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Abstract— In grasp detection, the robot estimates the position
and orientation of potential grasp configurations directly from
sensor data. This paper explores the relationship between
viewpoint and grasp detection performance. Specifically, we
consider the scenario where the approximate position and
orientation of a desired grasp is known in advance and we want
to select a viewpoint that will enable a grasp detection algorithm
to localize it more precisely and with higher confidence. Our
main findings are that the right viewpoint can dramatically
increase the number of detected grasps and the classification
accuracy of the top-n detections. We use this insight to create a
viewpoint selection algorithm and compare it against a random
viewpoint selection strategy and a strategy that views the
desired grasp head-on. We find that the head-on strategy and
our proposed viewpoint selection strategy can improve grasp
success rates on a real robot by 8% and 4%, respectively.
Moreover, we find that the combination of the two methods
can improve grasp success rates by as much as 12%.

I. INTRODUCTION

Grasp detection has become an important framework for
perception for grasping [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11]. We define grasp detection as any system
that localizes grasps directly in visual sensory data without
reference to prior geometric models of objects. Figure 2 (c)
shows an example. Using only the visible point cloud and
without a model of the object to be grasped, the system
locates hand configurations from which the object can be
grasped (shown as yellow grippers in the figure). Each
gripper denotes the 6-DOF pose of a robotic hand from
which a grasp would be feasible if the gripper fingers were to
close. Relative to more traditional approaches to perception
for grasping based on estimating the exact pose of the
object to be grasped, grasp detection can be very effective
for novel objects in cluttered environments. Although grasp
detection works well in general, our prior work suggests the
quality and amount of sensor data available could have a
significant impact on performance [9]. In particular, when
given relatively complete point cloud data generated using
InfiniTAM, a metric SLAM software [12], grasp detection
was able to produce a 93% grasp success rate for novel
object grasping in dense clutter. However, grasp success rates
dropped to 84% for the same algorithm and the same robot
when using data produced using two, fixed depth sensors.
This inspired us to look at the relationship between viewpoint
and the performance of a given grasp detection algorithm.
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Fig. 1. (a) The eye-in-hand configuration used for our robot experiments.
(b) The viewpoint selection problem. From which viewpoint should this
object be viewed in order to detect a grasp nearby the one shown?

In this paper, we ask whether it is possible to affect the
accuracy of grasp detection by selecting the right viewpoint.
Specifically, we consider the scenario where the approximate
position and orientation (pose) of the desired grasp is known
in advance and we want to select a viewpoint in order to
localize it more accurately and with higher confidence. For
example, imagine the robot has already taken an RGBD
image of the environment from an arbitrary viewpoint and
identified an object of interest. The robot thinks it knows
how it wants to grasp the object, but it would like to take a
second look to improve its confidence. Figure 1 (b) illustrates
this scenario. The robot thinks the grasp is located as shown
in the image, but it would like to select a viewpoint from
which to take a second look and “confirm” the detection.

Our main finding is that viewpoint most significantly
affects the number of grasps detected. With the right view-
point, the system can increase the number of detected grasps
by a factor of 6 (Table I). This is important because a
larger number of grasp detections can give the robot more
choice about exactly which grasp it chooses to execute.
Also, it enables the robot to be more selective about which
grasps it accepts, thereby effectively increasing the accuracy
for the most highly ranked n grasp detections. Based on
these findings, we propose a “smart” viewpoint selection
algorithm and compare it offline against random viewpoint
selection and a baseline that always selects a head-on view.
These experiments show that the smart viewpoint selection
strategy outperforms the random strategy and that it can also
outperform the head-on strategy for some classes of objects.
We also evaluate the method in terms of grasp success rates
in a real robotic system. Here, we used the head-on view only
to “align” the desired grasp with the point cloud. We find that
the smart viewpoint outperforms random by an average of
4% while the head-on alignment view outperforms random
by 8%. By combining both methods (choosing the smart



viewpoint, detecting grasps, and then choosing a head-on
view for the grasp detected from the smart viewpoint), we
outperform the random baseline by an average of 12%.

