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Abstract. Reinforcement learning (RL) algorithms for continuous con-
trol tasks require accurate sampling-based action selection. Many tasks,
such as robotic manipulation, contain inherent problem symmetries. How-
ever, correctly incorporating symmetry into sampling-based approaches
remains a challenge. This work addresses the challenge of preserving
symmetry in sampling-based planning and control, a key component
for enhancing decision-making efficiency in RL. We introduce an ac-
tion sampling approach that enforces the desired symmetry. We apply
our proposed method to a coordinate regression problem and show that
the symmetry aware sampling method drastically outperforms the naive
sampling approach. We furthermore develop a general framework for
sampling-based model-based planning with Model Predictive Path Inte-
gral (MPPI). We compare our MPPI approach with standard sampling
methods on several continuous control tasks. Empirical demonstrations
across multiple continuous control environments validate the effective-
ness of our approach, showcasing the importance of symmetry preserva-
tion in sampling-based action selection.

Keywords: Symmetry · Continuous Control · Model-based Planning.

1 Introduction

In reinforcement learning (RL) for continuous control, the need for effective
sampling-based action selection is paramount. Many control environments, es-
pecially in robotic manipulation and navigation, exhibit symmetries due to their
operation within Euclidean space. While previous explorations of equivariance
have primarily focused on deterministic RL policies [Ravindran and Barto, 2004,
Zinkevich and Balch, 2001, van der Pol et al., 2020a, Mondal et al., 2020, Wang
et al., 2021, Zhao et al., 2022a], the inherently multimodal nature of these control
tasks demands sampling-based approaches. This crucial integration of symmetry
into sampling-based methods remains largely under-explored.

In general, sampling methods will break the exact symmetries of action selec-
tion. This is an issue as the breaking of symmetry prevents the use of equivariant
reinforcment learning methods [van der Pol et al., 2020b]. This paper addresses
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the challenge of preserving symmetry in sampling-based planning and control, a
vital aspect for enhancing decision-making efficiency in RL. Specifically, existing
sampling methods maintain symmetry only in the limit of an infinite number of
samples. In the case of finite samples, problem symmetries are only conserved
approximately.

We formulate the action optimization challenge as a two-step procedure:
first, we estimate the performance of state-action pairs or trajectories using a
neural network like Q-values, energy functions, or returns; then, we engage in
sampling to optimize optimal actions or action sequences. This paper investigates
the equivariance properties of this formulation, crucial for the effectiveness of
sampling-based strategies in symmetric environments.

In this study, we first study the coordinate regression problem, providing
profound insights into the mechanisms of equivariant action sampling. We find
that using a symmetry invariant energy function alongside our novel sampling
strategy significantly enhances algorithm performance. Our strategy deviates
from conventional sampling methods by augmenting sampled actions with the
symmetry group G. This ensures that the sampling procedure always preserves
equivariance, irrespective of the number of samples. Without our proposed sam-
pling strategy, the symmetry of the two-step procedure holds only in the infinite
sample limit. We extend our sampling strategy to multi-step action selection
for sampling-based planning. We propose an equivariant version of Model Pre-
dictive Path Integral (MPPI) [Williams et al., 2017a] and derive that it needs
equivariant dynamics and reward model, and equivariant policy and value net-
work, analogous to the need of equivariant energy function. Based on it, we
implement an equivariant model-based RL algorithm, TDMPC [Hansen et al.,
2022], for continuous control tasks. This adaptation allows for a comprehensive
preservation of symmetry across the entire trajectory planning process.

The contributions of this paper include offering both theoretical insights into
equivariance in sampling-based planning and practical demonstrations of a novel
equivariant sampling methodology’s effectiveness. Empirical validations across
various continuous control environments underscore the significance of our find-
ings, illuminating the path for future research in symmetric RL tasks.

2 Related Work

Symmetry in Reinforcement Learning Symmetry in decision-making tasks has
been studied in the context of reinforcement learning and control. Early research
focused on symmetry in MDPs without function approximation [Ravindran and
Barto, 2004, Zinkevich and Balch, 2001, Ravindran and Barto], while more re-
cent work has explored symmetry in model-free (deep) RL and imitation learning
using equivariant policy networks [van der Pol et al., 2020a, Mondal et al., 2020,
Wang et al., 2021, Huang et al., 2024, Wang et al., 2022, Xie et al., 2020, Jia
et al., 2024, Sortur et al., 2023, Zhao et al., 2023a]. Park et al. [2022] investigated
equivariance in learning world models. Additionally, Zhao et al. [2022a] analyzed
the use of symmetry in value-based planning on a 2D grid. Our work extends
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these studies by focusing on continuous-action MDPs and sampling-based plan-
ning algorithms.

Geometric Graphs and Geometric Deep Learning Our definition of GMDP is
closely related to the concept of geometric graphs [Bronstein et al., 2021, Brand-
stetter et al., 2021], which model MDPs as state-action connectivity graphs and
have been used to examine algorithmic alignments and dynamic programming
[Xu et al., 2019, Dudzik and Veličković, 2022]. We extend this concept by em-
bedding MDPs into geometric spaces such as R2 or R3, focusing on 2D and 3D
Euclidean symmetry [Brandstetter et al., 2021, Lang and Weiler, 2020, Weiler
and Cesa, 2021] with corresponding symmetry groups E(2) and E(3). Geometric
deep learning, which maintains geometric properties like symmetry and curva-
ture in data analysis [Bronstein et al., 2021], has developed equivariant neural
networks to preserve these symmetries. Notable contributions include G-CNNs
[Cohen and Welling, 2016a], which introduced group convolutions, and Steer-
able CNNs [Cohen and Welling, 2016b], which generalize scalar feature fields
to vector fields and induced representations. Additionally, E(2)-CNNs [Weiler
and Cesa, 2021] solve kernel constraints for E(2) and its subgroups by decom-
posing into irreducible representations. Researchers have also explored steerable
message-passing GNNs [Brandstetter et al., 2022], E(n)-equivariant graph net-
works [Satorras et al., 2021], and the theory of equivariant maps and convolutions
for scalar and vector fields [Kondor and Trivedi, 2018, Cohen et al., 2020]. Re-
cent work has focused on designing latent equivariant architectures for 3D scene
renderings [Klee et al., 2023, Howell et al., 2023].

Planning in Reinforcement Learning Planning in RL involves devising strategies
to achieve long-term goals by predicting future states and rewards. MuZero [Schrit-
twieser, Antonoglou, Hubert, Simonyan, Sifre, Schmitt, Guez, Lockhart, Has-
sabis, Graepel, Lillicrap, and Silver, 2019] uses TDMPC [Hansen et al., 2022]
integrates planning using Model Predictive Path Integral [Williams et al., 2017b]
with temporal-difference learning [Sutton and Barto, 2018]. Planning has also
played vital roles in robotics, where high-level task planning and geometric-level
motion planning are crucial for enabling robots to perform complex tasks au-
tonomously [Garrett et al., 2020, Kumar et al., 2024, Zhao and Wong, 2024].
These planning techniques are crucial for enabling agents and robots to perform
complex tasks autonomously. However, they typically do not consider symme-
try, which can lead to inefficiencies and suboptimal performance in symmetric
environments.

3 MDPs with Geometric Structure

3.1 Formulation of Geometric MDPs

Markov Decision Processes (MDPs) are fundamental in modeling decision-making
in interactive environments. In robotic control applications, MDPs often involve
state spaces defined over Euclidean spaces Rd or on groups like SE(d). These
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state spaces might directly represent physical spaces, such as the position of a
robot, or embody latent structures in sensor inputs, such as camera images.

The study of isometric changes, which are transformations that preserve dis-
tances in the state space, introduces the Euclidean symmetry group E(d). This
group and its subgroups, which can be expressed in semi-direct product form
as

(
Rd,+

)
⋊G, play a crucial role in how we understand and manipulate these

state spaces. The group action, consisting of translations and rotations or re-
flections, transforms a vector x in the space according to x 7→ (tg) · x := gx+ t
[Lang and Weiler, 2020, Weiler and Cesa, 2021]. These transformations are crit-
ical for defining symmetry properties in the system, which lead to more efficient
problem-solving strategies [Wang et al., 2021, Zhao et al., 2022a, van der Pol
et al., 2020b, Teng et al., 2023].

