which closing the robot hand is expected to

result in a grasp (although the grasp could be of any object).

Since we are sampling candidate parameters for

REACH-GRASP, we need a way to encode these choices

to the action-value function. Normally, in RL, the agent

has access to a fixed set of action choices where each

choice always results in the same distribution of outcomes.

However, since we are now sampling actions, this is no

longer the case, and we need to encode actions to the

action-value function differently. In this paper, we encode

each target pose candidate for REACH-GRASP by the cor-

responding REACH-GRASP descriptor, Di = D(C, Ti), i ∈
[1,m]. Essentially, the descriptor encodes each target pose

candidate by the image describing what the point cloud

nearby the target pose looks like. The total action set

consists of the set of descriptors corresponding to sampled

reach-grasps, REACH-GRASP(D(C, Ti)), i ∈ [1,m], and the

discrete set of reach-places adopted from the underlying

POMDP, REACH-PLACE(i), i ∈ PLACE: A = [1,m]∪PLACE.

Fig. 3. The descriptor-based MDP. States on the right are those where an
object is grasped. All other states are on the left.

State representation: We encode state as the history of

the M most recent reach actions where REACH-GRASP

actions are represented using the corresponding descriptors.

In all of our experiments, M ≤ 2. Figure 3 illustrates the

resulting state-action space. The set of blue circles on the

right labeled “Space of all grasp descriptors” denotes the

set of states where an object has been grasped. This is a

continuous space of states equal to the set of REACH-GRASP

descriptors resulting from the most recent REACH-GRASP

action, {truncγ(C)|C ⊂ Γ̄}. The set of blue circles on the

left labeled “Space of object placements” represents the set

of states where an object has been placed somewhere in



the environment. These states are encoded as the history of

the two most recent reach actions: the REACH-PLACE action

taken on the last time step and the descriptor that encodes the

REACH-GRASP action taken two time steps ago. All together,

a state in this new MDP is a point in S = {truncγ(C)|C ⊂
Γ̄}×PLACE. The state labeled “Goal!” in Figure 3 denotes an

absorbing state where the object has been placed correctly,

and the state labeled “Fell over!” denotes an absorbing state

where the object has been placed incorrectly. When the agent

reaches either of these states, it obtains a final reward and

the episode ends.

Reward: Our agent obtains a reward of +1 when it reaches a

placement state that satisfies the desired problem constraints,

and otherwise, it obtains zero reward.

C. The Simulator

Deep RL requires such an enormous amount of experience

that it is difficult to learn control policies on real robotic

hardware without spending months or years in training [5],

[4]. As a result, learning in simulation is basically a re-

quirement. Fortunately, our formulation of the manipula-

tion problem in terms of pre-programmed, parameterized

actions simplifies the simulations. Instead of needing to

simulate arbitrary contact interactions, we only need a mech-

anism for simulating the grasp that results from executing

REACH-GRASP(T ) and the object placement that results from

executing REACH-PLACE(t). The former can be simulated

by evaluating standard grasp quality metrics [22]. The later

can be simulated by evaluating sufficient conditions to de-

termine whether an object will fall over given the executed

placement. Both are easy to evaluate in OpenRAVE [23], the

simulator used in this work.

D. The Action-Value Function

We approximate the action-value function using the con-

volutional neural network (CNN) shown in Figure 4. The

input is an encoding of the state and the action, and the

output is a scalar, real value representing the value of that

state-action pair. This structure is slightly different than that

used in DQN [3] where the network has a number of outputs

equal to the number of actions. Here, the fact that our

MDP uses sampled reach actions means that we must take

action as an input to the network. The action component

of the input is comprised of the REACH-GRASP descriptor

(encoded as a 60 × 60 × 12 stacked image as described

in Section IV-A) denoting the REACH-GRASP parameter

and a one-hot vector denoting the REACH-PLACE parameter.

When the agent selects REACH-GRASP, the grasp descriptor

is populated and the place vector is set to zero. When a

REACH-PLACE is selected, the grasp descriptor is set to zero

and the place vector is populated.