II. BACKGROUND AND RELATED WORK

A. Active vision

This work falls broadly into the category of research called
“active vision”, which is defined to be any scenario where the
robot applies a strategy for sensor placement/configuration to
perform its task [13]. Chen et al. provide a broad (although
now somewhat dated) survey of the subject [13]. Our paper
is more specifically related to the idea of planning sensor
placements for the task of object recognition. Roy et al. sur-
vey works that benefit object recognition by purposive sensor
placements [14], and Velez et al. plan viewing trajectories to
improve the performance of an off-the-shelf object detector
[15]. In contrast, our task is not to recognize object instances
but instead to recognize grasps that are likely to succeed
when executed; although, we expect some of the ideas could
extend to a more general class of detection problems.

An issue with any viewpoint selection method is deciding
a metric to use for viewpoint quality. Chen et al. suggest
that the best metric to use is likely to be task-dependent
[13]. On the other hand, general trends can be observed
in the literature. One idea is to try to increase the amount
of information of the scene by maximizing over Shannon
entropy [16], [17], KL divergence [18], or Fisher information
[19]. These methods all require specifying a probability
distribution over which to compute the information metric.
In contrast, we directly evaluate the performance of the grasp
detection system from various viewpoints and store the result
in a database, which could be viewed as a non-parametric,
nearest-neighbor approach [20]. We argue that this approach
is simpler to implement and directly applicable to the task
at hand.

In this work we restrict our attention to single views;
although, constructing a scene from multiple views can
sometimes be a powerful approach. We and others have
explored this with significant benefit to grasp detection
performance [21], [9], but the primary difficulty faced with
this is that the ICP-based SLAM algorithms do not register
multiple views well in near-field, uncluttered scenes.

B. Grasp detection

In order to understand the problem of viewpoint selection
for grasp detection, it is important to understand grasp
detection itself. In this paper, we use the grasp detector
described in our prior work [9] (and, for comparison, a
modification of that detector designed to be similar to the
detector proposed by [7]). This system takes point clouds
as input and produces predicted grasp poses in SE(3) 1 as
output. Each grasp pose output by the system is predicted

1SE(3) is the 6-DOF space of rigid body transformations.
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Fig. 2. (a) Input point cloud; (b) grasp candidates that denote potential
grasp configurations; (c) high scoring grasps.

to be a force closure grasp (i.e. a positive grasp) for a two-
fingered gripper. 2

Our grasp detection algorithm proceeds in two main
steps. First, given an input point cloud (Figure 2 (a)), a
set of 6-DOF grasp candidates are sampled using basic
geometric constraints (Figure 2 (b)). These grasp candidates
constitute a proposal distribution analogous to the object
detection context. Second, a trained classifier predicts a
binary grasp/not grasp label for each of these samples and
assigns a probability with this prediction (Figure 2 (c)). We
refer to this probability as the classifier’s confidence score.

The classifier that predicts grasps needs to be trained in a
supervised fashion with a labeled dataset. The ground truth
labels in the dataset say which grasps are true positives and
which are true negatives. Accuracy, which is the number
of true positives and true negatives divided by the total
number of predictions, quantifies the performance of the
classifier. The labels can be generated using any reasonable
grasp metric, human annotation, simulation (as in [10]), or
the robot itself (as in [22]). In our system, we generate
training data using BigBIRD [23], a dataset comprised of
125 3D object mesh models paired with 600 RGBD images
taken from a hemisphere of different perspectives around the
object. From the images we generate a large number of grasp
candidates that serve as training examples. The ground truth
for each candidate is calculated by using the 3D mesh model
to evaluate whether a force closure grasp would result if the
fingers were to close in that configuration.

III. PROBLEM STATEMENT

We assume the robot already knows approximately how it
would like to pick up the object. For example, suppose the
robot has detected a coffee mug that is to be picked up. The
robot knows approximately how it should grasp the mug,
but we would like to detect true positive grasps nearby the
desired grasp with high confidence. More precisely,

Problem III.1 (Viewpoint Selection for Grasp Detection).
Given 1) a region of desired grasps (the center of which
is called the target grasp), 2) the geometric category of
the object in the vicinity of the grasp region (e.g. box-like,

2In fact, it is possible to use any grasp quality metric without changing
the algorithm at all. The important thing is that there is a consistent, well-
defined definition of a grasp.



Fig. 3. Illustration of viewpoint projection into the reference frames of the
grasps.

cylinder-like), 3) a desired number of grasps to detect, n, and
4) a set of potential viewpoints; Calculate the viewpoint
from which the target grasp should be viewed in order to
maximize the average accuracy over the top n scoring grasps.