We define a class of MDPs with internal geometric structure, where the
ground state space or a latent space of the MDP can be transformed by a Eu-
clidean group. This extends a previously studied discrete case [Zhao et al., 2022a].

Definition 1 (Geometric MDP). A Geometric MDP (GMDP) M is an MDP
with internal geometric structure: there is a symmetry group G ≤ GL(d) that acts
on the ground or latent state space S and action space A. It is written as a tuple
⟨S,A, P,R, γ,G, ρS , ρA⟩. The state and action spaces S,A have group actions
that transform them, defined by ρS and ρA.

3.2 Symmetry in Geometric MDPs

In this subsection, we explore how Euclidean symmetry influences the internal
geometric structure of MDPs. The symmetry properties in MDPs are character-
ized by the equivariance and invariance of the transition and reward functions,
respectively [Ravindran and Barto, 2004, Zinkevich and Balch, 2001, van der Pol
et al., 2020a, Wang et al., 2021, Zhao et al., 2022a, 2024]:

∀g ∈ G,∀s, a, s′, P (s′ | s, a) = P (g · s′ | g · s, g · a) (1)
∀g ∈ G,∀s, a, R(s, a) = R(g · s, g · a) (2)

Here, g acts on the state and action spaces through group representations ρS
and ρA, respectively. For instance, the standard representation ρstd(g) of SO(2)
assigns each rotation g ∈ SO(2) a 2D rotation matrix R2×2(g) given by:

R(g) =

[
cos(g) sin(g)
− sin(g) cos(g)

]
This matrix represents a rotation by an angle g. The trivial representation ρtri(g)
assigns the one-dimensional identity matrix ρtri(g) = 11×1 to all g.

Properties. In a geometric MDP with a discrete symmetry group, the optimal
policy mapping is G-equivariant, as demonstrated in [Ravindran and Barto,
2004]. To incorporate symmetry constraints, one strategy is to ensure the entire
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Table 1: Examples of tasks modeled as geometric MDPs. G denotes the MDP symme-
try group, S denotes the MDP state space, and A denotes the MDP action space. We
can quantitatively measure the savings of equivariance. "Images" refers to panoramic
egocentric images Z2 → RH×W×3. ◦ denotes group element composition. We list the
quotient space S/G to provide intuition on savings. The Gx = {g · x | g ∈ G} column
shows the G-orbit space of S (∼= denotes isomorphic to).
ID G S A S/G Gx Task

1 C4 Z2 C4 Z2/C4 C4 2D Path Planning [Tamar et al., 2016]
2 C4 Images C4 Z2/C4 C4 2D Visual Navigation [Zhao et al., 2022a]

3 SO(2) R2 R2 R+ S1 2D Continuous Navigation [Zhao et al., 2024]
4 SO(3) R3 × R3 R3 R+ × R3 S2 3D Free Particle (with velocity)
5 SO(3) R3 ⋊ SO(3) R3 × R3 R+ × R3 S2 Moving 3D Rigid Body
6 SO(2) SO(2) R2 {e} S1 Free Particle on SO(2) ∼= S1 manifold
7 SO(3) SO(3) R3 {e} S2 Free Particle on SO(3) [Teng et al., 2023]
8 SO(2) SE(2) SE(2) R2 S1 Top-down Grasping [Zhu et al., 2022]
9 SO(2) (S1)2 × (R2)2 R2 S1 × (R2)2 S1 Two-arm Manipulation [Tassa et al., 2018]

policy mapping is equivariant: at = policy(st) [Wang et al., 2021, Zhao et al.,
2022a, van der Pol et al., 2020b, Zhao et al., 2024], as illustrated in Figure 1.

Many model-based RL algorithms rely on iteratively applying Bellman oper-
ations [Sutton and Barto, 2018]. We show that the symmetry G in a Geometric
MDP (GMDP) results in a G-equivariant Bellman operator. This implies that
the iterative process in model-based RL algorithms can be constrained to be
G-equivariant to exploit symmetry.

Additionally, for GMDPs, a specific instance of a dynamic programming
(DP)-based algorithm, value iteration, can be connected with geometric graph
neural networks [Bronstein et al., 2021]. For non-geometric graphs, Dudzik and
Veličković [2022] demonstrated the equivalence between dynamic programming
on a general non-geometric MDP and a message-passing GNN.

Theorem 1. The Bellman operator of a geometric MDP is equivariant under
the Euclidean group E(d), which includes d-dimensional isometric transforma-
tions.

We provide proofs and derivations in Appendix D. This extends the theorems
in [Zhao et al., 2022a] on 2D discrete groups, where they showed that value
iteration is equivariant under discrete subgroups of the Euclidean group, such
as discrete translations, rotations, and reflections. We generalize this result to
groups of the form

(
Rd,+

)
⋊ G, where G includes continuous rotations and

translations.1

3.3 Illustration and Examples of Geometric MDPs

Geometric MDP examples include moving a point robot in a 2D continuous
space (R2, Example 3 in Table 1) or a discrete space (Z2, Example 1 [Tamar
1 For the translation part, one may use relative/normalized positions or induced rep-

resentations [Lang and Weiler, 2020, Cohen et al., 2020].
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Fig. 1: Illustration of the coordinate regression problem (Sec 4.2) and its equivariance.
(Left) The energy function EBM takes image and coordinate samples and outputs
scalar energy value. (Right) Equivariance in coordinate regression: rotating the image
and augmenting samples results in rotated coordinate prediction.

et al., 2016]), which is the abstraction of 2D discrete or continuous navigation.
Table 1 includes more relevant examples. We use visual navigation over a 2D grid
(Z2 ⋊ C4, Example 2 [Zhao et al., 2022a, Lee et al., 2018]) as another example
of a Geometric MDP. In this example, each position in Z2 and orientation in
C4 has an image in RH×W×3, which is a feature map Z2 ⋊C4 → RH×W×3. The
agent only navigates on the 2D grid Z2 (potentially with an orientation of C4),
but not the raw pixel space. Example (4) extends to the continuous 3D space
and also includes linear velocity R3. Alternatively, we can consider (5) moving a
rigid body with SO(3) rotation. In (6) and (7), we consider moving free particle
positions on SO(2),SO(3), which are examples of optimal control on manifold in
[Teng et al., 2023, Lu et al., 2023]. Here, G = SO(3) acts on S = SO(3) by group
composition. (8) top-down grasping needs to predict SE(2) action on grasping
an object on a plane with SE(2) pose. It additionally has translation symmetry,
so the state space is technically SE(2)/SE(2) = {e}. (9) is the Reacher task,
where the agent controls a two-joint arm. It is easy to see that because two links
are connected, kinematic constraints restrict the potential possible improvement
with an equivariant algorithm. Additionally, Example (3) is later implemented
as PointMass, which is (8) top-down grasping without SO(2) rotation.

4 Equivariant Sampling-Based Action Selection

4.1 Action Selection via Sampling

Many real-world reinforcement learning (RL) and imitation learning problems
involve continuous actions at ∼ π(a | st). When the action space A is infinite,
the policy function may need to employ stochastic sampling.

Concretely, we focus on a two-step “implicit policy” strategy [Hansen et al.,
2022, Kalashnikov et al., 2018, Florence et al., 2021], illustrated in Figure 1 (left),
which solves the action optimization problem a∗ = argmina E(s, a) via sampling
in two steps: (1) A neural network evaluates state-action pairs (st,at) or tra-
jectories (st,at, st+1,at+1, . . .); (2) Online optimization is performed over the
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Fig. 2: Demonstration of results on coordinate regression problem: left two columns
for training on entire region, and right three columns for training only on coordinates
in first quadrant.

action space a ∈ A to select better actions for each state st using methods such
as the Cross-Entropy Method (CEM) [de Boer et al., 2005] or Model-Predictive
Path Integral [Williams et al., 2017b]. In step (1), the neural network can be pa-
rameterized as an energy function Eθ(s, a) being minimized (Implicit Behavior
Cloning, IBC; Florence et al. [2021]), a Q-value network Qθ(s, a) being maxi-
mized (QT-Opt; Kalashnikov et al. [2018]), or the N -step return of a trajectory
being maximized (TD-MPC; Hansen et al. [2022]).