The state component of the input is also comprised of a

REACH-GRASP descriptor and a place vector. However, here

these two parameters encode the recent history of actions

taken (Section IV-B). After executing a grasp action, the

grasp descriptor component of state is set to a stored version

of the descriptor of the selected grasp and the place vector

is set to zero. After executing a place action, the grasp

descriptor retains the selected grasp and the place component

is set to the just-executed place command, thereby implicitly

encoding the resulting pose of the object following the place

action. Each grasp image (both in the action input and the

state input) is processed by a CNN similar to LeNet [24],

except the output has 100 hidden nodes instead of 10.

These outputs, together with the place information, are then

concatenated and passed into two 60-unit fully connected,

inner product (IP) layers, each followed by rectifier linear

units (ReLU). After this there is one more inner product to

produce the scalar output.

Fig. 4. Convolutional neural network architecture used to encode the action-
value function, i.e., the Q-function.

E. Learning Algorithm

Our learning algorithm is shown in Algorithm 1. This

is similar to standard DQN [3] with a couple of differ-

ences. First, we use a variant of Sarsa [25] rather than Q-

learning because the large action branching factor makes

the maxa∈A Q(s, a) in Q-learning expensive to evaluate and

because Sarsa is known to perform slightly better on non-

Markov problems. Second, we do not run a single stochastic

gradient descent (SGD) step after each experience. Instead,

we collect nEpisodes of experience before labeling the expe-

rience replay database using the most recent neural network

weights. Every nEpisodes additional experiences, we run

nIterations of SGD using Caffe [26]. For the experiments in

this paper, the learning algorithm is run only in simulation;

although it could be used to fine-tune the network weights

on the actual hardware.

V. EXPERIMENTS IN SIMULATION

We performed experiments in simulation to evaluate how

well our approach performs on pick-place and regrasping

problems with novel objects. To do so, we obtained objects

belonging to two different categories for experimentation: a

set of 73 bottles and a set of 75 mugs – both in the form

of mesh models from 3DNet [27]. Both object sets were

partitioned into a 75%/25% train/test split.



Algorithm 1: Sarsa implementation for pick and place

for i← 1 : nTrainingRounds do

for j ← 1 : nEpisodes do

Choose random object(s) from training set

Place object(s) in a random configuration

Sense point cloud C and detect grasps G
s← initial state

a← Pick(.) (ǫ-greedy)

for t← 1 : maxTime do

(r, s′)← T (s, a)
if a = Pick(.) then

a′ ← Place(.) (ǫ-greedy)

else if a = Place(p)|p ∈ Ptemp then

Sense point cloud C and detect grasps G
a′ ← Pick(.) (ǫ-greedy)

else if a = Place(p)|p ∈ Pfinal then
a′ ← null

Add (s, a, r, s′, a′) to database

if s′ is terminal then break

a← a′; s← s′

Prune database if it is larger than maxExperiences

Label each database entry (s, a) with r+γQ(s′, a′)
Run Caffe for nIterations on database

A. Experimental Scenarios

There were three different experimental scenarios, two-

step-isolation, two-step-clutter, and multi-step-isolation. In

two-step-isolation, an object was selected at random from

the training set and placed in a random pose in isolation on a

tabletop. The goal condition was a right-side-up placement in

a particular position on a table. In this scenario, the agent was

only allowed to execute one grasp action followed by one

place action (hence the “two-step” label). Two-step-clutter

was the same as two-step-isolation except a set of seven

objects was selected at random from the same object category

and placed in random poses on a tabletop as if they had been

physically dumped onto the table.

The multi-step-isolation scenario was like two-step-

isolation except multiple picks/places were allowed for up to

10 actions (i.e., maxTime=10). Also, the goal condition was

more restricted: the object needed to be placed upright, inside

of a box rather than on a tabletop. Because the target pose

was in a box, it became impossible to successfully reach it

without grasping the object from the top before performing

the final place (see Figure 7, bottom). Because the object

could not always be grasped in the desired way initially, this

additional constraint on the goal state sometimes forced the

system to perform a regrasp in order to achieve the desired

pose.

In all scenarios, point clouds were registered composites of

two clouds taken from views above the object and 90◦ apart:

a single point cloud performs worse, presumably because

features relevant for determining object pose are unobserved.

In simulation, we assumed picks always succeed, because the

grasp detector was already trained to recognize stable grasps

with high probability [16], [17] 1. A place was considered

successful only if the object was placed within 3 cm of the

table and 20 degrees of the vertical in the desired pose.