In this paper, we assume the region of desired grasps
is expressed in terms of a single target grasp pose and a
neighborhood of positions and orientations about this desired
pose. The objective is to maximize accuracy over the top n
scoring grasps because, on a real robot, we typically need
several grasps to choose from in order to satisfy kinematic
and task constraints.

IV. MAPPING DETECTION PERFORMANCE AS A
FUNCTION OF VIEWPOINT

In order to create an algorithm for selecting viewpoint,
our first step is to characterize variables of interest (such
as density of detected grasps, accuracy, etc.) as a function
of viewpoint. Specifically, we create maps of the relevant
variables where directions are azimuth (θ) and elevation
(φ) of viewpoint relative to the target grasp. The map is
created entirely using data from the BigBIRD dataset [23],
comprised of real RGBD data for a variety of objects
taken under controlled conditions. Each object in BigBIRD
is associated with 600 different point clouds taken from
different views in a hemisphere around the object.

A. Projecting viewpoint into the reference frame of a grasp

Since our maps will be expressed relative to the pose
of the target grasp, we need to transform viewpoint into
the grasp reference frame. We do this as follows. First, we
run grasp detection on point clouds taken from a set of n
different viewpoints v1, . . . , vn ∈ R3, expressed as positions
in a world reference frame (we assume that the camera is
always pointed directly toward the target grasp). For each
viewpoint i ∈ (1, n), let gi1, . . . , g

i
mi

denote the set of
mi grasps detected from that viewpoint. Then, project each
viewpoint into the reference frames of the grasps seen from
that viewpoint. Figure 3 illustrates this idea. The left side
shows two grasps that are detected in a single point cloud
generated by viewing the object from v. When projected
into the reference frames of the two grasps, we get the
two viewpoints seen on the right side. Let T (g) denote the
4 × 4 homogeneous transform that expresses the reference

frame of grasp g relative to the world reference frame. Then,
viewpoint i expressed in the reference frame of grasp j is
vij = T (gij)

−1vi.

B. Creating the maps

We create a map as follows. First, we detect grasps from
many different viewpoints around several different objects.
For each object, we sample 80 different viewpoints randomly
from the 600 total views per object in BigBIRD. Then, we
perform the viewpoint projection described above onto the
grasps. The result is a set of viewpoints, V = (v11 , . . . , v

n
mn

),
expressed in the reference frame of the detected grasp. For
each viewpoint, v ∈ V, we store the confidence score
assigned by the grasp detector to the corresponding grasp,
s(v) ∈ R, and the ground truth evaluation of whether the
grasp was actually a force closure grasp or not, gt(v) ∈
{0, 1}.

Fig. 5. Elevation angle of viewpoints
from which to view a target grasp on a
box-like object in order to maximize
number of true positive minus false
positive grasps detected.

BigBIRD consists of
125 objects that can be
divided into roughly two
shape classes: box-like
objects and cylinder-like
objects. Since these two
object classes appear
to have qualitatively
different maps, we
will characterize them
separately. Figure 4
(a-e) shows the results
of averaging the maps
created for a set of
25 box-like objects
from BigBIRD. Here,
viewpoint is expressed in terms of the azimuth (θ) and
elevation (φ) of the unit vector pointing toward the
viewpoint expressed in the reference frame of the grasp.
(Coordinates illustrated in Figure 1 (b) and Figure 5.)
The maps are smoothed by convolving the data with
an isotropic Gaussian with variance equal to 0.2. The
convolved map values are computed at discrete positions
spaced 0.05 radians (3◦) and going out to ±1.05 radians
(±60◦) on both axes. Figure 4 (a-e) shows, respectively: the
density of all detected grasps, the density of true positives
(number of correct grasp detections), the density of false
positives, grasp classification accuracy, and the density of
true positives minus the density of false positives. Figure 4
(f-j) shows the same set of five maps, averaged over 14
cylindrical objects from BigBIRD. Notice whereas box-like
objects are best viewed from a viewpoint of approximately
(φ, θ) = (0 ± 0.1, 2.8 ± 0.1), cylinder-like objects are
best viewed from (φ, θ) = (0.2 ± 0.1, 2.9 ± 0.2). Another
interesting observation is that the grasp detection algorithm
itself also makes a difference. The last row of Figure 4
shows the same statistics for a variant of grasp detection
similar to the detector proposed by Kappler et al. [7] for
the same set of 25 box-like objects. Whereas our default
method samples grasp candidates by searching orientations
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Fig. 4. Various performance metrics plotted as a function of viewpoint (azimuth and elevation). Rows: Top: results averaged over 25 box-like objects
using default algorithm. Middle: results averaged over 14 cylinder-like objects using default algorithm. Bottom: results averaged over 25 box-like objects
using Kappler algorithm variant [7]. Columns: First: density of all considered grasp candidates. Second: density of true positives. Third: density of false
positives. Fourth: accuracy. Fifth: density of true positives minus density of false positives (our proposed measure).