4.2 Coordinate Regression Problem

In learning visuo-motor policies, a key challenge is converting high-dimensional
image data into continuous action outputs. This challenge is exemplified in the
coordinate regression problem [Florence et al., 2021], where the goal is to predict
the xy coordinates of a specific target marker within an image, as shown in
Figure 1 (left). We use this problem to demonstrate and study the equivariance
properties of action sampling.

In the coordinate regression problem, the objective is to predict the (x, y)
coordinate value v of a (green) marker on an image I: v∗ = argmaxv∈R2 Eθ(I, v),
which can be written as a function h(·) of the image v∗ = h(I).

The coordinate regression problem exhibits both rotation and reflection sym-
metry (or g ∈ D4 dihedral group). Specifically, if the input image is rotat-
ed/flipped g · I, the network should predict the rotated/flipped coordinate value
g · v: hθ(g · I) = g · hθ(I) ≡ g · v. Although simplified, the coordinate regression
problem captures many fundamental challenges inherent in visuomotor control
problems like robotic manipulation and control. Understanding the interplay
between symmetry and sampling in this problem will help build intuition for
equivariant action sampling in real-world tasks.

4.3 Strong and Weak Equivariance in Sampling

We can classify sampling methods that satisfy symmetry constraints as either
weak equivariance or strong equivariance. Suppose that we are trying to
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estimate the function f(x) via sampling

f(x) = Eω[q(x, ω)],

where ω is drawn from some probability distribution and q(x, ω) averaged over
the distribution of ω returns f(x). Now, suppose that we know a-priori that the
function f satisfies some equivariant constraints,

∀g ∈ G, f(g · x) = ρ(g−1)f(x).

This constraint arises naturally in many energy based models, where the en-
ergy function is invariant under some spatial symmetry, see Fig. 1. In the naive
approach, we can drawn m sample points ω1, ω2, ..., ωm i.i.d. and estimate the
sample average f̂(x) of the function f(x) as

f̂(x) =
1

m

m∑
i=1

q(x, ωi).

However, this approximation f̂(x) does not need to satisfy the original equivari-
ance property. We will say that a sample estimator f̂ of a G-equivariant function
f is weakly equivariant if

∀g ∈ G, Eω[q(g · x, ω)] = ρ(g−1)Eω[q(x, ω)] (3)

so that the G-equivariance properties of the estimator are recovered after averag-
ing. Note that a weakly equivariant estimator in Eq. 3 will have sample averages
that are not guaranteed to be G-equivariant. Analogously, we will say that a
sample estimator f̂ of a G-equivariant function f is strongly equivariant if

∀g ∈ G, q(g · x, ω) = ρ(g−1)q(x, ω) (4)

holds identically. A strongly equivariant estimator in Eq. 3 has sample aver-
ages that always satisfies G-equivariant condition, regardless of the number of
samples. Note that any strongly equivariant estimator is a weakly equivariant
estimator, but the converse is not true.

We show in the appendix Sec. D.1 that for any compact group G it is possible
to construct a strongly equivariant estimator f̂G of f from a weakly equivariant
estimator f̂ of f . Furthermore, the strongly equivariant estimator f̂G is guaran-
teed to be a better estimator of f than the weakly equivariant estimator f̂ .

4.4 Constructing Fully Equivariant Version of Action Sampling

Following the insight, we construct an equivariant action sampling approach
based on Implicit Behavior Cloning method (IBC) [Florence et al., 2021], an
energy-based approach that samples actions from a learned energy model. We
use it to illustrate how to design a sampling-based policy that is not only weakly
equivariant but also strongly equivariant in generating action samples.
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We propose an equivariant action sampling strategy which has two steps can
be used to produce action at for one time step. We must enforce equivariance
in both the energy function E(st,at), and (2) equivariance in sampling of ac-
tions at ∼ π(a | st). More concretely, we need to make these two steps respect
symmetry:

– Step 1: G-Invariant Energy Function: Weak Equivariance. We enforce the
constraint E(s,a) = E(g · s, g · a) to maintain G-invariance. Although this
condition guarantees equivariance under an infinite sampling regime, finite
sample sets can still introduce deviations due to sampling disparities, partic-
ularly noticeable when the sample size is small.

– Step 2: Symmetry Preservation in Sampling: Strong Equivariance. As CEM
samples actions from a Gaussian distribution, this randomness can disrupt the
underlying symmetries. To counteract this, we need to additionally introduce
a symmetry-preserving mechanism in the sampling process.

G-Augmented Sampling: Sampling on G-orbits. We propose a strategy to
preserve equivariance in sampling for strong equivariance2. We consider the sim-
plified case with a single time step, so the sampling draws N actions from a
random Gaussian distribution N (µ, σ2I), denoted as A = {ai}Ni=1. The score
(or “return” in RL terminology ) is simply a scalar value Q(s, a), also called a Q-
value in RL literature Sutton and Barto [2018]. To develop analogy with energy
models, we will sometime denote the return, as a function of state s and action a,
as E(s, a). Assuming we only select the best trajectory (K = 1), we require the
sampling algorithm to be equivariant: a0 = argmina E(s0, a). In other words, if
we rotate the state s0 → g · s0, the selected action is also rotated a0 → g · a0.

We can enforce this condition via the following simple strategy: for each single
sample a, we augment the action sampling via g · a, i.e., left to the orbit of G:
{g · a | g ∈ G}. Thus, the G-augmented sample set is GA = {g · ai | g ∈ G}Ni=1.
We indicate the sampling strategy as G-sample. The equivariance condition for
the reward function can be written as

g · a0 = g · argmin
a∈GA

E(s0, a) = argmin
a∈GA

E(g · s0, a). (5)

For a more detailed account, please refer to Sec E.

4.5 Evaluation of Equivariant Sampling on Coordinate Regression

Setup. In our experiments, we processed images at a resolution of 96×96 pixels.
The dataset consisted of 10 training images from either (1) the entire region
[0, 96]× [0, 96] or (2) only the first quadrant [0, 48]× [0, 48]. Each image features
a single red marker with randomly assigned coordinates (as shown in Fig 1),
using a fixed random seed to ensure consistency across models. The coordinates
2 We can remove randomness while keeping the correct distribution by reparameter-

izing the input with standard Gaussian noise.
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input to the energy function E(I, v) are normalized to [−1, 1]× [−1, 1]. For the
equivariant E(I, v), we use D4-equivariance3.

(1) The upper row of Figure 2 evaluates spatial generalization, present-
ing the model’s test performance on 500 random coordinates. A blue marker
indicates the model’s accurate prediction within a 1-pixel error range. (2) The
lower row shows the learned energy function’s landscape across a 96× 96 grid
visualized as a color map, with a test marker fixed at coordinate (72, 72). The
color intensity corresponds to the energy levels, guiding the CEM in identifying
potential coordinate predictions.

Additionally, we visualized the training data points as crosses (×) within the
prediction error (upper row) and energy color map (lower row) and delineated
the convex hull of these training points. The convex hull represents the smallest
convex set that contains all the training data points and serves as a boundary
for evaluating the model’s extrapolation capabilities.

Evaluation: Coordinate Regression Spatial Generalization. (1) When training
across the entire region, the use of equivariance in both energy and sampling re-
sulted in more blue points with errors less than 1 pixel, indicating a well-trained
energy function that supports accurate predictions during sampling. (2) When
training was limited to the first quadrant, the non-equivariant model struggled
to generalize beyond the convex hull, especially in regions outside [0, 48]× [0, 48].
However, the implementation of a G-invariant energy function combined with
G-augmented sampling significantly enhanced the model’s extrapolation capa-
bilities. This underscores the importance of equivariance in improving model
generalization, particularly through the use of augmented sampling.