B. Algorithm Variations

The algorithm was parameterized as follows. We used 70
training rounds (nTrainingRounds = 70 in Algorithm 1) for

the two-step scenarios and 150 for the multi-step scenario.

We used 1, 000 episodes per training round (nEpisodes

= 1, 000). For each training round we updated the CNN

with 5, 000 iterations of SGD with a batch size of 32.

maxExperiences was 25, 000 for the two-step scenarios and

50, 000 for the multi-step scenario. For each episode, bottles

were randomly scaled in height between 10 and 20 cm. Mugs

were randomly scaled in height between 6 and 12 cm. We

linearly decreased the exploration factor ǫ from 100% down

to 10% over the first 18 training rounds.

We compared the performance of Algorithm 1 on two

different types of REACH-GRASP descriptors. In the standard

variation, we used descriptors of the standard size (10 ×
10 × 20 cm). In the large-volume (LV) variation, we used

descriptors evaluated over a larger volume (20×20×40 cm)

but with the same image resolution.

We also compared with two baselines. The first was the

random baseline, where grasp and place actions were chosen

uniformly at random. The second was the shape primitives

baseline, where object pose was approximated by segmenting

the point cloud and fitting a cylinder. Although it is generally

challenging to fit a shape when the precise geometry of the

object to be grasped is unknown, we hypothesized that it

could be possible to obtain good pick-place success rates

by fitting a cylinder and using simple heuristics to decide

which end should be up. We implemented this as follows.

First, we segment the scene into k clusters, using k-means

(k = 1 for isolation and k = 7 for clutter). Then we fit a

cylinder to the most isolated cluster using MLESAC [28].

We select the grasp most closely aligned with and nearest to

the center of the fitted cylinder. The height of the placement

action is determined based on the length of the fitted cylinder.

The grasp up direction is chosen to be aligned with the

cylinder half which contains fewer points. In order to get

the shape primitive baseline to work, we had to remove

points on the table plane from the point cloud. Although

our learning methods do not require this and work nearly as

well either way, we removed the table plane in all simulation

experiments for consistency.

C. Results for the Two-Step Scenarios

Figure 5 shows learning curves for the two-step-isolation

and two-step-clutter contingencies for bottles (left) and mugs

(center) averaged over 10 runs. Table I shows place success

rates when the test objects were used.

1It is possible to train grasping from the same reward signal, but this
would require longer simulations. Empirically, this assumption did not lead
to many grasp failures on the real robot (see Section VI).



Fig. 5. Left and center. Average of 10 learning curves for the two-step scenario. The “training round” on the horizontal axis denotes the number of
times Caffe had been called for a round of 5, 000 SGD iterations. The left plot is for bottles and the center for mugs. Blue denotes single objects and
red denotes clutter. Curves for mean plus and minus standard deviation are shown in lighter colors. The sharp increase in performance during the last five
rounds in each graph is caused by dropping the exploration factor (ǫ) from 10% to 0% during these rounds. Right. One multi-step realization with mugs in
isolation. Red line: number of successful pick-place trials as a function of training round. Blue line: number of successful non-goal placements executed.

Trained With / Tested With Bottle in Iso. Bottles in Clut.

Isolation 1.00 0.67

Clutter 0.78 0.87

Isolation LV 0.99 0.47

Clutter LV 0.96 0.80

Shape Primitives Baseline 0.43 0.24

Random Baseline 0.02 0.02

Trained With / Tested With Mug in Iso. Mugs in Clut.

Isolation 0.84 0.60

Clutter 0.74 0.75

Isolation LV 0.91 0.40

Clutter LV 0.67 0.70

Shape Primitives Baseline 0.08 0.12

Random Baseline 0.02 0.02

TABLE I

AVERAGE CORRECT PLACEMENTS OVER 300 EPISODES FOR BOTTLES

(TOP) AND MUGS (BOTTOM) USING TEST SET, AFTER TRAINING.

Several results are worth highlighting. First, our algorithm

does very well with respect to the baselines. The random

baseline (last row in Table I) succeeds only 2% of the

time – suggesting that the problem is indeed challenging.