about a local curvature axis, the method of Kappler et al.
samples grasp candidates by searching orientations about a
local normal axis. For the sake of comparison, we hold the
method of classification fixed. Notice the shape of the map
is completely different. This suggests the grasp detection
algorithm also has an impact on viewpoint.

V. VIEWPOINT SELECTION

A. Approach

The key question is how the maps developed in the last
section should be used to guide viewpoint. Perhaps the
most obvious answer is to use classification accuracy, i.e.
the maps shown in Figure 4 (d, i, n). However, there are
a couple of problems with this choice. First, for all three
object/algorithm variations, classification accuracy seems to
be maximized at viewpoints associated with low-density
grasp detection. Generating a large number of detections
is important because it gives us a larger number of high
scoring grasps to choose from, which will be crucial for a
robot with kinematic and task constraints. Second, we do not
empirically observe a significant improvement in accuracy
in our offline evaluations by selecting viewpoint based on
accuracy. It could be the expected improvement in accuracy
is not large enough to make a difference, and it could be
there is wider variation among objects as to which viewpoint
maximizes detection accuracy.

Instead, we propose selecting the viewpoint that maxi-
mizes the expected number of true positives detected minus
the expected number of false positives. This measure is

shown in the right-most column of Figure 4. The idea is we
want to maximize the number of true positives and minimize
the number of false positives. An algorithm that selects
viewpoints that maximizes this measure should generate
a large number of true positives (i.e. a large number of
correctly identified grasps) and thereby increase accuracy
among the highest scoring grasps.

B. Offline experiments

We ran experiments to compare grasp detection perfor-
mance using 1) viewpoints chosen using the true positives
minus false positives density map (smart), 2) viewpoints
selected uniformly randomly from the set of possible view-
points (random), and 3) head-on views of the target grasp
(head-on). In the head-on contingency, we select from the
set of possible viewpoints the one closest to a view that
would see the object along the approach vector of the grasp.
We performed this comparison offline using the point clouds
contained within the BigBIRD dataset as follows. First, for
a given object, select a ground truth grasp at random (using
the mesh to evaluate ground truth). This will be the target
grasp. 3 Second, for this target grasp, select a viewpoint using
the proposed method, the head-on method, or at random
out of the 600 views available for each BigBIRD object.
Third, run grasp detection for the point cloud obtained from
that view and prune out all grasps that are not within the
neighborhood of the desired grasp. We evaluate the number

3In practice, the target grasp would be selected based on task or object
characteristics, but here it is selected randomly.
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Fig. 6. Grasp detection performance averaged over 25 box-like objects
in BigBIRD: (a) histogram over the scores of the detected grasps using
smart viewpoints (blue) and random viewpoints (red); (b) detection accuracy
averaged over the top n scoring detected grasps. Blue: smart viewpoints.
Green: head-on viewpoints. Red: random viewpoints.

of detected grasps and the detection accuracy of the top
n scoring detections averaged over all objects within a
category.

True Positives Positives Accuracy
Boxes Smart 5448 6123 0.89

Boxes Head-on 1923 2206 0.87
Boxes Random 1312 1424 0.92
Cylinders Smart 13834 17150 0.80

Cylinders Head-on 14291 18112 0.79
Cylinders Random 2155 2754 0.78

TABLE I
SUMMARY OF VIEWPOINT SELECTION RESULTS. COUNTS ARE TOTALED

FROM ALL VIEWPOINTS AND OBJECTS, AND ACCURACY IS AVERAGED

OVER ALL VIEWPOINTS AND OBJECTS.