Fig. 3: Measuring the equivariance error
of using whether G-invariant E(s, a) and
whether augment action with G.

Analysis: Equivariance Error in 1-Step
CEM. To explore the relationship be-
tween equivariance and finite samples, we
simulate CEM using untrained equivari-
ant and non-equivariant energy functions
E(s, a), thereby avoiding any learned
equivariance from data. We measure the
equivariance error under two conditions:
(1) using a D4-equivariant (90◦ rota-
tions and reflections) or non-equivariant
energy-based model E(s, a), and (2) em-
ploying a G-augmented equivariant action
sampling strategy. We utilize randomly initialized models and random action
samples with µ = 2 (shared across four variants but resampled between runs)
and average the results over 50 seeds, as shown in Fig 3. The results indicate
that while the equivariant EBM without G-augmentation requires more sam-
ples to achieve a low equivariance error, the G-augmented sampling consistently
3

(1) The image I has dimensions 3× 96× 96, with group actions involving i) spatial rotation of the image, and ii)
no action on the RGB channels. (2) The coordinate input u to the energy function is essentially a 2×1×1 vector
(no spatial dimension), with group actions involving i) no spatial rotation, and ii) standard G-representation
(2 × 2 rotation matrix).
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Fig. 4: The proposed sampling-based planning algorithm a0 = plan(s0): if the input
state is rotated, the output action should be rotated accordingly. This requires (1) the
learned functions to be G-equivariant or G-invariant networks and (2) a specialized
sampling strategy, as introduced in our method.

maintains perfect equivariance. This confirms the superiority of our proposed
algorithm over sampling algorithms that lack G-action augmentation and those
that do not employ a G-equivariant model.

5 Equivariant Sampling-based Planning Algorithm

In this section, we present an equivariant model-based RL algorithm designed
for continuous action spaces, leveraging continuous symmetry through symmetric
sampling. To plan in continuous spaces, we employ sampling-based methods such
as MPPI [Williams et al., 2017a, 2015], extending them to maintain equivariance.
Our approach builds on prior work [Zhao et al., 2022a] that utilized value-based
planning in a discrete state space Z2 with the discrete group D4, extending these
concepts to continuous domains.

The core idea is to ensure that the algorithm at = plan(st) produces actions
that are consistent under transformations, i.e., it is G-equivariant: g · at ≡ g ·
plan(st) = plan(g · st), as illustrated in Figure 1. This principle is applicable to
MDPs with various symmetry groups.

5.1 Components

We use TD-MPC [Hansen et al., 2022] as the foundation of our implementa-
tion. Here, we introduce the procedure and demonstrating how to incorporate
symmetry into sampling-based planning algorithms.

– Planning with learned models. We utilize the MPPI (Model Predictive Path
Integral) control method [Williams et al., 2017a,b, 2015, 2016], as adopted in
TD-MPC [Hansen et al., 2022]. We sample N trajectories with a horizon H
using the learned dynamics model, with actions derived from a learned policy,
and estimate the expected total return.
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– Training models. The learnable components in equivariant TD-MPC include:
an encoder that processes input observations, dynamics and reward networks
that simulate the MDP, and value and policy networks that guide the plan-
ning process.

– Loss. The only requirement is that the loss function is G-invariant. The loss
terms in TD-MPC include value-prediction MSE loss and dynamics/reward-
consistency MSE loss, all of which satisfy invariance.

5.2 Integrating Symmetry

Zhao et al. [2022a] consider how the Bellman operator transforms under sym-
metry transformation. For sampling-based methods, one needs to consider how
the sampling procedure changes under symmetry transformation. Specifically,
under a symmetry transformation, differently sampled trajectories must trans-
form equivariantly. This is shown in Figure 1. The equivariance of the transition
model in sampling-based approaches to machine learning has also been studied
in [Park et al., 2022]. There are several components that need G-equivariance,
and we discuss them step-by-step and illustrate them in Figure 1.

1. dynamics and reward model. In the definition of symmetry in Geomet-
ric MDPs (and symmetric MDPs [Ravindran and Barto, 2004, Zhao et al.,
2022a, van der Pol et al., 2020b]) in Equation 1, the transition and reward
functions are G-equivariant and G-invariant respectively. Therefore, in imple-
mentation, the transition network is deterministic and uses a G-equivariant
MLP, and the reward network is constrained to be G-invariant. Additionally,
in implementation, planning is typically performed in latent space, using a
latent dynamics model f̄(z,a) = z′.

2. value and policy model. The optimal value function produces a scalar
for each state and is G-invariant, while the optimal policy function is G-
equivariant [Ravindran and Barto, 2004]. If we use G-equivariant transition
and G-invariant reward networks in updating our value function T [Vθ] =∑

a Rθ(s,a) + γ
∑

s′ Pθ(s
′|s,a)Vθ(s

′), the learned value network Vθ will also
satisfy the symmetry constraint. Similarly, we can extract an optimal policy
from the value network, which is also G-equivariant [Wang et al., 2021, Zhao
et al., 2022a, van der Pol et al., 2020b].

3. MPC procedure. We consider equivariance in the MPC procedure in two
parts: sample trajectories from the MDP using learned models, and compute
their returns, return(sample(s, θ)). We discuss the invariance and equivari-
ance of it in the next subsection.

We list the equivariance or invariance conditions that each network needs to
satisfy. Alternatively, for scalar functions, we can also say they transform under
trivial representation ρ0 and are thus invariant. All modules are implemented
via G-steerable equivariant MLPs: ρout(g) ·y = ρout(g) ·MLP(x) = MLP(ρin(g) ·x).



Equivariant Action Sampling for Reinforcement Learning and Planning 13

fθ : S ×A → S : ρS(g) · fθ(st,at) = fθ(ρS(g) · st, ρA(g) · at) (6)
Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (7)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (8)
πθ : S → A : ρA(g) · πθ(· | st) = πθ(· | ρS(g) · st) (9)

5.3 Equivariance of MPC

Analogous to equivariant action selection for single-step case, we constrain the
underlying MPC planner to be equivariant. We use MPPI (Model Predictive
Path Integral) [Williams et al., 2017b, 2015], which has been used in TD-MPC
for action selection. An MPPI procedure samples multiple H-horizon trajectories
{τi} from the current state st using the learned models. We use sample to refer
to the procedure: τi ≡ sample(st; fθ, Rθ, Qθ, πθ) = (st,at, st+1,at+1, . . . , st+H).
Another procedure return computes the accumulated return, evaluating the
value of a trajectory for top-k trajectories:

return(τ) = Eτ

[
γHQθ (sH ,aH) +

H−1∑
t=0

γtRθ (st,at)

]
= Eτ [U(s1:H ,a1:H−1)]

(10)
A trajectory is transformed element-wise by g: g · τi = (g ·st, g ·at, g ·st+1, g ·

at+1, . . . , g · st+H). However, since µ and σ in action sampling are not state-
dependent, the MPPI sample does not exactly preserve equivariance: rotating
the input does not deterministically guarantee a rotated output, similar to CEM.
Thus, we can (1) constrain return to be G-invariant and (2) use G to augment
the sampling of action sequence (at, . . . ,at+H).

Proposition 1. The return procedure is G-invariant, and the G-augmented
G-sample procedure that augment A using transformation in G is G-equivariant
when K = 1.

We further explain in Appendix E. In summary, for sampling and computing
return, the sampling procedure satisfies the following conditions, indicating that
the procedure return(G-sample(s, θ)) is invariant, i.e., not changed under group
transformation for any g. We use return(τi) to indicate the return of a specific
trajectory τi and g · τi to denote group action on it.

G-sample : st, θ 7→ τi : g · τi ∼ G-sample(g · st; fθ, Rθ, Qθ, πθ) (11)
return : τi 7→ R : return(τi) = return(g · τi) (12)
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Fig. 5: Tasks used in experiments: (1) PointMass in 2D, (2) Reacher, (3) Customized
3D version of PointMass with multiple particles to control, and (4) MetaWorld task to
reach an object with gripper.