The shape primitives baseline (where we localize objects by

fitting cylinders) also does relatively poorly: it succeeds at

most only 43% of the time for bottles and only 12% of

the time for mugs. Second, place success rates are lower

when objects are presented in clutter compared to isolation:

100% success versus 87% success rates for bottles; 84%

versus 75% success for mugs. Also, if evaluation is to be

in clutter (resp. isolation), then it helps to train in clutter

(resp. isolation) as well: if trained only in isolation, then

clutter success rates for bottles drops from 87% to 67%;

clutter success rates for mugs drops from 75% to 60%.

Also, using the LV descriptor can improve success rates in

isolation (an increase of 84% to 91% for mugs), but hurts

when evaluated in clutter: a decrease from 87% to 80% for

bottles; a decrease from 75% to 70% for mugs. We suspect

that this drop in performance reflects the fact that in clutter,

the large receptive field of the LV descriptor encompasses

“distracting” information created by other objects nearby the

target object (remember we do not use segmentation) [29].

D. Results for the Multi-Step Scenario

Training for the multi-step-isolation scenario is the same

as it was in the two-step scenario except we increased the

number of training rounds because the longer policies took

longer to learn. We only performed this experiment using

mugs (not bottles) because it was difficult for our system

to grasp many of the bottles in our dataset from the top.

Figure 5 shows the number of successful non-goal and goal

placements as a function of training round 2. Initially, the

system does not make much use of its ability to perform

intermediate placements in order to achieve the desired goal

placement, i.e., to pick up the mug, put it down, and then

pick it up a second time in a different way. This is evidenced

by the low values for non-goal placements (the blue line)

prior to round 60. However, after round 60, the system learns

the value of the non-goal placement, thereby enabling it to

increase its final placement success rate to is maximum value

(around 90%). Essentially, the agent learns to perform a

non-goal placement when the mug cannot immediately be

grasped from the top or if the orientation of the mug cannot

be determined from the sensor perception. After learning is

complete, we obtain an 84% pick and place success rate

averaged over 300 test set trials.

VI. EXPERIMENTS ON A REAL ROBOT

We evaluated the same three scenarios on a real robot:

two-step-isolation, two-step-clutter, and multi-step-isolation.

As before, the two step scenarios were evaluated for both

bottles and mugs, and the multi-step scenario was evaluated

for only mugs. All training was done in simulation, and fixed

CNN weights were used on the real robot.

The experiments were performed by a UR5 robot with

6 DOFs, equipped with a Robotiq parallel-jaw gripper and

a wrist-mounted Structure depth sensor (Figure 7). Two

sensor views were always taken from fixed poses, 90◦ apart.

The object set included 7 bottles and 6 mugs, as shown in

2Non-goal placements were considered successful if the object was 3 cm
or less above the table. Any orientation was allowed. Unsuccessful non-goal
placements terminate the episode.



Fig. 6. The seven novel bottles and six novel mugs used to evaluate our
approach in the robot experiments.

Figure 6. We used only objects that fit into the gripper, would

not shatter when dropped, and had a non-reflective surface

visible to our depth sensor. Some of the lighter bottles were

partially filled so small disturbances (e.g., sticking to fingers)

would not cause a failure. Figure 7 shows several examples

of our two-step scenario for bottles presented in clutter.

Unlike in simulation, the UR5 requires an IK solution and

motion plan for any grasp or place pose it plans to reach to.

For grasps, GPD returns many grasp choices. We sort these

by their pick-place Q-values in descending order and select

the first reachable grasp. For places, the horizontal position

on the shelf and orientation about the vertical (gravity) axis

do not affect object uprightness or the height of the object.

Thus, these variables were chosen to suit reachability.

After testing some trials on the UR5, we found we needed

to adjust a couple of training/simulation parameters. First, we

changed the conditions for a successful place in simulation

because, during our initial experiments, we found the policy

sometimes selected placements that caused the objects to fall

over. As a result, we adjusted the maximum place height

in simulation from 3 cm to 2 cm and changed the reward

function to fall off exponentially from +1 for altitudes higher

than 2 cm. Second, we raised the acceptance threshold 3 used

by our grasp detector, GPD [16], [17].