Figure 6 shows the results averaged over the 25 box-
like objects in BigBIRD. Figure 6 (a) shows a histogram
over scores for all positives detected. The larger blue his-
togram shows the scores of the grasps detected using smart
viewpoints. The smaller red histogram shows the same for
random viewpoints. Figure 6 (b) shows accuracy for the
top n scoring grasps using the three viewpoint selection
methods. In each contingency, we detected a large number
of grasps over all objects within the category (either box-
like or cylinder-like) and pruned those that were not within
the desired neighborhood of the target grasp (2 cm and 20◦)
in our experiments). Of the remainder, we ranked them by
the score produced by the deep network used to classify
the grasps (higher means more “confident”) and evaluated
classification accuracy over the top n scoring grasps. Out
of the three methods, the head-on view (the green line in
Figure 6 (b)) is clearly at a disadvantage. The reason can be
seen by looking at the maps for true positives and accuracy
(Figure 4 (c, d)). The head-on view “sees” the target grasp
from φ = 0, θ = 0. However, this view is associated with low
classification accuracy and high numbers of false positives.
Also, notice that the top-n accuracy for random views (the
red line in Figure 6 (b)) drops off significantly for larger
values of n. Even though random does happen to detect some
good grasps, it does not detect as many of them as does the
proposed method (the blue line in Figure 6 (b)).

Figure 7 shows similar results for the group of 14 cylin-
drical objects in BigBIRD. Figure 7 (a) shows that the

(a) (b)

Fig. 7. Grasp detection performance averaged over 14 cylinder-like objects
in BigBIRD: (a) histogram over the scores of the detected grasps using
smart viewpoints (blue) and random viewpoints (red); (b) detection accuracy
averaged over the top n scoring detections. Blue: smart viewpoints. Green:
head-on viewpoints. Red: random viewpoints.

random viewpoint method detects approximately 6 times
fewer positive grasps than does our proposed method. Fig-
ure 7 (b) shows that top-n classification accuracy for random
viewpoints (the red line) drops off quickly, as it did for
box-like objects. Interestingly, the head-on method performs
similarly to the proposed method for cylinder-like objects.
This is because the head-on view for cylinders turns out to
be a relatively good view (see φ = 0, θ = 0 in Figure 4 (g,
i)). For cylinder-like objects, the proposed method selects
views that nearly approximate the head-on view.

VI. ROBOT EXPERIMENTS

The results reported so far indicate that our proposed
viewpoint selection method can improve the accuracy with
which the top n grasps are detected. But, how well does this
translate into grasp success on a real robotic system? In this
section, we evaluate the approach in the context of a robot
grasping in dense clutter.

A. Setup

In these experiments, each grasp proceeds as follows. First,
we obtain a target grasp by taking a view of the objects
from a random viewpoint and running grasp detection on this
point cloud. We select one of the detected grasps based on
confidence score and task-specific heuristics (such as height
in the pile and how close to vertical the approach vector is).
Then, we use the smart viewpoint selection strategy to obtain
a viewpoint from which to view the target grasp (we select
the best viewpoint subject to inverse kinematics constraints).
Next, we detect grasps in this new point cloud. Since we
already know the approximate location of the target grasp,
we speed up the second round of grasp detection by only
searching a small region (8 cm radius ball) about the grasp
target. Finally, we select the highest scoring grasp (again,
subject to IK constraints) and execute it. This process is
illustrated in Figure 8 (a-b). We measure success in terms
of how often the grasp succeeds.

In principle, our proposed viewpoint selection method
should use the grasp density map corresponding to the shape
of the object to be grasped. However, since our scenario
involves a variety of objects piled together, we just used a
single map for all grasp attempts. Since the viewpoints that
maximize our proposed viewpoint quality measure (density



(a) First view (random)

(b) Second view (smart)

(c) Third view (alignment)

Fig. 8. Illustration of the three-view grasp detection strategy. The point
cloud and grasps (right) are obtained from the depth sensor (left). The white
grasp is the target grasp used for planning the next step.

of true positives minus density of false positives) for box-
like objects (Figure 4 (e)) also nearly maximizes the measure
for cylinder-like objects (Figure 4 (j)), we used the map for
box-like objects all the time.

In addition to the smart and random viewpoints, we also
evaluated performance for a third viewpoint taken directly in
front of the target grasp (φ = 0, θ = 0 in Figure 1 (b)). We
moved the sensor as close to the target grasp as possible
while remaining outside the minimum viewing depth for
the sensor (20 cm in our case). Instead of running the full
grasp detection algorithm on the view obtained from this
perspective, we just ran the candidate generation part of the
algorithm and accepted the candidate most closely aligned
with the target grasp. We call this the alignment view. Its
purpose is to help correct for kinematic errors in the robot:
the effect of the robot’s kinematic errors is limited to only
those errors that accumulate while the arm travels from
the the view pose to the grasp target. In order to isolate
the effects of the various different views, we performed
experiments for all relevant variations on viewing order: 1-2-
3 (random, smart, alignment), 1-2 (random, smart), and 1-3
(random, alignment).