6 Evaluation: Sampling-Based Planning

In this section, we present the setup and results for our proposed sampling-based
planning algorithm: the equivariant version of TD-MPC. Additional details and
results are available in Appendix F.

6.1 Experimental Setup

Tasks. We verify the algorithm on a few selected and customized tasks using
the DeepMind Control suite (DMC) [Tassa et al., 2018], visualized in Figure 5.
One task is a 2D particle moving in R2, PointMass. We customize tasks based
on it: (1) 3D particle moving in R3 (disabled gravity), and (2) 3D N -point
moving that has several particles to control simultaneously. The goal is to move
particle(s) to a target position. We also experiment with tasks on a two-link
arm, Reacher (easy and hard), where the goal is to move the end-effector to a
random position in a plane. Reacher Easy and Hard are top-down tasks where
the goal is to reach a random 2D position. If we rotate the MDP, the angle
between the first and second links is not affected, i.e., it is G-invariant. The
first joint and the target position are transformed under rotation, so we set
it to ρ1 standard representation (2D rotation matrices). The system has O(2)
rotation and reflection symmetry, hence we use D8 and D4 groups. We also
use MetaWorld tabletop manipulation [Yu et al., 2019]. The action space is 3D
gripper movement (∆x,∆y,∆z) and 1D openness. The state space includes (1)
gripper position, (2) 3D position plus 4D quaternion of at most 2 relevant objects,
and (3) 3D randomized goal position, depending on tasks. If we consider tasks
with gravity, the MDP itself should exhibit SO(2) symmetry about the gravity
axis. In implementation, the symmetry also depends on the data distribution,
so we make the origin at the workspace center and the gripper initialized at
the origin, so the task respects rotation equivariance around the origin. We add
SO(2) equivariance to the algorithm about the gravity axis.

Experimental setup. We compare against the non-equivariant version of TD-
MPC [Hansen et al., 2022]. By default, we make all components equivariant as
described in the algorithm section. In Sec F.3, we include ablation studies for
disabling or enabling each equivariant component.
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Fig. 6: (Upper) Results on PointMass, Reacher, and MetaWorld Reach task. (Lower)
A set of customized 3D N -ball PointMass tasks, with N = 1, 2, 3, and a customized
3D PointMass with a smaller target.

The training procedure follows TD-MPC [Hansen et al., 2022]. We use the
state as input and for equivariant TD-MPC, we divide the original hidden di-
mension by

√
N , where N is the group order, to keep the number of parameters

roughly equal between the equivariant and non-equivariant versions. We mostly
follow the original hyperparameters except for seed_steps. We use 5 random
seeds for each method.

Algorithm setup: equivariance. We use discretized subgroups in implementing
G-equivariant MLPs with the escnn package [Weiler and Cesa, 2021], which
are more stable and easier to implement than continuous equivariance. For the
2D case, we use O(2) subgroups: dihedral groups D4 and D8 (4 or 8 rotation
components), or rotation group C8 (45◦ rotations). For the 3D case, we use the
icosahedral and octahedral groups, which are finite subgroups of SO(3) with
orders 60 and 24 respectively. On Reacher tasks, we also compare against a
planning-free baseline by removing MPPI planning with the learned model and
only keeping the policy learning, as shown in Fig 8.

6.2 Results

Figures 6 (upper and lower rows) present the reward curves, demonstrating that
our equivariant methods can achieve near-optimal performance 2 to 3 times
faster in terms of training interaction steps for several tasks. For the default 2D
PointMass task, the D8-equivariant version learns slightly faster than the non-
equivariant version. In the Reacher task, as shown in the lower part of Figure 6,
the D8-equivariant version significantly outperforms the non-equivariant TD-
MPC, especially in the Hard domain. The D4-equivariant version also performs
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better than the baseline, though not as well as D8. The rightmost plot illustrates
the MetaWorld Reach task, which involves reaching a button on a desk using
a parallel gripper. We added SO(2) equivariance to the algorithm about the
gravity axis and evaluated the C8 and D8-equivariant versions, both of which
demonstrated more efficient learning.

In the Reacher tasks, we also compared against a planning-free baseline
by removing MPPI planning with the learned model and retaining only policy
learning, as shown in Figure 8. This approach is effectively similar to the DDPG
algorithm [Lillicrap et al., 2016].

We designed a set of more challenging 3D versions of PointMass and used
SO(3) subgroups to implement 3D equivariant versions of TD-MPC, utilizing
icosahedral- and octahedral-equivariant MLPs. Figure 6 (lower) shows tasks with
N = 1, 2, 3 balls in 3D PointMass, and the rightmost figure depicts a 1-ball 3D
version with a smaller target (0.02 compared to 0.03 in the N -ball version).

We found that the icosahedral (order 60) equivariant TD-MPC consistently
learns faster and uses fewer samples to achieve the best rewards compared to
the non-equivariant version. The octahedral (order 24) equivariant version also
performs similarly. Interestingly, the best absolute rewards in the 1-ball case are
lower than in the 2- and 3-ball cases, which may be due to the higher possible
return from having 2 or 3 balls that can reach the goal.

With higher-order 2D discrete subgroups, the performance plateaus but com-
putational costs increase, so we use up to D8. We also find TD-MPC is especially
sensitive to a hyper-parameter seed_steps that controls the number of warm-up
trajectories. In contrast, our equivariant version is robust to it and sometimes
learns better with less warm-up. In the shown curves, we do not use warm-up
across non-equivariant and equivariant ones and present additional results in
Appendix F. Most of these tasks are goal-reaching and have optimal rewards,
thus the number of transitions used to reach near-optimal is a proxy of sample
efficiency. The reward curves show the superiority of our equivariant sampling-
based approach.

7 Conclusion and Discussion

This work introduces a two-step approach to preserve symmetry in sampling-
based planning and control for continuous tasks. Using equivariant sampling, our
method improves decision-making efficiency and performance in various control
environments. Our findings highlight the benefits of integrating symmetry into
sampling-based model-based RL algorithms, enhancing current practices and
opening avenues for future research in continuous control and robotics applica-
tions.
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A Outline

The appendix is organized as follows: (1) additional discussion, including related
work and theoretical background, (2) theory, derivation, and proofs, (3) imple-
mentation details and further empirical results, and (4) additional mathematical
background.

B Additional Discussion

B.1 Discussion: Symmetry in Decision-making

In this work, we study the Euclidean symmetry E(d) from geometric transforma-
tions between reference frames. This is a specific set of symmetries that an MDP
can have – isometric transformations of Euclidean space Rd, such as the distance
is preserved. This can be viewed as a special case under the framework of MDP
homomorphism, where symmetries relate two different MDPs via MDP homo-
morphism (or more strictly, isomorphism). We refer the readers to [Ravindran
and Barto, 2004] for more details. We also discuss symmetry in other related
fields.
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Classic planning algorithms and model checking have leveraged the use of
symmetry properties, [Fox and Long, 1999, 2002, Pochter et al., 2011, Domsh-
lak et al., Shleyfman et al., 2015, Sievers et al., 2015, Sievers, Sievers et al.,
2019, Fiser et al., 2019] as evident from previous research. In particular, Zinke-
vich and Balch [2001] demonstrate that the value function of an MDP is in-
variant when symmetry is present. However, the utilization of symmetries in
these algorithms presents a fundamental problem since they involve construct-
ing equivalence classes for symmetric states, which is difficult to maintain and
incompatible with differentiable pipelines for representation learning. Narayana-
murthy and Ravindran [2008] prove that maintaining symmetries in trajectory
rollout and forward search is intractable (NP-hard). To address the issue, recent
research has focused on state abstraction methods such as the coarsest state
abstraction that aggregates symmetric states into equivalence classes studied
in MDP homomorphisms and bisimulation [Ravindran and Barto, 2004, Ferns
et al., 2004, Li et al., 2006]. However, the challenge lies in that these meth-
ods typically require perfect MDP knowledge and do not scale well due to the
complexity of constructing and maintaining abstraction mappings [van der Pol
et al., 2020a]. To deal with the difficulties of symmetry in forward search, recent
studies have integrated symmetry into reinforcement learning based on MDP ho-
momorphisms [Ravindran and Barto, 2004], including van der Pol et al. [2020a]
that integrate symmetry through an equivariant policy network. Furthermore,
Mondal et al. [2020] previously applied a similar idea without using MDP ho-
momorphisms. Park et al. [2022] learn equivariant transition models, but do not
consider planning, and Zhao et al. [2022b] focuses on permutation symmetry in
object-oriented transition models. Recent research by [Zhao et al., 2022a, 2023b]
on 2D discrete symmetry on 2D grids has used a value-based planning approach.