1 Bottle 7 Bottles 1 Mug 6 Mugs Regrasp

Grasp 0.99 0.97 0.96 0.93 0.94

FinalPlace 0.98 0.94 0.93 0.87 1.00

TempPlace - - - - 1.00

EntireTask 0.97 0.92 0.90 0.80 0.68

n Trials 112 107 96 96 72

UpsideDown 0 4 5 10 0

Sideways 0 0 0 2 0

FellOver 2 2 1 0 0

t > 10 - - - - 12

TABLE II

(TOP) SUCCESS RATES FOR GRASP, TEMPORARY PLACE, FINAL PLACE,

AND ENTIRE TASK. (BOTTOM) PLACEMENT ERROR COUNTS BY TYPE.

RESULTS ARE AVERAGED OVER THE NUMBER OF TRIALS (MIDDLE).

Table II summarizes the results from our robot experi-

ments. We performed 483 pick and place trials over five

different scenarios. Column one of Table II shows results

for pick and place for a single bottle presented in isolation

averaged over all bottles in the seven-bottle set. Out of 112

trials, 99% of the grasps were successful and 98% of the

placements were successful, resulting in a complete task

pick/place success rate of 97%. Column two shows similar

3GPD outputs a machine-learned probability of a stable (i.e., force
closure) grasp. The threshold is the grasp stability probability above which
grasps are accepted.

results for the bottles-in-clutter scenario, and columns three

and four include results for the same experiments with mugs.

Finally, column five summarizes results from the multi-step-

isolation scenario for mugs: overall, our method succeeded

in placing the mug upright into the box 68% of the time.

The temporary place success is perfect because a temporary

placement only fails if the mug is so high it rolls away after

dropped or too low it is pushed into the table, neither of

which ever happened after 72 trials. The final placement is

perfect because it always did get the orientation right (for all

72 trials that got far enough to reach the final placement), and

it is hard for the mug to fall over in the box. The multi-step

scenario has low task success rate because 12 trials failed to

perform the final place after 10 time steps. Perhaps this is

due to lower Q-function values on the real system (due to

domain transfer issues), causing the robot to never become

confident enough with its given state information to perform

the final place.

Our experimental results are interesting for several reasons

beyond demonstrating that the method can work. First, we

noticed consistently lower place performance for the mug

category relative to the bottle category. The reason for this is

there is more perceptual ambiguity involved in determining

the orientation of a mug compared to that of a bottle. In

order to decide which end of a mug is “up”, it is necessary

for the sensor to view into at least one end of the mug.

Second, the robot had trouble completing the multi-step task

in a reasonable number of steps with the real hardware

compared with simulation. This may be because fewer grasps

are available on the real robot versus the simulated robot due

to collision modelling. Another unexpected result was our

learned policies typically prefer particular types of grasps,

e.g., to grasp bottles near the bottom (see Figure 7). We

suspect this is a result of the link between the location of

a selected grasp and the grasp descriptor used to represent

state. In order to increase the likelihood that the agent will

make high-reward decisions in the future, it selects a grasp

descriptor that enables it to easily determine the pose of the

object. In the case of bottles, descriptors near the base of the

bottle best enable it to determine which end is “up”.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a new way of structuring robotic

pick-place and regrasping tasks as a deep RL problem.

Importantly, our learned policies can place objects very

accurately without using shape primitives or attempting to

model object geometry in any way. Our key insight is to

encode a sampled set of end-to-end reaching actions using

descriptors that encode the geometry of the reach target

pose. We encode state as a history of recent actions and

observations. The resulting policies, which are learned in

simulation, simultaneously perceive relevant features in the

environment and plan the appropriate grasp and place actions

in order to achieve task goals. Our experiments show that the

method consistently outperforms a baseline method based on

shape primitives.



Fig. 7. Top. Two-step-clutter scenario for bottles. First three objects are placed right-side-up and without falling over. Bottom. Multi-step-isolation
scenario for a mug. The mug is initially upside-down, so must be flipped around before it can be put upright into the box.

For future work, we plan to generalize the descriptor-based

MDP in two ways. First, place poses could be sampled from

a continuous, 6-DOF space, as grasps are. To do this we

would develop a special purpose place detector in the same

way GPD is a grasp detector. Second, the system should

be able to work with a more diverse set of objects, e.g.,

kitchen items. This may require a CNN with more capacity

and longer training time, motivating innovations to speed up

the learning in simulation.
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