The experimental protocol followed for each variation is
similar to the one proposed in our prior work [9]. First,

(a) (b)

Fig. 9. (a) All 25 objects used in robot experiments. (b) Cluttered pile of
10 objects that the robot must clear.

10 objects are selected at random from a set of 25 and
“poured” into a pile in front of the robot. (See Figure 9
(a) for the object set and Figure 9 (b) for an example pile of
clutter.) Second, the robot proceeds to automatically remove
the objects one-by-one as the experimenter records successes
and failures. This continues until either all of the objects have
been removed, the same failure occurs on the same object
three times in a row, or no grasps were found after three
attempts. The sensor (Intel RealSense SR300) and gripper
hardware used in the experiment are shown in Figure 1 (a).
Figure 10 shows the robot performing the first five grasps of
one round of an experiment. 4

B. Results

Views 1-2-3 Views 1-2 Views 1-3 Views 1
Attempts 131 141 154 153
Failures 17 31 26 39

Success Rate 0.87 0.78 0.83 0.75

TABLE II
GRASP SUCCESS RATES FOR THE FOUR EXPERIMENTAL STRATEGIES.

Grasp success rates for the four experimental strategies are
shown in Table II. The “attempts” row of the table shows
the number of grasp attempts made using each strategy, the
“failures” row shows the number of failures for each strategy,
and the “success rate” row is one minus the ratio between
failures and attempts. The grasp failures in our experiments
primarily fell into two categories as shown in Table III.
The “FK” row in Table III denotes the number of grasp
failures caused by a difference between the planned grasp
and the actual grasp in the real world. The “grasp” row
denotes the number of grasp failures caused by a detection
error. The failure modes seem to reinforce intuition about
what should happen if either view 2 (smart) or view 3
(alignment) is skipped. If the alignment view is skipped, then
we obtain a large number of FK failures, presumably because
we are not registering the point cloud close to the final grasp
configuration. If the smart view is skipped, then we obtain
relatively more detection failures because the algorithm does
not get the best view of the target grasp (in terms of detector
performance).

4A video illustrating the experiment is available at https://youtu.
be/iGRbqFsNgzo.



Fig. 10. First 5 grasps of a typical experiment trial. All grasps were successful. This was a run with all 3 views included.

Perhaps the most noticeable result from this experiment
is that adding the third view helps: going from 1-2 to 1-
2-3 adds 9% to the grasp success rate; going from 1 to
1-3 adds 8%. However, this is increase (and the relatively
poor performance of grasping without the alignment view)
is a result of kinematic errors in the Baxter robot and/or
calibration errors in the Intel RealSense SR300 sensor we
used. Adding the alignment view helped to correct for these
errors. However, the benefits of adding the alignment view
should not overshadow the additional benefit of the smart
view. Without the alignment view, adding the smart view
increases the grasp success rate from 0.75 to 0.78 (a 3%
increase). With the alignment view, adding the smart view
increases grasp success from 0.83 to 0.87 (a 5% increase).

(Error Type) Views 1-2-3 Views 1-2 Views 1-3 Views 1
FK 10 21 9 28

Grasp 4 10 14 9
Other 3 0 3 2

TABLE III
COUNTS BY FAILURE TYPE FOR THE FOUR EXPERIMENTAL STRATEGIES.

“FK” MEANS A FORWARD KINEMATICS ERROR LED TO THE FAILURE

AND “GRASP” MEANS A DEFECT IN THE DETECTED GRASP LED TO A

FAILURE.

VII. CONCLUSION

Our main conclusion is viewpoint can have a significant
effect on the performance of grasp detection. The right
viewpoint can enable grasp detection to find 4-6 times the
number of good grasps relative to an uninformed view.
Our results show this increase in the number of detected
grasps can have a significant effect on the average accuracy
of the top detected grasps. These results are borne out in
robotic experiments on our Baxter showing an improvement
in overall grasp success rates using an informed viewpoint
selection method.
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