There are some benefits of explicitly considering symmetry in continuous
control. The possibility of hitting orbits is negligible, so there is no need for orbit-
search on symmetric states in forward search in continuous control. Additionally,
the planning algorithm implicitly plans in a smaller continuous MDP M/G
[Ravindran and Barto, 2004]. Furthermore, from equivariant network literature
[Elesedy and Zaidi, 2021], the generalization gap for learned equivariant policy
and value networks are smaller, which allows them to generalize better.

B.2 Limitations and Future Work

Although Euclidean symmetry group is infinite and seems huge, it does not guar-
antee significant performance gain in all cases. Our theory helps us understand
when such Euclidean symmetry may not be very beneficial The key issue is that
when a robot has kinematic constraints, Euclidean symmetry does not change
those features, which means that equivariant constraints cannot share parame-
ters and reduce dimensions. We empirically show this on using local vs. global
reference frame in the additional experiment in Sec F. For further work, one
possibility is to explicit consider constraints while keep using global positions.
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C Mathematical Background

C.1 Background for Representation Theory and G-steerable
Kernels

We establish some notation and review some elements of group theory and repre-
sentation theory. For a comprehensive review of group theory and representation
theory, please see [Serre, 2005]. The identity element of any group G will be de-
noted as e. We will always work over the field R unless otherwise specified.

C.2 Group Definition

A group is a non-empty set equipped with an associative binary operation · :
G×G → G where · satisfies

Existence of identity: ∃e ∈ G, s.t. ∀g ∈ G, e · g = g · e = g

Existence of inverse: ∀g ∈ G,∃g−1 ∈ G s.t. g · g−1 = g−1 · g = e

For a complete reference on group theory, please see Zee [2016].

Group Representations A group is an abstract object. Oftentimes, when
working with groups, we are most interested in group representations. Let V be
a vector space over C. A representation (ρ, V ) of G is a map ρ : G → Hom[V, V ]
such that

∀g, g′ ∈ G, ∀v ∈ V, ρ(g · g′)v = ρ(g) · ρ(g′)v

Concisely, a group representation is a embedding of a group into a set of matrices.
The matrix embedding must obey the multiplication rule of the group. Over
R and C all representations break down into irreducible representations Serre
[2005]. We will denote the set of irreducible representations of a group G and Ĝ.

Group Actions Let Ω be a set. A group action Φ of G on Ω is a map Φ :
G×Ω → Ω which satisfies

Identity: ∀ω ∈ Ω, Φ(e, ω) = ω

Compositionality: ∀g1, g2 ∈ G, ∀ω ∈ Ω, Φ(g1g2, ω) = Φ(g1, Φ(g2, ω))

We will often suppress the Φ function and write Φ(g, ω) = g · ω.

Ω Ω′

Ω Ω′

Φ(g,·)

Ψ

Φ′(g,·)

Ψ

Fig. 7: Commutative Diagram For G-equivariant function: Let Φ(g, ·) : G×Ω →
Ω denote the action of G on Ω. Let Φ′(g, ·) : G × Ω′ → Ω′ denote the action
of G on Ω′ The map Ψ : Ω → Ω′ is G-equivariant if and only if the following
diagram is commutative for all g ∈ G.
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Let G have group action Φ on Ω and group action Φ′ on Ω′. A mapping
Ψ : Ω → Ω′ is said to be G-equivariant if and only if

∀g ∈ G,∀ω ∈ Ω, Ψ(Φ(g, ω)) = Φ′(g, Ψ(ω)) (13)

Diagrammatically, Ψ is G-equivariant if and only if the diagram C.2 is commu-
tative.

D Theory and Proofs

This section includes more insights and explanation of equivariant sampling and
its benefits, as well as the equivariance properties of Geometric MDP.

D.1 Toy Models of Equivariant Sampling

Let us consider a toy model of equivariant sampling. This will illustrate the
importance of symmetry considerations in sampling methods. Specifically, this
example illustrates that if sampling is performed incorrectly, the finite sample
averages will not have the same symmetries as the infinite sample average. We
show how the desired symmetries can be recovered via a ‘group averaging’. Let
f : R → R be any smooth function. Let us define the ‘energy’ function H : Rd →
R as

H(x) = Eω[f(ω
Tx)]

where the random vector ω ∼ N (0, Id) is drawn from a normal distribution with
zero mean and identity matrix covariance Id. The random variable ω is isotropic
and both ω and Oω are drawn from the same distribution for any orthogonal
matrix O. Thus, we have that

∀O ∈ O(d), H(O · x) = Eω[f(ω
TOx)] = Eω[f((Oω)Tx)] = Eω[f(ωx)] = H(x)

where we have used the fact that the random variable ω satisfies the property
ω = Oω. Thus, H(Ox) = H(x) is a left O(d)-invariant quantity. Now, suppose
that we try to approximate H(x) by random sampling. In the naive approach
to estimation of H(x), we can drawn m iid sample points ω1, ω2, ..., ωm iid from
N (0, Id) and estimate the function H(x) as

Ĥ(x) =
1

M

M∑
m=1

f(ωix)

However, this approximation Ĥ(x) does not need to satisfy the original symmetry
property and Ĥ(Ox) = Ĥ(x) is not guaranteed to hold. Because we know that
the true function H(x) is left O(d)-invariant, it seems like we should be able to
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construct and estimate to H(x) that is always left O(d)-invariant. Let G be a
compact group, we can always ‘symmetrize’ the sample estimate Ĥ(x) via

ĤG(x) =

∫
g∈O(d)

dg Ĥ(g · x)

The symmetrized ĤG(x) is then guaranteed to satisfy ĤG(g · x) = HG(x) for
all g ∈ O(d). Furthermore, the symmetrized estimate ĤG is always guaranteed
to be a better estimate of H than Ĥ. To see this, note that, for any function
F : G → C,

|
∫
g∈G

dg F (g)| ≤
∫
g∈G

dg |F (g)|

holds via the triangle inequality. Thus, letting F (g) = H(x)− Ĥ(g · x) we have
that

|
∫
g∈G

dg H(x)− Ĥ(g · x)| ≤
∫
g∈G

dg |H(x)− Ĥ(g · x)|

Ergo, by definition of the symmetrized estimate ĤG, we have that∫
g∈G

dg |H(g · x)− ĤG(g · x)| ≤
∫
g∈G

dg |H(g · x)− Ĥ(g · x)|

so that the error |H(x) − ĤG(x)| is always less than the error |H(x) − Ĥ(x)|
when averaged on G orbits. This is example is of course artificial. However, the
sampling methodology developed in (ref main text) ensures that sample averages
always have the same symmetries of the true energy functional is based on the
same idea. It is easy to see that this can be extended from G-invariant to G-
equivariant functions by modifying the averaging operator,∫

g∈O(d)

dg Ĥ(g · x) →
∫
g∈O(d)

dg ρ(g−1)Ĥ(g · x)

D.2 Equivariant Sampling Is Always Better

Let G be a compact group. Suppose that we have an MDP with symmetry with
optimal policy π⋆(a|s). Using a result of [van der Pol et al., 2020b], the optimal
policy satisfies the relation ∀g ∈ G, π⋆(ga | gs) = π⋆(a | s).

Let us suppose that we have an learning policy π, which may or may not
satisfy the π(ga|gs) = π(a|s) condition derived in [van der Pol et al., 2020b].
Given any policy π(a|s) we can always ‘symmetrize’ the policy by defining a
new policy ΠG[π] : S → A defined as

ΠG[π](a|s) =
∫
g∈G

dg π(g · a|g · s)
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Then, the symmetrized policy ΠG[π] satisfies the condition

∀g ∈ G, ΠG[π](g · a|g · s) = ΠG[π](a|s)

The operator ΠG can be viewed as a operator which takes as input an arbitrary
policy π and returns a policy ΠG[π] which is G-invariant. Under the assumption
of un-biasedness, the symmetrized policy ΠG[π] is always better than the policy
π. To see this, let D be a metric on the action space and consider the G-averaged
error ∫

g∈G

dg D(π⋆(ga|gs), π(ga|gs))

where π⋆(ga|gs) = π⋆(a|s) is the true optimal policy. Now, using the triangle
inequality, we have that

D(π⋆(a|s),
∫
g∈G

dg π(ga|gs)) ≤
∫
g∈G

dg D(π⋆(ga|gs), π(ga|gs))

Thus, using the definition of the G-averaged policy, we have that

D(π⋆(a|s), ΠG[π](a|s)) ≤
∫
g∈G

dg D(π⋆(ga|gs), π(ga|gs))

Using the fact that both π⋆ and ΠG[π] are G-invariant, we can rewrite this as,∫
g∈G

dg D(π⋆(ga|gs), ΠG[π](ga|gs)) ≤
∫
g∈G

dg D(π⋆(ga|gs), π(ga|gs))

Ergo, the G-averaged policy ΠG[π] is always closer to the true policy than the
policy π. Thus, a arbitrary policy is always worse than its symmetrized counter-
part.

D.3 Theorem 1: Equivariance in Geometric MDPs

Theorem 1 The Bellman operator of a GMDP is equivariant under Euclidean
group E(d).

Proof. The Bellman (optimality) operator is defined as

T [V ](s) := max
a

R(s,a) +

∫
ds′P (s′ | s,a)V (s′), (14)

where the input and output of the Bellman operator are both value function
V : S → R. The theorem directly generalizes to Q-value function.

Under group transformation g, a feature map (field) f : X → Rcout is trans-
formed as:

[Lgf ] (x) =
[
f ◦ g−1

]
(x) = ρout(g) · f

(
g−1x

)
, (15)

where ρout is the G-representation associated with output Rcout . For the scalar
value map, ρout is identity, or trivial representation.
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For any group element g ∈ E(d) = Rd ⋊ O(d), we transform the Bellman
(optimality) operator step-by-step and show that it is equivariant under E(d):

Lg [T [V ]] (s)
(1)
= T [V ](g−1s) (16)
(2)
= max

a
R(g−1s,a) +

∫
ds′ · P (s′ | g−1s,a)V (s′) (17)

(3)
= max

ā
R(g−1s, g−1ā) +

∫
d(g−1s̄) · P (g−1s̄ | g−1s, g−1a)V (g−1s̄)

(18)
(4)
= max

ā
R(s, ā) +

∫
d(g−1s̄) · P (s̄ | s,a)V (g−1s̄) (19)

(5)
= max

ā
R(s, ā) +

∫
ds̄ · P (s̄ | s,a)V (g−1s̄) (20)

(6)
= T [Lg[V ]](s) (21)

For each step:

– (1) By definition of the (left) group action on the feature map V : S → R,
such that g ·V (s) = ρ0(g)V (g−1s) = V (g−1s). Because V is a scalar feature
map, the output transforms under trivial representation ρ0(g) = Id.

– (2) Substitute in the definition of Bellman operator.
– (3) Substitute a = g−1(ga) = g−1ā. Also, substitute g−1s̄ = s′.
– (4) Use the symmetry properties of Geometric MDP: P (s′ | s,a) = P (g · s |

g · s, g · a) and R(s,a) = R(g · s, g · a).
– (5) Because g ∈ E(d) is isometric transformations (translations Rd, rotations

and reflections O(d)) and the state space carries group action, the measure
ds is a G-invariant measure d(gs) = ds. Thus, ds̄ = d(g−1s̄).

– (6) By the definition of the group action on V .

The proof requires the MDP to be a Geometric MDP with Euclidean sym-
metry and the state space carries a group action of Euclidean group. Therefore,
the Bellman operator of a Geometric MDP is E(d)-equivariant. Additionally, we
can also parameterize the dynamics and reward functions with neural networks,
and the learned Bellman operator is also equivariant.

The proof is analogous to the case in [Zhao et al., 2022a], where the symmetry
group is p4m = Z2⋊D4, which is a discretized subgroup of E(2). A similar state-
ment can also be found in symmetric MDP [Zinkevich and Balch, 2001], MDP
homomorphism induced from symmetry group [Ravindran and Barto, 2004], and
later work on symmetry in deep RL [Wang et al., 2021, van der Pol et al., 2020b].

We additionally discuss another theorem.
Theorem 2 For a GMDP, value iteration is an E(d)-equivariant geometric

message passing.
Proof. We prove by constructing value iteration with For a more rigorous

account on the relationship between dynamic programming (DP) and message
passing on non-geometric MDPs, see [Dudzik and Veličković, 2022].
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Notice that they satisfy the following equivariance conditions:

Pθ : S ×A× S → R+ : Pθ(st+1 | st,at) = Pθ(ρS(g) · st+1 | ρS(g) · st, ρA(g) · at)
(22)

Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (23)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (24)
Vθ : S → R : Vθ(st) = Vθ(ρS(g) · st) (25)

(26)

We construct geometric message passing such that it uses scalar messages
and features and resembles value iteration.

Then, we can use geometric message passing network to construct value iter-
ation, which is to iteratively apply Bellman operators. We adopt the definition
of geometric message passing based on [Brandstetter et al., 2021] as follows.

m̃ij = ϕm

(
f̃i, f̃j , ãij

)
(27)

f̃ ′i = ϕf

f̃i,
∑

j∈N (i)

m̃ij , ãi

 . (28)

The tilde means they are steerable under G transformations.
We want to construct value iteration:

Q(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)V (s′) (29)

V ′(s) =
∑
a

π(a|s)Q(s, a) (30)

To construct a geometric graph, we let vertices V be states s and edges E
be state-action transition (s,a) labelled by a. For the geometric features on
the graph, there are node features and edge features. Node features include
maps/functions on the state space: S → RD, and edge features include functions
on the state-action space S ×A → RD.

For example, state value function V : S → R is (scalar) node feature, and
Q-value function Qθ : S ×A → R and reward function Rθ : S ×A → R are edge
features. The message m̃ij is thus a scalar for every edge: m̃ij = π(a|s)Q(s, a),
and f̃ ′i is updated value function f̃ ′i = V ′(s). It is possible to extend value iteration
to vector form as in Symmetric Value Iteration Network and Theorem 5.2 in
[Zhao et al., 2022a], while we leave it for future work.

E Algorithm Design of Equivariant TD-MPC

We elaborate on the algorithm design in this section.
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Invariance of return. We compute the expected return of sampled trajectories,
and study how it is transformed:

return(τ) = Eτ

[
γHQθ (sH ,aH) +

H−1∑
t=0

γtRθ (st,at)

]
= Eτ [U(s1:H ,a1:H−1)]

(31)

return(g · τ) = Eg·τ

[
γHρ0(g) ·Qθ (g · sH , g · aH) +

H−1∑
t=0

γtρ0(g) ·Rθ (g · st, g · at)

]
(32)

=

∫
g∈G

ρ0(g)dg · Eτ [U(g · s1:H , g · a1:H−1)] (33)

= 1 · Eτ [U(s1:H ,a1:H−1)] = return(τ) (34)

In Equation 32, we use ρ0(g) = 1 to denote that the output is not trans-
formed, so we may extract the term out. In Equation 33, dg is a Haar measure
that absorbs the normalization factor, and we can extract the term from expec-
tation. Equation 34 uses the invariance of Qθ and Rθ. In other words, the return
under the G-orbit of trajectories is the same, thus return is G-invariant.

Equivariance of G-sample. In Model Predictive Path Integral (MPPI) [Williams
et al., 2017a], we sample N actions from a random Gaussian distribution N (µ, σ2I),
denoted as A = {ai}Ni=1. However, since µ and σ are not state-dependent,
CEM/MPPI does not satisfy the condition of equivariance, which requires that
rotating the input results in a rotated output. To address this, we propose a
solution - augmenting the action sampling by transforming with all elements in
the group G: GA = {g · ai | g ∈ G}Ni=1. This approach ensures that our method
can handle different orientations and maintain the property of equivariance.

To validate our approach, we first demonstrate the equivariance condition
mathematically. We assume that (s0, a0) gives the maximum value

a0 = arg max
a∈GA

Q(s0, a).

If we consider

g · a0 = g · arg max
a∈GA

Q(s0, a) = arg max
a∈GA

Q(g · s0, a),

it implies that if we rotate the state to g · s0, we expect g · a0 to still provide the
maximum Q-value so that argmax can select it. The proof is validated using the
invariance of Q, Q(g · s, g · a) = Q(s, a). Hence,

a′0 = arg max
a∈GA

Q(g · s0, a) = arg max
a∈GA

Q(s0, g
−1 · a).

By comparing these two equations, we find that a′0 = g · a0.
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Note that when not augmenting A, it is not guaranteed that g · a0 exists in
A. However, when the number of samples approaches infinity, g ·a0 can get close
to some element in A.

The proof can be directly applied to multiple steps, as return is also G-
invariant.

F Implementation Details and Additional Evaluation

F.1 Implementation Details: Equivariant TD-MPC

We mostly follow the implementation of TD-MPC [Hansen et al., 2022]. The
training of TD-MPC is end-to-end, i.e., it produces trajectories with a learned
dynamics and reward model and predicts the values and optimal actions for
those states. It closely resembles MuZero [Schrittwieser et al., 2019] while uses
MPPI (Model Predictive Path Integral [Williams et al., 2017a, 2015]) for con-
tinuous actions instead of MCTS (Monte-Carlo tree search) for discrete actions.
It inherits the drawbacks from MuZero - the dynamics model is trained only
from reward signals and may collapse or experience instability on sparse-reward
tasks. This is also the case for the tasks we use: PointMass and Reacher and
their variants, where the objectives are to reach a goal position.

F.2 Experimental Details

We implement G-equivariant MLP using escnn [Weiler and Cesa, 2021] for pol-
icy, value, transition, and reward network, with 2D and 3D discrete groups. For
all MLPs, we use two layers with 512 hidden units. The hidden dimension is set
to be 48 for non-equivariant version, and the equivariant version is to keep the
same number of free parameters, or sqrt strategy.

For example, for D8 group, sqrt strategy (to keep same free parameters)
has number of hidden units divided by

√
|D8| =

√
16 = 4. The other strategy

is to make equivariant networks’ input and output be compatible with non-
equivariant ones: linear strategy, which keeps same input/output dimensions
(number of hidden units divided by |D8| = 16).

We use two strategies: sqrt strategy (to keep same free parameters, number
of hidden units divided by

√
|D8| =

√
16 = 4) on specifying the number of

hidden units, we use linear strategy that keeps same input/output dimensions
(number of hidden units divided by |D8| = 16)

The hidden space uses regular representation, which is common for discrete
equivariant network [Zhao et al., 2022a, Weiler and Cesa, 2021, Cohen and
Welling, 2016a].

F.3 Additional Results

Ablation on model-based vs. model-free (“planning-free”). We ablate the use of
planning component in equivariant version of TD-MPC, which is to justify why
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Fig. 8: Ablation study on planning component.

we aim to build model-based version of equivariant RL algorithm over model-
free counterparts. The results are shown in Figure 8. On both Reacher Easy and
Hard, with planning, the performance is much better.

Ablation on equivariant components. Recall that we have several equivariant
components in equivariant TD-MPC:

fθ : S ×A → S : ρS(g) · fθ(st,at) = fθ(ρS(g) · st, ρA(g) · at) (35)
Rθ : S ×A → R : Rθ(st,at) = Rθ(ρS(g) · st, ρA(g) · at) (36)
Qθ : S ×A → R : Qθ(st,at) = Qθ(ρS(g) · st, ρA(g) · at) (37)
πθ : S → A : ρA(g) · πθ(· | st) = πθ(· | ρS(g) · st) (38)

We experiment to enable and disable each of them: (1) transition network:
dynamics f and reward R, (2) value network: Q, and (3) policy network π. Note
that to make equivariant and non-equivariant components compatible, we need
to make sure the input and output dimensions match.

We show the results on Reacher Hard with D8 symmetry group in Fig 9.
Instead of using sqrt strategy (to keep same free parameters, number of hidden
units divided by

√
|D8| =

√
16 = 4) on specifying the number of hidden units, we

use linear strategy that keeps same input/output dimensions (number of hid-
den units divided by |D8| = 16). Thus, the performance of fully non-equivariant
model and fully equivariant model are not directly comparable, because the
number of free parameters in fully equivariant one is much smaller.

The results show the relative importance of value, policy, and transition.
It shows the most important equivariant component is Q-value network. It is
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Fig. 9: Ablation study on equivariant components, using Reacher Hard with D8

symmetry group.

reasonable because it has been used intensively in predicting into the future,
where generalization and training efficiency are very important and benefit from
equivariance.

Hyperparameter of amount of warmup. We experiment different number of
warmup episodes, called seed steps in TD-MPC hyperparameter. We find this
is a critical hyperparameter for (non-equivariant) TD-MPC. One possible rea-
son is that TD-MPC highly relies on joint training and may collapse when the
transition model is stuck at some local minima. This warmup hyperparameter
controls how many episodes TD-MPC collects before starting actual training.

We test using different numbers on PointMass 3D with small target. The
results are shown in Figure 10, which demonstrate that our equivariant version
is robust under all choices of warmup episodes, even with little to none warmup.
The non-equivariant TD-MPC is very sensitive to the choice of warmup number.

Ablation on symmetry groups. We also do ablation study on the choice of dis-
crete subgroups. We run experiments on Reacher Hard to compare 2D discrete
rotation/dihedral groups: C4, C8, C16, D16, using 1 warmup episode.

The results are shown in Fig 11. We find using groups larger than C8 does
not bring additional improvement on this specific task, Reacher Hard. In the
main paper, we thus use D4, D8 to balance the performance and computation
time and memory use.

Comparing reference frames and state features. This experiment studies the
balance between reference frames and the choice of state features. In the the-
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Fig. 11: Ablation study on symmetry group on Reacher Hard.

ory section, we emphasize that kinematic constraints introduce local reference
frames.

Here, we study a specific example: Reacher (Easy and Hard). The second
joint has angle θ2 and angular velocity θ̇2 relative to the first link.

For local reference frame version, we use(
θ1, θ2, θ̇1, θ̇2, xg − xf , yg − yf

)
⇒

(
cos θ1, sin θ1, cos θ2, sin θ2, θ̇1, θ̇2, xg − xf , yg − yf

)
(39)

Thus, cos θ1, sin θ1 is transformed under standard representation ρ1 and cos θ2, sin θ2
is transformed under trivial representation ρ0 ⊕ ρ0.

For the global reference frame version, we compute the global location of
the end-effector (tip) by adding the location of the first joint. Thus, the global
position is transformed also under standard representation now ρ1.

We show the results in Figure 12. Evaluation reward curves for non-equivariant
and equivariant TD-MPC over 5 runs using global frames. Error bars denote
95% confidence intervals. Non-equivariant TD-MPC outperforms equivariant
TD-MPC. Surprisingly, we find using global reference frame where the second
joint is associated with standard representation (equivariant feature, instead of
invariant feature) brings much worse results, compared to the local frame version
in the main paper. One possibility is that it is more important to encode kine-
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Fig. 12: Results for global reference frame on Reacher.

matic constraints (e.g., the length of the second link is preserved in cos θ2, sin θ2),
compared to using equivariant feature.
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